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Abstract 

A direct data-domain (D3) least-squares space-time adaptive-processing (STAP) approach is presented for adaptively 
enhancing signals in a non-homogeneous environment of jammers, clutter, and thermal noise, utilizing a circular antenna 
array. The non-homogeneous environment may consist of non-stationary clutter. The D3 approach is applied directly to the 
data collected by a circular antenna array (utilizing space), and in time (Doppler) diversity. Conventional STAP generally util- 
izes statistical methodologies, based on estimating a covariance matrix of the interference, using the data from various range 
cells of the circular array and assuming that it is a uniform linear array. However, for highly transient and inhomogeneous 
environments, the conventional statistical methodology may be difficult to apply. Moreover, the error in forming the covariance 
matrix by assuming that the data collected by the circular array is assumed to be a uniform linear array is highly problem 
dependent. Hence the D3 method is presented, as it analyzes the data in space and time over each range cell separately. 
However, it treats the antenna array as circular, i.e., it deals with the antenna structure in its proper form. Limited examples 
are presented to illustrate the application of this approach. 

Keywords: Adaptive arrays; adaptive signal processing; adaptive radar; space-time adaptive processing; circular arrays; 
direct data domain method; least squares methods 

1. Historical Background 
or airborne radars, it is necessary to detect targets in the pres- F ence of clutter, jammers, and thermal noise. The airborne-radar 

scenario has been described in [l-31, and is summarizcd here for 
completeness. This scenario is depicted in Figure 1. It is necessary 
to suppress the levels of the undesired interferers well below the 
small, desired signal retums. The problem is complicated due to 
the motion of the platform, as the ground clutter reccived by an 

airborne radar is spread out in range, spatial angle, and also over 
Doppler. One way to detect small signals of interest in such a noisy 
environment is to have a high-gain array, providing sufficient 
power and a large-enough aperture to achieve narrow beams. In 
addition, thc array must havc extremely low sidelobes, simultane- 
ously, on transmit and receive. This inay sometimes be veiy diffi- 
cult and expensive to achieve, in practice. 
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SIDELOBE 
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Figure 1. The scenario of an airborne radar. 
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Figure 2. The data consisting of antenna elements, time sam- 
ples, and information for each range cell. 

An altemate way to perhaps achieve the same goal is through 
Space-Time Adaptive Processing (STAP). STAP is carried out by 
performing two-dimensional filtering on signals, which arc col- 
lected by simultaneously combining signals from the elements of 

an antenna array (the spatial domain), as well as from the multiple 
pulses from a coherent radar (the temporal domain). The data- 
collection mechanism is shown in Figure 2. The temporal domain 
thus consists of multiple pulse-repetition periods of a cohcrcnt 
processing interval. By pcrrorming simultaneous multidimensional 
filtering in spacc and time, the goal is not only to eliminate clutter 
that arrives at the same spatial anglc as the target, but to also 
remove clutter that comes from other spatial angles, but has similar 
Doppler frequencies as the target. Hence, STAP provides the ncc- 
cssary mechanism to detect low observables from an airbome 
radar. 

In this paper, we consider a pulsed Doppler radar, consisting 
of a circular phased array situated on an airhome platrorm, which 
is moving at a constant velocity. The radar consists of an antenna 
array, where each element has its own independent rccciver chan- 
nel. 

The circular array consists of a total of E eleincnts, equally 
distributed in the azimuth angle, as shown in Figure 3. The angular 
separation, 0, , between each of thc cleinents is 

2n 
Q =- 

e E '  

Let the spatial coordinate of the nth element be ( x,, , y, ,) ,  and this 
is oriented along Q,, with respect to the x axis. The anglc is given 
by 

2n 
E 

Q,, = - ( I 2  - I )  

If R is the radius of the circular array, then 

Y Axis 

y,, = R sin Q,, . 

Circular Array 

( 3 )  

(4) 

- 
Figure 3. A configuration of a circular array 
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Figure 4. The generation of the data cube from space (antenna) 
and time (Doppler) samples. 

Here, it is assumed that the elements of the array are omnidirec- 
tional point radiators. However, it is quite straightforward to take 
into account the mutual coupling between the elements, and even 
the electromagnetic coupling between the phased array and the air- 
borne platform. 

