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Abstract—A direct data domain (D3) least-squares space–time
adaptive processing (STAP) approach is presented for adap-
tively enhancing signals in a nonhomogeneous environment.
The nonhomogeneous environment may consist of nonstationary
clutter and could include blinking jammers. The D3 approach
is applied to data collected by an antenna array utilizing space
and in time (Doppler) diversity. Conventional STAP generally
utilizes statistical methodologies based on estimating a covariance
matrix of the interference using data from secondary range cells.
As the results are derived from ensemble averages, one filter
(optimum in a probabilistic sense) is obtained for the operational
environment, assumed to be wide sense stationary. However, for
highly transient and inhomogeneous environments the conven-
tional statistical methodology is difficult to apply. Hence, the D3

method is presented as it analyzes the data in space and time over
each range cell separately. The D3 method is deterministic in
approach. From an operational standpoint, an optimum method
could be a combination of these two diverse methodologies. This
paper represents several new D3 approaches. One is based on the
computation of a generalized eigenvalue for the signal strength
and the others are based on the solution of a set of block Hankel
matrix equations. Since the matrix of the system of equations to
be solved has a block Hankel structure, the conjugate gradient
method and the fast Fourier transform (FFT) can be utilized for
efficient solution of the adaptive problem. Illustrative examples
presented in this paper use measured data from the multichannel
airborne radar measurements (MCARM) database to detect a
Sabreliner in the presence of urban, land, and sea clutter. An
added advantage for the D3 method in solving real-life problems
is that simultaneously many realizations can be obtained for
the same solution for the signal of interest (SOI). The degree of
variability amongst the different results can provide a confidence
level of the processed results. The D3 method may also be used for
mobile communications.

Index Terms—Atmospheric interference, D3 approach, object
detection, radar clutter, space–time adaptive processing (STAP).

I. INTRODUCTION

FOR airborne radars it is necessary to detect targets in
the presence of clutter, jammers, and thermal noise. The

airborne radar scenario has been described in [1]–[3] and is
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summarized here for completeness. This scenario is depicted
in Fig. 1. It is necessary to suppress the levels of the undesired
interferers well below the weak desired signal. The problem is
complicated due to the motion of the platform as the ground
clutter received by an airborne radar is spread out in range,
spatial angle, and also over Doppler. One way to detect small
signals of interest in such a noisy environment is to have a
large array providing sufficient power and a large enough
aperture to achieve narrow beams. In addition, the array must
have extremely low sidelobes simultaneously on transmit and
receive. This is very difficult and expensive to achieve in
practice. An alternate way to achieve the same goal is through
space–time adaptive processing (STAP). STAP is carried out
by performing two-dimensional (2-D) filtering on signals that
are collected by simultaneously combining signals from the
elements of an antenna array (the spatial domain) as well as
from the multiple pulses from a coherent radar (the temporal
domain). The data collection mechanism is shown in Fig. 2.
The temporal domain thus consists of multiple pulse-repetition
periods of a coherent processing interval (CPI). By performing
simultaneous multidimensional filtering in space and time the
goal is not only to eliminate clutter that arrives at the same
spatial angle as the target but also to remove clutter that comes
from other spatial angles but has the same Doppler frequency
as the target. Hence, STAP provides the necessary mechanism
to detect low observables from an airborne radar.

In this paper, we consider a pulsed Doppler radar situated
on an airborne platform that is moving at a constant velocity.
The radar consists of an antenna array, where each element has
its own independent receiver channel. The linear antenna array
has elements uniformly spaced by a distance. The radar
transmits a coherent burst of pulses at a constant pulse-rep-
etition frequency. The pulse-repetition interval is inverse of the
pulse-repetition frequency. A pulsed waveform of a finite du-
ration (and approximately finite bandwidth) is transmitted. On
receive, matched filtering is done where the receiver bandwidth
is equal to the transmit bandwidth. Matched filtering is carried
out separately on each pulse return after which the signals are
digitized and stored. So for each pulse-repetition interval,
time samples are collected to cover the desired range interval.
Hence, we term as the number of range cells. Therefore with

pulses and antenna elements, each having its own in-
dependent receiver channel, the received data for a coherent
processing interval consists of complex base-band sam-
ples. These samples are often referred to as the data cube con-
sisting of complex baseband samples of the re-
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Fig. 1. Scenario of an airborne radar.

ceived pulses. The data cube then represents the voltages de-
fined by for and

. These measured voltages contain the signal of
interest (SOI), jammers, and clutter including thermal noise. A
space–time snapshot then is referred to as samples for a
fixed-range gate value of.

