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Abstract— Previous work in waveform diversity for distributed
apertures for target detection has focused largely on orthog-
onal transmissions. This paper will investigate an alternative
approach; implementing waveform diversity based on differing
slopes of the linear FM pulse to the application of target detection
for a distributed radar aperture system in the presence of noise
and clutter. This paper will add develop the required signal
model corresponding to the proposed system, accounting for the
cross-coupling between the linearly FM pulses. This paper will
determine whether applying this type of waveform diversity will
result in improved performance in the discrimination of the target
from noise and interfering sources and compare the performance
whether this method is a feasible solution. A crucial step is
the optimization of the FM rates using sequential quadratic
programming.

I. I NTRODUCTION

Recent works in the area of adaptive processing using
waveform diversity in different radar applications has shown
promising performance improvements. In particular, the work
in [1] proposed the use of frequency diversity for a system of
distributed radar apertures. By choosing a different transmit
frequency at each element of the array this work showed
that frequency diversity significantly reduces the gratinglobes
resulting from the distributed network. Waveform diversity
was also studied in [2] for the application of target tracking in
the presence of clutter. In that work, a general FM structure
was selected and the waveform parameters, such as the FM
waveform type, the FM rate and the wave duration, are
selected to minimize a cost function involving the actual target
position and the estimated target position. The simulations
from [2] showed clear benefits in adapting the waveform to the
scenario at hand as the MSE of the target tracking was reduced
for the case involving waveform diversity. These works set
the stage for and motivate further research in other means of
implementing waveform diversity to the important problem of
weak target detection in interference.

The system under consideration is a very sparse array of
sub-apertures placed thousands of wavelengths apart. Each
sub-aperture of the array transmits a linear-FM waveform with
its own frequency slope. Unlike in our companion paper [3],
the transmissions overlap and hence interact with each other at
each receiver. Each aperture also receives and processes all the
transmitted signals. Due to the fact that Waveform diversity
is achieved using multiple signals characterized by different
frequency slopes.

In [2], the authors introduce waveform diversity based on
differing slopes of linear FM pulses for a target tracking
application. This paper will investigate in the implementation
of a similar approach to the application of target detectionfor
a distributed radar aperture system in the presence of noiseand
clutter. Crucially, the authors of [2] ignored the important issue
of grating lobes created by the widely distributed apertures, an
issue of importance in target detection. This paper will addto
the signal model given by [4], which was then extended to
allow for the implementation of frequency diversity [1]. How-
ever, frequency diversity raises the issue of phase coherence
over widely spaced frequencies. Using differing slopes in FM
pulses avoids this issue.

This paper is organized as follows: Section II presents the
signal model for the system under consideration. Section III
presents results of simulations of adaptive processing based
on our signal model. Finally, Section IV wraps up this paper,
drawing some conclusions.

II. SIGNAL MODEL

Consider a distributed radar system withN elements spread
in the x− y plane at locations(xn, yn) wheren ∈ 1, . . . , N .
Each element transmits a linear-FM pulse, parameterized by
FM slopeβ. All elements transmit simultaneously. Each re-
ceiver matches the received signal to each of theN transmitted
signals resulting inN outputs per receiver. As a result, with
M pulses in a coherent pulse interval (CPI), the output signal
is a length-N2M vector.

The transmitted signal is a train of linear FM pulses:
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where fc is the carrier frequency of the waveform,ψ is a
random phase,Tr is the pulse repetition interval,Tp is the
pulse width andb corresponds to the slope rate of the linear
FM pulse and varies from element to element.

In a distributed radar, to focus on a single look point
(X,Y,Z) in space, each element delays this signal by [1]

∆Tn =
max{Dn} −Dn

c
, (3)

whereDn is the distance from(X,Y,Z) to thenth element.



For a reflecting artifactl at (Xl, Yl, Zl), (l ∈ 1, . . . , L),
the signal sent by elementn and reflected by artifactl to a
receiving elementi have a total round trip time

τinl = 1
c

[

√

(xn −Xl)2 + (yn − Yl)2 + Z2
l

+
√

(xi −Xl)2 + (yi − Yl)2 + Z2
l

]

,
(4)

As a result, the signal received at theith element (reflected
by the lth artifact) sent by elementn is

rinl(t) = Alu(t− τinl)e
j2π(fc+fdl)(t−τinl),

whereAl is the associated amplitude andfdl the Doppler shift.
At each receiver, the signal is again delayed in order to

focus on a look point. This delay may be applied before or
after down conversion of the received signal. The received
signal after the delay and down conversion is given by

r̂inl(t) = e−j2π(fc−∆Ti)rinl(t− ∆Ti)
= Alu(t− τinl − ∆Ti)e

−j2πfcτinlej2πfdl(t−τinl−∆Ti)