Let us assume that at any time, only N of the E elements are 
active. The radar transmits a coherent burst of M pulses, at a con- 
stant pulse-repetition frequency. The time interval over which the 
received pulses are collected in the array is the cohcrent processing 
interval. Thc pulse-repetition interval is the inverse of the pulse- 
repetition frequency. A pulsed waveform of a finite duration (and 
an approximatcly finite bandwidth) is transmitted. On receive, at 
any of the given N elements, matched filtering is done, where the 
receiver bandwidth is equal to the transmitting bandwidth. 
Matched filtering is carried out separately on each pulse return, 
after which the signals are digitized and stored. So, for each pulse- 
repetition interval, R time samples are collected to cover the 
desired range interval. Hence, we term R as the number of range 
cells. Therefore, with A4 pulses and N antenna elements, each hav- 
ing its own independent receiver channel, the received data for a 
coherent processing interval consists of RMN complex baseband 
samples. These samples are often referred to as thc data cube, con- 
sisting of R x A4 x N complex baseband samples of the received 
pulses. The data cube then represents the voltages defined by 
V (m;n; r )  for m = 1,. . . ,M ; n = 1,. . ., N ,  and r = 1,. . ., R , as shown 
in Figure 4. These measured voltages contain the signal of interest 
(SOI), jammers, and clutter, including thermal noise. A space-time 
snapshot then is referred to as MN samples for a fixed range-gate 
value of r. In the D3 procedure to be described, thc adaptive 
weights are applied to the space-time snapshot for the range cell r. 

Here, a two-dimensional array of weights, numbering NUN,, is 
used to extract the signal of interest for the range cell r. N, is 
always taken to be N -1.  Hence, the weights are defined by 
w ( p ; q ; r )  for p = l ,  ..., N,<M and q = l ,  ..., N , = N - l ,  and 
these are used to extract the signal of interest at the range cell Y. 

Note that in this system, the number of time samples, M, must be 
greater than N,N,. In this procedure, we essentially perform a 
high-resolution filtering in two dimensions for each range cell. 

Conventional STAP processing, as available in the published 
literature, deals with the statistical treatment of clutter, and this 
involves estimating a covariance matrix of the interference, using 
data over the range cells [4-lo]. The statistical procedures thus 
require secondary data for processing, and this may be in short 
supply for a non-stationary environment. In addition, the formation 
of the covariance matrix and the computation of its inverse are not 
only computationally intensive, but also break down under a highly 
non-stationary environment. This is particularly tnie when the 
clutter scenario changes from land to urban to sea clutter, and when 
there are blinking or barrage jammers (which is also called hot 
clutter). 

Initially, the D3 method was developed to deal with adaptive 
problems in the spatial domain [ll-12, 141. Next, it was extended 
to deal with non-uniformly spaced non-planar arrays [13]. The cir- 
cular antenna array has also been treated in [13], for space-only 
applications. Finally, this technique has been extended to deal with 
the two-dimensional filtering problem of space-time adaptive proc- 
essing [15]. The methodology has been applied to the MACARM 
(multi-channel Airborne Radar Measurcments) database to detect a 
Saberliner in the presence of urban, land, and sea clutter, by sens- 
ing with a phased array mounted near the nose of a BAC1-11 air- 
craft [15]. There, the array was a uniform linear array. In this 
paper, the same methodology is extended to deal with circular 
arrays. 

Here, we use the D3 approach to deal with STAP for circular 
arrays. In this alternate approach, the joint space-time (multi- 
dimensional) filtering is carried out for each range cell separately, 
and, hence, we process the data dealing with each space-time snap- 
shot individually. No secondary data are required in this methodol- 
ogy. The STAP procedure for a circular array is described next. 

2. Direct Data Domain (D3) 
Least-Squares STAP 

From the data cube shown in Figure 4, we focus our attention 
to the range cell Y, and consider the space-time snapshot of MN 
data for this range cell. 

We assume that the signal of interest for this range cell r is 
incident on the circular array from an azimuth angle 0, from the x 

axis, and is at Doppler frequency f ; r .  Our goal is to estimate its 

amplitude, given 8, and fd . Let us define S ( p ; q )  to be the com- 
plex voltage received at the qth antenna element, corresponding to 
the pth time instance, for some range cell Y. We further stipulate 
that the known voltages S ( p ; q )  are due to a signal of unity mag- 

nitude, incident on the array from the azimuth angle @, corre- 
sponding to Doppler frequency fd . Hence, the signal-induced 
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voltages under the assumed array geometry and a narrow-band sig- 
nal are a complex sinusoid, given by 

fo rq= l ,  ..., N ;  p = l ,  ..., M ,  

where 

;1 = wavelength of tlie RF radar signal, 

At = pulse-rcpetition interval. 