In the D procedure to be described, the adaptive weights are
applied to the single space–time snapshot for the range cell.
Here, a 2-D array of weights numbering is used to extract
the SOI for the range cell. Hence, the weights are defined by

for and
and is used to extract the SOI at the range cell. Therefore, we
essentially perform a high-resolution filtering in two dimensions
(space and time) for each range cell.

Conventional STAP processing as available in the published
literature deals with the statistical treatment of clutter and this
involves estimating a covariance matrix of the interference using
data over the range cells [4]–[10]. The statistical procedures
thus require secondary data for processing and this is in short
supply for a nonstationary environment. In addition, the for-
mation of the covariance matrix and the computation of its in-
verse is not only computationally intensive but also breaks down
under highly nonstationary environment particularly when the
clutter scenario changes from land to urban to sea clutter and
when there are blinking jammers and hot clutter.

Conventional STAP algorithms develop the necessary equa-
tions for the filter weights by first deriving the principle of or-
thogonality (in the ensemble sense) for wide-sense stationary
discrete-time stochastic processes, which are then used to de-
rive the corresponding Wiener–Hopf equations in space–time.
In the D least-squares approach the principle of orthogonality
is based on the given data samples and this is used to derive
a system of equations which provides the mathematical basis
of the D least-squares problems. For the adaptive problem in

Fig. 2. Data consisting of antenna elements, time sample, and information for
each range cell.

one dimension, the methodology has been described in [13],
[16] using time averages. This methodology was modified to
the single snapshot case in [11] and [12]. From an operational
point of view, an optimal method would be a combination of
statistical and least-squares STAP methodologies [9].

In this paper, a direct data domain (D) least-squares ap-
proach developed earlier for spatial adaptive processing is ex-
tended to deal with the STAP scenario. In this alternate ap-
proach the space–time (multidimensional) filtering is carried
out for each range cell separately and directly and, hence, we
process the data dealing with each space–time snapshot individ-
ually. No secondary data is required in this methodology. Sev-
eral new techniques are developed for this scenario, based on
the previously developed Dtechniques [11], [12], [16]. These
are the techniques based on the eigenvalue approach, forward
method, backward method, and the forward–backward method.
The next section describes the mathematical details. The air-
borne radar and the data collection scenario using MCARM
data is described in Section III. Numerical results based on pro-
cessing of this real experimental data is described in Section IV
and its performance is compared with conventional approaches
using limited examples using real airborne data. This is followed
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(a)

(b)

Fig. 3. (a) Generation of the data cube from space (antenna) and time (Doppler) samples. (b) Explanation of the data processing algorithm.

by some conclusions and a list of references where additional
materials can be obtained.

II. DIRECT-DATA DOMAIN (D ) LEAST-SQUARESSTAP

A. D Based on the Solution of an Eigenvalue Equation

From the data cube shown in Fig. 3(a), we focus our attention
to the range cell and consider the space–time snapshot for this
range cell.

We assume that the SOI for this range cellis incident on
the uniform linear array from an angle and is at Doppler fre-
quency . is measured from the nose of the aircraft. Our
goal is to estimate its amplitude, given and only. In a
surveillance radar, and set the look directions and a SOI
(target) may or may not be present along this look direction and
Doppler. Let us define to be the complex voltage re-
ceived at the th antenna element corresponding to theth time

instance for the same range cell. We further stipulate that the
voltage is due to a signal of unity magnitude incident on
the array from the azimuth angle corresponding to Doppler
frequency . Hence, the signal-induced voltage under the as-
sumed array geometry and a narrow band signal is a complex
sinusoidal given by

for (1)

where wavelength of the RF radar signal pulse-rep-
etition frequency. Let be the actual measured complex
voltages that are in the data cube of Fig. 3(a) for the range cell
. The actual voltages will contain the signal of interest of

amplitude ( is a complex quantity), jammers, which may be
due to coherent multipaths both in the mainlobe and in the side-
lobe, and clutter, which is the reflected electromagnetic energy
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from the ground. The interference competes with the SOI at the
Doppler frequency of interest. There is also a contribution to the
measured voltage from receiver thermal noise. Hence, the actual
measured voltages are

Clutter Jammer Thermal noise

(2)

Now, if one forms the following difference using the signal from
range cell :

(3)

then these elements of the matrix pencil represent the contribu-
tion due to the unwanted signal multipaths, jammers, unwanted
signals at the same Doppler, and receiver thermal noise. In D
adaptive processing, the goal is to take a weighted sum of these
matrix elements defined in (3) and extract the SOI, which is
going to be in the range cell [16].