(5)
By match filtering this signal received according to each of
the FM rates for theN transmissions, the output signal at the
n-th element corresponding to thei-th transmission is

xinl(t) =
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Let τ ′ = τ −mTr − τinl − ∆Ti which results in

xinl(t) = Ale
−j2πfcτinl
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Finally, the received signal is

xinl(t) = Ale
−j2πfcτinl

∑M−1
m=0

[

ej2πfdlmTr

× χin(t−mTr − τinl − ∆Ti, fdl)] ,
(7)

where χin(τ) is the cross ambiguity functionbetween the
transmitted linear-FM signal at ratebn and the receive filter
matched to ratebi.

A. The Covariance Matrix

The adaptive process is based on the covariance matrix
of the interference artifacts [4]. This section details two
approaches to developing this covariance matrix.

1) Optimal Covariance Case:In the case for the optimal
covariance matrix statistics, data is collected from the look
point range gate. The sampling time of the look point range
gate for themth pulse is

ts = mTr + τLin + ∆Ti (8)

where τLin is the total travel time for the signal sent from
the nth transmitter to the look point and received by theith

receiver. It is noted thatts is not a function of the receiving
element as

τLin + ∆Ti =
Di

c
+
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c
+
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c
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c

=
max{Dn} +Dn

c
,

allowing all receiving elements to use the same range gate
sample.

The optimal covariance matrix includes the received signals
over all interfering artifacts. The sample for thenth trans-
mitted signals,ith applied matched filter,mth pulse andlth

interfering artifact whenxinl(t) is sampled atts is

x(c)inml = Ale
−j2πfcτinlej2πfdlmTrχin(τLin−τinl, fdl). (9)

By summing over all the interfering artifacts, the final signal
sample at each of the receiver is

x(c)inm =
∑

l

Ale
−j2πfcτinlej2πfdlmTrχin(τLin − τinl, fdl).

(10)
Therefore, the space-time snapshot consists of the samples
of (10) for each of thei matched filters applied to then
transmitted signals with each having a different FM rate and
m pulses. The snapshot of lengthN2M has the form

x = [x111 · · · xN11 x121 · · · xNN1 x112 · · · xNNM ]
T
.

(11)
Using (10), theN2M × N2M covariance matrixRc may

be defined according to the elements in the matrix,

{Rc}pq = E{x(c)inmx
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∑
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.

Since the random phases ofAl andAk are uncorrelated, thus,
we will haveE{AlA∗

k} = 0 for l 6= k and thus, the double
sum can be simplified to a single sum. In the above derivation,
thepth element ofRc corresponding to matched filtering with
the ith FM rate on the signal sent from thenth transmitting
element for pulsem while the qth element refers to FM rate
α on the receiving matched filter, transmitted by elementβ of
pulser.



Therefore, the covariance matrix of the interference plus
noise return is given by

Ru = Rc + σ2I , (12)

where σ2 is the average noise power (set to unit power in
simulations). It should be noted that the target return is not
included in the optimal covariance matrix of unwanted signals
even at look-points where the target is located because the
optimal covariance matrix is sampled at the look-point range
gate. If the target return were to be included into the optimal
covariance matrixRu, then the weighted vectorw, which will
be discussed in a later section, will be able to nullify all the
effects of the grating lobes that is caused by the unwanted
detection of the target at all look-points.

On the other hand, in the estimated covariances case, since
the covariance matrix̂Ru is created through the average of the
signal return samples in the space surrounding the look-point,
therefore, the target is a part of the signal return sample asit
will be seen in the following section.

2) Estimated Covariance Case:In the case of estimating
the covariance matrix,K snapshots of the signal returnxinl(t)
are sampled at range gates that are surrounding the look point
range gate. The corresponding sampling times are

tk = mTr + τLin + ∆Ti + kTs, (13)

where Ts is the sampling time and it is chosen thatk ∈
[−K

2 ,
K
2 ]. With the information that the signal returns are

sampled attk and the resulting signal return has the form

x̂(c)inm =

L
∑

l=1

Ale
−j2πfcτinlej2πfdlmTrχ(τLin−τinl+kTs, fdl).