Let X ( p ; q )  be the actual measured complex voltagcs that are in 
the data cube of Figure 4, for the rangc cell I’. The actual voltages, 
X, will contain the signal of interest of amplitude a ( a  is a coni- 
plex quantity); jammers, which may be due to coherent multipaths, 
both in the main lobe and in the sidelobe; and cluttcr, which is the 
reflected electromagnetic energy from the ground, and which will 
compete with the signal of interest at the Dopplcr frcqueiicy of 
interest. There is also a contribution to tlic measured voltagc for 
the range cell I’ from receiver thermal noise, Hence, thc actual 
measured voltages, X (11; y ) , are 

+Clutter+ Jaimner+Thcrmal noise = V ( p ; q ; r )  

Now, if one forms the following difference of the signals from 
rangc cell r, then the elements of the matrix pcncil 

represents the contribution due to the unwanted signal multipatlis, 
jammers, unwanted signals at the same Doppler, and reccivcr 
thermal noise. In the adaptive processing, the goal is to take a 
weighted sum of the matrix elements defined by Equation (7), and 
to extract the signal of interest for the rangc cell r .  Tlic total num- 
ber of degrees of freedom then represent the total number of 
weights. This is the product NoNI = N ,  ( N  - I ) ,  where N ,  IS the 
number of spatial degrees of freedom (and is always equal to 
N - I ,  in this case), and N I  is the number of temporal dcgrees of 
freedom. In this formulation, it is neccssary that the total number 
of time samples, M, be greater than ( N  - 1) N, , i.e., 

It is next illustrated how a Direct Data Domain (D’) least-squarcs 
approach is taken for the extraction of tlie signal of interest. 

The development of the least-squares procedure for one 
dimension is available in [ 11, 121. Here, the same least-squares 
procedure is extended to two dimensions. Consider the two fol- 
lowing matrices: C, and C2. The clements of C, and C2 are 
formed by 

C,(x; y )  = s ( g  + h  - I ; d  + e e l ) ,  (9) 

whcre 

x = e + (g -1) N,, , 

y = t l +  (/z - 1) N o ,  

1 I d  5 N, = N - 1 ,  

l < e I N , = N - 1 ,  

I i g I N , ,  

1 5  11 I N,, 

so that 1 I x;y I NONt . Here, N ,  and N ,  reprcsent the numbcr of 
degrees of freedom in space and time, rcspectively. 

Now, in the STAP processing, the weights, W, arc clioscn in 
such a way that the contributions from the jammers, clutter, and 
thermal noise are made as small as possible. Hence, if we define 
the generalized eigenvalue problem 

then a , the strcngth of the signal, is a generalized eigenvaluc, and 
the weights are givcn by the corresponding generalized eigenvec- 
lor. Here, W is a coluinn vcctor of length N ,  N, for the range cell 
I’. Since wc have assumed that only the signal of intcrcst is arriving 
from Q,, , corresponding to thc Doppler A/ , the matrix [C,]  is o l  
rank one and, hence, the generalized eigenvalue equation has only 
one non-zero eigenvalue, which providcs the complex value of the 
signal. 

Alternately, one can view the left-hand side of Equation (17) 
as the total noise signal at the output of thc adaptive processor, due 
to jammer, clutter, and thciinal noise. One is therefore trying to 
rcduce the noisc voltagc at the output of the adaptive processor, 
which is given by 

The total output noise power then can bc obtained as 

where H represents the conjugate transpose of a matrix. Our objcc- 
tive is to set the noise power to zero by selecting [ W ]  lor a fixed 
signal strength a .  This is done by diffcrentiating tlie real quantity 
Npolver with respect to the elements of [ W ] ,  and setting each 
component equation to zero. This yields Equation (17). 

Tlic number of degrccs of freedom, N,N,, is determined by 

M and N.  Clearly, if N,, = hr- I and M > (N,N, ) ,  enough equa- 
tions can be generated to form Equations (1  8). In this procedure, 
the number of time samples must be greatcr than the total number 
o r  dcgrees of freedom. The goal, therefore, is to extract the signal 
of interest at a given Doppler and angle of arrival in a given range 
ccll r by using a two-dimensional filter of size N O N ,  . The filter is 
going to operate on tlie data snapshot of size Nhf to extract thc sig- 
nal of interest. 
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In real-tiinc applications, it is difficult to numerically solvc 
for the generalized cigenvaluc problem in real time, particularly if 
the value N,Nl , representing the total number of weights, is large, 
and the matrix [C2] is highly rank deficient. For this rcason, we 
convert the solution of an cigenvalue problem, given by Equa- 
tion (1 7), to the solution of a lincar matrix equation. 

[ T ] [ W ] = [ Y ] =  

Lct 

C 
... 