The total number of degrees of freedom (DOF) then repre-
sent the total number of weights and this is the product ,
where is the number of spatial DOF and is the number of
temporal DOF. Next, it is illustrated how a direct data domain
(D ) least-squares approach is taken for the extraction of SOI.

The least-squares procedure for the one-dimensional (1-D)
case (i.e., with only the subscriptand no ) is available in
[11]–[13], [16]. Here, the same least-squares procedure is ex-
tended to two dimensions. Consider the two following matrices

and . The elements of and are formed by

(4)

(5)

where

(6)

(7)

(8)

(9)

(10)

(11)

so that .
Now, if we consider the matrix pencil of size

(12)

then this represents the contribution of the unwanted signals as
the desired components have been canceled out. Please note that
the elements of the matrices and are created out of

and , respectively, as defined by (4) and (5).
Now in the STAP processing, the elements of the weight

vector are chosen in such a way that the contribution from
the jammers, clutter, and thermal noise is zero. Hence, if we de-
fine the generalized eigenvalue problem

(13)

then , the strength of the signal is a generalized eigenvalue and
the weights are given by the corresponding generalized eigen-
vector. Here, is a column vector of length for the range
cell . Since we have assumed that only the SOI is arriving from

corresponding to the Doppler , the matrix is of rank
one and hence the generalized eigenvalue equation has only one
nonzero eigenvalue which provides the complex value of the
signal.

Alternately, one can view the left-hand side of (13) as the
total noise signal at the output of the adaptive processor due
to jammer, clutter, and thermal noise. One is therefore trying to
reduce the noise voltage at the output of the adaptive processor,
which is given by

(14)

The total output noise power then can be obtained as

(15)

where represents the conjugate transpose of a matrix. Our ob-
jective is to set the noise power as small as possible by selecting

for a fixed signal strength. This is done by differentiating
the real quantity with respect to the elements of and
setting each component equation to zero. This yields (13).

The total number of DOF is determined by both
and . Clearly, we need and so that enough
equations can be generated to form (13). Generally,
and, therefore, there are a larger number of temporal DOF than
spatial DOF. The goal, therefore, is to extract the SOI at a given
Doppler and angle of arrival in a given range cellby using a
2-D filter of size . The filter is going to operate on the data
snapshot depicted in Fig. 3(a) of size to extract the SOI.

In real time applications, it is difficult to numerically solve for
the generalized eigenvalue problem in sufficient time, particu-
larly if the value representing the total number of weights
is large and the matrix is highly rank deficient. For this
reason, we convert the solution of a eigenvalue problem given
by (13) to the solution of a linear matrix equation.

B. Direct Methods Based on the Solution of the Matrix
Equation

1) Forward Method: Let

(16)

(17)

and we form a reduced rank matrix of dimension
from the elements of the matrix where

(18)

(19)

(20)
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where

(21)

for any row and the variables take values between the
limits defined in (8)–(11). So if we look at the space–time snap-
shot of Fig. 3(b), we observe how (18)–(20) are implemented.
Please note that in (18), the signal-of-interest (SOI) compo-
nent is canceled from samples taken from different antenna ele-
ments at the same time. Similarly (19) represents signal cancel-
lation from samples taken at the same antenna elements at dif-
ferent time instances. Finally, (20) represent signal cancellation
from neighboring samples in both space and time. Therefore, we
are performing a filtering operation simultaneously using
samples of the space–time data as illustrated by Fig. 3(b).

If we consider the three consecutive rows of the matrix, we
observe that they have been formed by taking a weighted dif-
ference of a 2-D block of the data of size . The weighted
difference is taken using the elements of matrix . There-
fore, is formed by writing the difference matrix
of (18)–(20) as rows of matrix . Each of the weighted differ-
ences forming elements occupy one row of the matrix.
The three different rows represent three possible choices of the
weighted difference between the neighboring elements.