(14)
The signal return for the estimated covariance case are

stacked into a vector,̂xk, in the same way as the optimal
covariance case according to (11). It should be noted that the
vector x̂k consists of the total clutter return, the target return
(if the look point is not the target point), and the noise return.

x̂k = x̂c(k) + x̂t(k) + x̂n(k)

Using the K snapshots of the return signal, the estimated
covariance matrix is formed according to

R̂u =
1

K

K
∑

k=1

x̂kx̂Hk (15)

wherex̂k is the signal return sample of thekth snapshot.

B. Cross-Ambiguity Function

As mentioned in the previous section, the cross-ambiguity
function defines the output of the matched filter with theith

FM rate on the signal that is sent from thenth transmitting
element for a particular time delay and doppler frequency
value. The cross-ambiguity function is defined mathematically
by

χin(τ, f) =

∫ ∞

−∞

upi
(t)u∗pn

(t− τ)ej2πftdt

Substituting the complex envelope of the FM pulse in (2) into
the definition of the cross-ambiguity function we get
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In order to simplify the expression and solve the integral, some
variables are defined as follows

C1 =
1

Tp
e−jπbnτ

2

e
−jπ

(bnτ+f)2

bi−bn

C2 = −bnτ + f

bi − bn
ξ = bi − bn

Make the substitutiont = s + C2 in the integral, givings =
t − C2 the lower and upper bounds of the integral become
a1 = −Tp

2 − C2 and a2 =
Tp

2 − τ − C2 respectively. As a
result, the integral of the cross-ambiguity expression becomes

χin(τ, f) = C1

∫ a2

a1

ejπξs
2

ds

. With a minor transformation, the integral can be changed toa
form that can be solved. To do so, lets = t/

√
2ξ. To account

for both cases whereξ takes on a positive or negative value,
take the absolute value ofξ and the exponent is positive for
positiveξ and negative otherwise. The cross-ambiguity integral
thus becomes

χin(τ, f) = C1

∫ a2
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e±jπ|ξ|s

2
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From [5, pp. 178], the integral can be solved to an expression
with sums of Fresnel Cosine and Sine Integral functions for
cases whereξ is non-zero. As a result, the cross-ambiguity
function is given by

χin(τ, f) = C1√
2|ξ|

[
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√

2|ξ|a2) − C(
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2|ξ|a1)

±jS(
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2|ξ|a1)
]

,

(17)



whereC(x) andS(x) are Fresnel’s Cosine and Sine Integral
functions respectively.

For the case where the received signal, which is sent at a
particular FM rate and is matched filter with the exact same
FM rate (the case whereξ is zero), the ambiguity function
reduces to

χii(τ, f) = ejπτf
(

1 − |τ |
Tp

) sin
{

πTp(bτ + f)
(

1 − |τ |
Tp

)}

πTp(bτ + f)
(

1 − |τ |
Tp

)

(18)
An interesting question is whether there are values for cer-

tain parameters that result in cross-ambiguity terms becoming
zero. From (18), the only way the cross-ambiguity terms will
be zero is when either the Fresnel Integral values are zero or
whenC1 is equal to zero. By examiningC1, the only possible
way to arrive at cross-ambiguity terms to be zero is ifξ is set
to zero. However,ξ cannot be set to zero since waveform
diversity is implemented in this paper through the varying
of the FM rates. The only ways that the Fresnel integrals
will have a zero value is when the parameters are zero. This
indicates that eitherξ must be set to zero, which cannot be
done as explained above, or botha1 and a2 must be set to
zero, which is not possible becauseC2 will have to take on
two different values in that scenario.

C. Processing

The significant advantage of achieving waveform diversity
by varying the FM rates (as opposed to over achieving
diversity by changing carrier frequency) is the possibility of
coherent processing. Unlike the frequency diverse case where a
random phase is introduced for each of the carrier frequencies
coherence is achieved by the use of a single carrier frequency
while the FM rates of the waveform is varied.

In this paper, the two STAP processing techniques that
are implemented are the SMI and MSMI methods. STAP
is implemented in the same fashion whether the covariance
matrix is estimated, as described by (15), or optimal, which
is given by (12). The equations that will be given will be in
terms of the optimal covariance matrix.

1) Look-Point Steering Vector and Signal Snapshot:In this
section, the look-point steering vector and signal snapshot
are defined. The look-point steering vector in this application
mainly defines the response from the Doppler bank of the
target at the look-point, which is defined by the time delayτLin
and Doppler frequency of the target,fdt. Thus, it is defined
in a manner that is very similar to the signal return. The look-
point steering vector has elements given as follows

sinm = e−j2πfcτLinej2πfdtmTrχ(τLin − τLin, fdt)
= e−j2πfcτLinej2πfdtmTrχ(0, fdt)

(19)
and the steering vector is formed by stacking the elements in
the same way as defined by (11).