0 . (32) 
0 
0 

and we fonn a reduced-rank matrix [ T ]  or dimension (NJV, - I )  x 

( N, N I )  rroin the elements of the matrix X, wherc 

x ( g  + 12 - I; k - I )  x ( g  + / I  - I;k ) 
T(x;J))= 1 (22) 

P" .Z/,-I P" * Z k  

x ( g  + h - 1; k - 1) x ( g  + h ;  k - 1) 

B h * Z / < - I  p "+ ' 'Z/, -1 
T (X + 1;y) = 7 (23) 

x ( g  + 17 - 1; k - 1) x ( g  + h ;  ") 
T(.v + 2 ; y )  = > (24) 

Bl'% p l J + l - Z / ,  

and 

I l k <  N, = N - l ,  

I y = N, (k - 1) + h I N, NI , 

for any row x [its value is betwcen 1 and 2 N,N,] ,  and the fol- 
lowing variables take values betwecn 

If we considcr the three consecutivc rows of the matrix T, we 
observe that they have been foi-med by taking a weighted differ- 
ence of a two-dimensional block of thc data of size N,,N,. l'he 
weighted difference is taken using the elemcnts of matrix X ( p ; q )  . 

Thereforc, T (x; y )  is formed by writing the NNN, dirference 
matrix or Equations (22) to (24) as three consecutive rows of the 
matrix. The weighted differences forming N ,  N, elcments occiipy 
one row of the matrix. The elements of the matrix T are thus 
obtained by a weighted subtraction of the induced voltagcs from 
the neighboring elcments (eithcr in space or in time), so that in 
these elements the dcsired signals arc cancelled out, and the cle- 
mcnts of T contain no coinponcnts or thc signal corresponding to 
the Dopplcr fd and or direction of arrival O,\. We choose the 
wcights [W] such that 

where the column matrix [ W ]  has been generated by aimnging the 

N , N ,  weights from w(n7;n;r) in a linear column array, corrc- 
sponding to the processing of'the data from range cell P. Tn order to 
rcstove the signal component in  the adaptivc processing, we fix tlic 
gain of the subarray (in both spacc and time) foiined by fixing the 
first cow ofthe matrix T. Thc elemcnts of thc first row are given by 

where 

and 

We set the gain of the system along the direction 8, or  the arrival 
of the signal, and corresponding to the Doppler frequcncy, J l ,  at 
soiiie constant, C, and so let 

The final equation is formed by combining Equations (22), (23), 
and (24), along with Equation (28), rcsulting in the matrix equation 

Oncc the wcight, [W], is known from Equation (32), the signal 
strength for the range cell r is estimatcd from 

3. Numerical Example 

As an cxample, consider a 40-element circular array. The 
elements are distributed cvenly along the arc of the circle, of radius 
seven wavelengths. Only 11 contiguous eleincnts of the 40-elcinent 
array are active at one timc, so that it scans ovcr a 45" sector. Then, 
the ncxt 11 elemcnts are excited, and so 011. First, let LIS assume 
that the following I1  elements, comprising the sector from 0 to 
45", are active. The signal or interest is coniing from 20", and its 
level is considercd to bc 0 dB. The signal of intercst has a Doppler 
or 560 Hz. In addition, wc consider two othcr strong targets, 
Iocatcd very close to the signal of interest. One of the targets is 
37 dB stronger than the signal. It is arriving from an azimuth of 
28O, and it is at a Doppler of 555 Hz. The second interference is 
arriving from an azimuth of 30" and is 39.5 dB slronger than the 
signal of interest. It has a Doppler of 565 Hz. In addition, therc are 
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two other strong interferers, located at the periphcry o r  thc active 
sector of 45”. One of them is arriving from 47”, and is at a Doppler 
of -570Hz. It is 39 dB above the signal. The second onc is arriv- 
ing from 5” at a Doppler of -550Hz, and is 38.3 dB stronger than 
the signal. The signals are all sampled at 1950 Hz at all the ele- 
ments. In addition, there is theiiiial noisc in all the antenna ele- 
ments for all limes. It is 24.7 dB below the signal level at each 
antenna element. A data cubc over a range cell is generatcd for this 
scenario. Thcrc are 128 time samples at each anteiiiia element, and 
there are I 1  elements. To this data cube, we applied the Dircct 
Data Domain Least-Squares Method. In this case, tlierc werc 10 
spatial taps and 25 temporal taps. This is equivalent to filtering the 
data cubc by a two-dimensional filter ofordcr 250. The output sig- 
nal-to-noise ratio for this scenario was estimated to be 5 dB. This 
rcsults in a signal-to-interference-plus-noise enhancement from 
-39dB to +5dB. 

4. Conclusion 

A Direct Data Domain Least Squares approach has been pre- 
sented to carry out space-time adaptive processing, using a circular 
array. Even though the circular a m y  can resolve signals that are 
close in azimuth and Doppler, spccial attention must be paid to this 
analysis when the signals are at the sanic Doppler. A limited 
example has been presented, to illustratc thc applicability of this 
technique. Future research necds to quantify the efficiency and the 
accuracy of this approach, and to observe how this new algorithm 
performs on rcal data. 
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