The elements of the matrix are thus obtained by a weighted
subtraction of the induced voltages from the neighboring ele-
ments (either in space or in time) so that in these elements the
desired signals are canceled out and the elements ofcontain
no components of the signal corresponding to the Doppler
and the direction of arrival . We choose the weights such
that

(22)

where the column matrix has been generated by arranging
the weights from in a linear column array cor-
responding to the processing of the data from range cell. In
order to restore the signal component in the adaptive processing,
we fix the gain of the subarray (in both space and time) formed
by fixing the first row of the matrix . The elements of the first
row are given by

(23)

where and are given by (7), (9), and (11), respectively. We
set the gain of the system along the directionof the arrival of
the signal and corresponding to the Doppler frequency, at
some constant . Resulting in the matrix equation

(24)

Once the weight is known by solving (24) the signal
strength for the range cellis estimated from

(25)

Fig. 4. The BAC1-11 carrying the phased array.

The proof of (25) is available in [11].
As noted in [12], (24) can be solved very efficiently by

applying the conjugate gradient method along with the fast
Fourier transform (FFT). This solution methodology may be
implemented in real time as has been demonstrated by its
application on a DSP32C signal processing chip [14] for a
similar type of problem dealing with Hankel matrices.

It is interesting to note that if the assumed angle of arrival of
the signal and its Doppler is quite different from the ac-
tual values, signal cancellation will occur as described in [12]
for the adaptive problem. In that case, additional equations are
required to constrain the receive 3-dB beamwidth in space and
in time following the procedure of [12], [16]. In this paper, this
modification has not been considered; as for the examples con-
sidered in this paper, it appeared that these factors did not influ-
ence our computations.

2) Backward Method:It is well known in the parametric
spectral estimation literature that a sampled sequence consisting
of a sum of complex exponentials can be estimated by observing
it either in the forward direction or in the reverse direction [13,
ch. 11]. If we now conjugate the data and form the reverse se-
quence, then one obtains an equation similar to (24) for the
weights. In this case, the first row of the matrix and
are same as before as in (23). The remaining equations of (24),
which are given by (18), (19), and (20), now have to be mod-
ified. Under the present circumstances, one would obtain the
three consecutive rows of the matrix by taking a weighted
difference between the neighboring elements to form

(26)

(27)

(28)

for any row number where represents the complex conjugate
of a quantity and and have been defined in (8)–(11).
The row number increases by multiples of three and

(29)



96 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 49, NO. 1, JANUARY 2001

Fig. 5. The flight paths of the BAC1-11 and the Sabreliner over the Delmarva Peninsula.

Once the weights are solved for by solving a system of equa-
tions similar to (27), the strength of the desired signal at range
cell is estimated from [12], [16]

(30)

Thus, the backward procedure provides a second independent
realization of the same solution. In a practical environment,
where the real solution is unknown, generation of two indepen-
dent sets of solutions may provide some degree of confidence
on the final results.

3) Forward–Backward Procedure:In this procedure, a
system of equations are formed by combining the forward and
backward solution procedure as described for the 1-D-case
[12], [16]. Since, in this process, one is doubling the amount of
data available by considering it both in the forward direction
and in the reverse direction, one can essentially do one of the
following two things. Either increase the number of equa-
tions and solve an equation similar to (24) in a least-squares
fashion or equivalently increase the number of weights and,
hence, the number of DOF by as much as 50%. The second
alternative is extremely attractive if one is processing the data
on a snapshot-by-snapshot basis due to a highly nonstationary
environment. In this way, one can effectively deal with a

situation where the number of data samples may be too few to
perform any other processing.

Since in this case the total number of data points is ,
the number of degrees of freedom can be increased from the
two cases presented earlier. Hence, the number of degrees of
freedom in this case will be , where and

. The increase in the number of degrees of freedom depends
on the number of antennas and the time samples . But
clearly is significantly greater than . This increase
may be by a factor of approximately two when dealing with a
data cube where (the number of antennas in the array)
and (the number of time samples).

III. D ESCRIPTION OF THEDATA COLLECTION SYSTEM

The examples presented in this paper use the data from the
MCARM database. A 22 channel phased array con-
taining two rows of 11 subarrays was mounted on the side of a
BAC1-11 as shown in Fig. 4. Each subarray combine four el-
ements of a vertically polarized half-wave antennas, which are
spaced approximately half a wavelength apart at 1.24 GHz. By
assuming that the target is always at 90in azimuth, all the
22 channels can be processed simultaneously. The beam was
pointed downwards in elevation by about 5. The flight path
of the phased array was over the Delmarva peninsula (as de-
fined by the landmass between the Chesapeake Bay and the
Atlantic Ocean). In the first experiment, the BAC1-11 received
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Fig. 6. Scene of the region of ground clutter.

five moving target simulator (MTS) tones from a ground-based
transmitter, which was switched on by the transmitted pulse. For
the second experiment, the phased array on the BAC1-11 tried to
locate a Sabreliner approaching the BAC1-11 in the presence of
sea, urban, and land clutter. The data cubes generated from these
measurements, which are available from the AF Research Lab-
oratory web site (http://sunrise.deepthought.rl.af.mil), are used
to analyze the validity of the algorithms presented in this paper.
The details are available in [15]. The geographical region for
both flights is shown in Fig. 5 and the regions of ground clutter
return in Fig. 6. This indicates that there is possibility of having
simultaneously urban, land and sea clutters.