The look-point signal snapshot is defined as the sum of the
target return, total clutter return, and the noise return.

x = xc + xt + xn

where the elements ofxc is given by (9) andxn is modeled by
a complex Gaussian vector with zero mean and the identity
matrix because in the simulation, all powers are referenced
to a unit noise power level [ex.xn ∼ CN (0, I)]. The target
return,xt, is defined similar to (9) and is given by

x(t)inml = Ate
−j2πfcτin(t)ej2πfdtmTrχ(τLin − τin(t), fdt)

whereAt is the amplitude of the target return andτin(t) is
traveling time of the signal sent from theith transmitting
element, reflected by the target, and received by thenth

receiving element.
2) Modified Sample Matrix Inversion:Adaptive processing

requires the computation of the weight vector, which, in turn,
requires the inverse of the optimal covariance matrix or the
estimated covariance matrix. The weight vector is given by

w = R−1
u s, (20)

where s is the look-point steering vector, which consists
elements defined by (19).

The modified sample matrix inversion (MSMI) method
involves a different application of the weights defined by (20).
The output at a certain look-point is defined to be

zMSMI =
|wHx|2
|wHs| . (21)

III. N UMERICAL EXAMPLES

In this section we present results of simulations designed to
test the system described above. The system comprises a nine
element radar array distributed in a200m×200m square grid
on thex−y plane. The target is a point reflector located at the
co-ordinates(500m,−60m, 2km) with a signal-to-noise ratio
(SNR) of 10dB. Clutter is modeled by a ball of interfering
sources with a radius of200m. The chirp bandwidth of the
signal isBW = 10MHz and the nominal chirp duration
is Tp = 10µs. The clutter-to-noise ratio (CNR), which is a
measure of the total power from the interfering sources, is
50dB.

Figure 1 shows the plot of the MSMI statistic for the
system described with all the elements transmitting the same
waveform where the target is scanned for in thez-direction.
Given the system geometry, this closely approximates range.
The clutter sources in this situation are located800m away
from the target in the positivez direction. It is noted that there
are several ranges with high magnitudes resulting in many
false alarms.

Figure 2 shows a similar the plot of the signal return for the
system described with all the elements transmitting different
waveforms via the changing FM rate. Once again, the target
is scanned for in thez-direction. The suppression of high
MSMI statistics at range cells other than the target range
cell is evident. Clearly using waveform diversity significant
improves target detection performance. The rates that were
used to generate the plots were found from optimizing a
set of rates in the simulation to maximize the difference
between the main-lobe and side-lobe magnitudes. Due to
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Fig. 1. MSMI statistic without diversity

the non-convex nature of the problem, sequential quadratic
programming [6] was used to arrive at a numerical solution
to the optimization problem. The FM rates were constrained
such that the maximum rate did not exceedBW/Tp and did
not fall belowBW/2Tp.
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Fig. 2. MSMI statistic with varying FM rates in the waveforms transmitted

Figure 3 illustrates a significant drawback of the proposed
scheme. As with Figs. 1 and 2, the plot compares a system
without waveform diversity (solid line) with a system that uses
waveform diversity is applied through the varying of FM rates
(dashed line). It should be noted that he clutter sources in
this situation are located800m away from the target in the
positivex direction. In this plot, the target is scanned for in
thex direction. It can be seen that the grating lobes were not
suppressed as in the case where thez direction was scanned.
It can be concluded that the usage of diversity through the
varying of FM rates will suppress grating lobes in the vertical
view points and not in the planar scan points. It should be
noted that minimizing the effects of grating lobes in the planar

scan direction was done successfully through the usage of
frequency diversity as described in [1]. It appears therefore
that the ambiguity functions, by themselves, do not provide
any suppression of grating lobes, and the slight differences in
round-trip time do not provide adequate suppression either.
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IV. CONCLUSIONS ANDFUTURE WORK

This paper furthers the development of waveform diversity
for distributed radar apertures. In the work of Sira et al. [2]
varying FM rates were proposed as a diversity mechanism.
This paper is based on this scheme, but significantly extends
it to account for true time delay between elements and the use
of the optimal or estimated covariance matrix. The usage of
different signal structures will have an impact on the ambiguity
function. Here we account for the cross-ambiguity function
between the differing FM rates. An open question that arises
is whether there will be a set of FM rates that will improve the
detection performance and if so, whether this set of ambiguity
functions translates into a particular structure of waveform.
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