IV. NUMERICAL EXAMPLE

We next apply the Dtechniques to the analysis of MCARM
data. Specifically, we apply to two specific data sets, namely
data set RE050 152.dat and RL050 575.dat. The first one deals
with MTS tones in a real clutter environment, whereas the
second data set deals with an actual target buried in clutter.

The data was collected by an airborne antenna array. The an-
tenna array had 22 channels in addition to the sum and the differ-
ence channel. For each channel, the data in the time domain was
sampled at 1984 Hz and there are 128 time samples .

Fig. 7. (a) FFT of a single channel(� = 90 ) of the RE050 152.dat. (b) FFT
of the sum channel(� = 90 ) of the RE050 152.dat.

The third dimension of the data set corresponds to the range pro-
file and there are 630 range bins. The 3 dB beamwidth of the
antenna has approximately 7.8.

For the data cube of the first data set we use RE050 152. In
this example, as soon as a ground-based transmitter received
part of the transmitted signal from the BAC1-11 it immediately
transmitted a set of five moving target simulator (MTS) tones to
the BAC1-11. The data consisted of single tones located roughly
at 200 Hz apart at Doppler frequencies of800 Hz, 600 Hz,

400 Hz, 200 Hz, and 0 Hz. The amplitudes of the tones
decay roughly by 10 dB so that the amplitude of the800 Hz
is maximum and that at 0 Hz is a minimum. These tones are
most dominant in the range bin of . We considered a
single channel and the sum of all the 22 channels corresponding
to range bin and performed a 128 point FFT on the
time samples. The plot is shown in Fig. 7. The vertical axis
plots a normalized decibel plot of the spectrum. The tones at
Doppler 800, 600, and 400 are clear. The tones at200
and 0 Hz are slightly shifted. The FFT spectrum has a resolution
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Fig. 8. Utilization of the forward method applied to RE050 152.dat(S = 17; T = 39).

Fig. 9. Utilization of the backward method applied to RE050 152.dat(S = 17; T = 39).

of approximately 15 Hz. Next, we applied the superresolution
D analysis where a 2-D filtering technique is applied to each
range cell as described by the forward method. The order of the
filter required to identify the signals in the presence of clutter

consisted of 17 weights or filter taps in space and
a 39 order filter in time . So that the total number of
degrees of freedom is and is 663. This filter was applied
to each range bin, corresponding to the signal of arrival from the
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Fig. 10. Utilization of the forward–backward method applied to RE050 152.dat(S = 19; T = 61).

Fig. 11. Utilization of the stochastic method to RE050 152.dat.

broadside direction (i.e., ) and the Doppler frequency
was swept from 1000 Hz to 1000 Hz at intervals of 5 Hz.
The estimate of the signal obtained at the output is shown in
Fig. 8. In Fig. 9, the estimate of the signal utilizing the back-
ward method is shown using the same order 1739 space–time
filter. Fig. 10 presents the estimate of the signal as a function

of Doppler for the forward–backward method. Since, we are
using forward–backward method, one has essentially doubled
the number of data samples of (22128) and, for that reason,
we use a much higher order filter (19 in space, 61 in time) i.e.,

and . For the forward–backward method
the number of degrees of freedom is now 1159. This is nearly
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Fig. 12. Application of the forward method to RL050 575.dat.

Fig. 13. Application of the backward method to RL050 575.dat.

a twofold increase of the number of degrees of freedom used in
either the forward or the backward method. The result is shown

in Fig. 10. It is seen that all the three methods provide similar
estimates for the tones. However, in some of the methods there
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Fig. 14. Application of the forward–backward method to RL050 575.dat.

Fig. 15. Application of the stochastic method to RL050 575.dat.

are some spurious peaks. Therefore, simultaneous use of all the
three methods would provide a reliable estimate of the signal

and will minimize the probability of false alarm. Typical run-
ning time for each data point using the forward or the backward
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method is less than a minute on a Pentium PC with a clock of 450
MHz. The forward–backward method takes slightly more time
than either the forward or the backward method. It is impor-
tant to note that each range cell/Doppler/look angle can be pro-
cessed in parallel. Hence, the computational requirements are
very modest for real time applications. In all the computations,
the value of in (24) is chosen as unity.

Next, the conventional stochastic method is used to estimate
the signal strengths. The application of a 99 covariance ma-
trix utilizing a joint domain localized (JDL) stochastic approach
[9] is also used to estimate the signals. This is after the data has
been Fourier transformed into the Doppler domain utilizing a
Kaiser–Bessel window and a 128-point FFT. The result is shown
in Fig. 11.

As a second example consider the RL050 575.dat data set. It
consists of the data gathered over a flight path over the Delmarva
Peninsula. The flight path of the down-looking phased array of
the BAC1-11 is shown by the left curve on Fig. 5 on which the
particular data set was collected. Its position when it took the
data is marked by the circle on the left-hand side. In addition,
there is a Sabreliner flying toward the BAC1-11 in a slanted
fashion as shown by the second curve of Fig. 5. The position of
the Sabreliner is marked on the right-hand side. From the data
collected from the geostationary satellites, it appears that the
target is at 89 in azimuth and corresponds to the range cell at
318 (this is the second ambiguous range cell, namely )
and corresponding to the Doppler frequency of approximately

Hz. Also, this data set contains received land, sea, and
urban clutter from the regions shown in Fig. 6. It also had signal
return from highways which may have had some cars traveling
by at that time. In the current analysis it is assumed that the
signal is coming from , i.e., broadside.

The results of applying the “forward” Dleast-squares ap-
proach using a 17th-order spatial filter and a 39th-order tem-
poral filter is shown in Fig. 12. In this figure, the Doppler values
are scanned from 380 to 600 Hz in steps of 10 Hz. The range
cells are swept from 300 to 350. Fig. 12 represents the contour
plot of the estimated signal return utilizing the forward method
with weights of and . It is seen that there
are some activity around Doppler 500 Hz near the range cells
of 308, 330, and 347. Next, the backward method is used to an-
alyze the same data set and using the same number of degrees
of freedom . The results are shown in Fig. 13.
Again large returns around 500 Hz Doppler frequency are ob-
served in the range cells of 305, 320, 330, and 338. The appli-
cation of the forward–backward method Fig. 14 with the fol-
lowing weights of order results in signal
returns which are dominant at range cell of 330. By comparing
the results of the three graphs, one could say with confidence
which strong signal is a true return corresponding to a particular
Doppler and range cell. This is because the three methods are an-
alyzing the same data set in three independent ways and, hence,
it makes sense to compare the three results. Fig. 15 provides the
response utilizing the stochastic JDL approach of [6]. It is seen
there is some weak activity in the range cells of 308 and 330
around the Doppler of 500 Hz. However, without any “ground
truth” it is difficult to predict which signal return is actually the
saberliner in all of these! This is because there are channel mis-

matches in the measurements and various uncertainties like the
crab angle of the two aircrafts and so on. The actual results show
some deviations from the theoretical estimates. There may be
several factors of certainties in the measured data like the ve-
locity of each of the aircrafts, their elevation and their direction
of travel. However, all the methods predicted returns around the
Doppler of 500 Hz in the range bin of 330. This slight discrep-
ancy in Doppler and range can happen due to various factors as
outlined. Some shift may occur due to the matched filter pro-
cessing if the target is not exactly at or due to errors in
the array calibration introduced by mutual coupling [17], which
were not accounted for in the analysis.

V. CONCLUSION

A class of direct data domain least-squares adaptive algo-
rithms are presented to estimate the signal in the presence of
nonstationary clutter and other possible targets. The problem
is solved as an estimation problem rather than as a detection
problem as is conventionally done in radar processing. Partic-
ularly, the problem of highly nonstationary clutter environment
is mitigated by processing the data on a range snapshot by snap-
shot basis. Unlike the stochastic methods it does not require
secondary data cells. This is an advantage, particularly of the
direct least-squares data domain approach. Also, these methods
are computationally efficient. It is seen from the last four figures
that the present approach provides a good contrast in the detec-
tion of real targets in nonstationary clutter than the conventional
stochastic methods. An added advantage of the Dleast-squares
methodology is that simultaneously at least three independent
realizations can be obtained for the same solution. The degree
of variability amongst the results between all the three solutions
will provide a confidence level for the actual solution, particu-
larly when it is unknown.
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