THE EFFECT OF NOISE IN THE DATA
ON THE CAUCHY METHOD*

R. Adve and T. Sarkar

Department of Electrical and Computer Engineering
oSyracuse University

Syracuse, New York 13244

KEY TERMS
Data noise, numerical simulation, probability density function

ABSTRACT

In this article the effect of noise in the data on the Cauchy method is
discussed. The noise is assumed to be zero mean and Gaussian. The
resulting random variable is a ratio of two Gaussians. The theoreti-

cal probability density function is verified by numerical simulation.
© 1994 John Wiley & Sons. Inc.

1. INTRODUCTION

The Cauchy method [1] has been shown to provide accurate
broadband information from narrowband data. The method
deals with approximating a function by a ratio of two poly-
nomials. Given the value of the function and its derivatives
at a few points, the order of the polynomials and their coef-
ficients are evaluated. Once the coefficients of the two poly-
nomials are known, they can be used to generate the param-
eter over the entire band of interest. The Cauchy method was
shown to be applicable to the cases where the input data were
measured values of the function and not theoretical values.

However, no measuring instrument is perfect. Each mea-
surement has, added to the signal, an unwanted noise com-
ponent. Reference [1] does not discuss how this noise affects
the results from the Cauchy method. The presence of noise
in the data limits the effectiveness of the method. In this article
we try to quantity the limitations of the Cauchy method when
the input data are subject to contamination by noise.

Throughout this article we assume that the noise is addi-
tive, stationary, zero mean, and Gaussian. This assumption
1s approximately valid for most measuring instruments. Using
this assumption, the probability density function (PDF) of the
parameter, as a function of frequency, is evaluated. This is
compared to the PDF approximated by a computer numerical
simulation.

To make the problem tractable, certain simplifying as-
sumptions are necessary. This includes assuming that the coef-
ficients of the polynomials in the Cauchy method are inde-
pendent random variables. As the theory will show, this
assumption is not strictly true. However, the error introduced
in the PDF due to this assumption is minimal.

*This work was supported n part by Scientific Atlanta and in part
by the CASE Center at Syracuse University.

Another assumption made is that the noise affects each
measurement independently. The noise is also assumed to
atfect each measurement, on average, equally. This means,
that the average power in the noise in each measurement is
assumed constant over repeated measurements. This as-
sumption too is approximately valid for most measuring sys-
tems.

Using these assumptions we derive the theoretical PDF of
the estimate of the parameter as a function of frequency. The
theoretical PDF was verified by numerical simulations.

2. REVIEW OF THE CAUCHY METHOD

The Cauchy method approximates a system function H(s) with
a ratio of two polynomials. Hence, consider

_AG) _ g ast
H) = Bls) = Sy byt M)

Here, the given information is assumed to be the N measured
values of the function (H) at frequency pointss;,j = 1,. . .,
N. In this case, the Cauchy problem is

Given H(s;))forj =1,... ,N,find P, Q,{ax. k =0, ...,
P},and {b;, k =0, ..., O}

The approach is to enforce the equality of Eq. (1) at the
points of measurement s;. Hence, one obtains

A(sj)) = H(s)B(s)), A(s)) — H(sj)B(s;) = 0. (2)

Using the polynomial expansions for A(s) and B(s), and
the notation H; = H(s;), Eq. (2) yields

a, + a;s; + 1512.5'12 e ﬂps‘{'
— H},‘b(} - H;blsj rer — H}bQSIQ — 0, (3)
fory =1,...,N.
Writing this equation in matrix form, we get
a
CIHE (@)
where
1 Sl...S{J _Hl _Hlsl... —Hls?
1 s»...880 ~H, —H,s,...— H-s¥
[C]= : E2 2 E2 292 22E (5)
1 SN...S‘{:; _HN _HNSN"' _Hﬁsg
la] = laq, ay, a3 -+ ap]’ (6)
and
[b] = [bo, by, by - by]”. (7)

The matrix Ci1s of order N X P + Q + 2. The solution for
{at and {b,} is unique if the total number of samples is greater

than or equal to the total number of unknown coefficients
P + Q + 2]1]; that is,

N

J
YN+ 1)=P+ Q + 2.
j=1
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A singular value decomposition (SVD) of the matrix C
will give us a gauge of the required values of P and Q [2]. A
SVD results in the equation

[UE)V]F [g] = 0. (8)

The matrices U and V are unitary matrices and X, is a diagonal
matrix with the singular values of C in descending order as
its entries. The columns of U are the left eigenvectors of C
or the eigenvectors of CC’?. The columns of V are the right
eigenvectors of C or the eigenvectors of C'C. The singular
values are the square roots of the eigenvalues of the matrix
C'C. Therefore, the singular values of any matrix are real
and positive. The number of nonzero singular values is the
rank of the matrix in Eq. (8) and so gives us an idea of the
information in this system of simultaneous equations. If R is
the number of nonzero singular values, the dimension of the
right null space of Cis P + Q + 2 — R. Our solution vector
belongs to this null space. Hence, to make this solution
unique, we need to make the dimension of this null space 1
so that only one vector defines this space. Hence P and Q
must satisfy the relation

R+1=P+ Q + 2. (9)

Hence, the solution algorithm must include a method to es-
timate R. This is done by starting out with the choices of P
and Q that are higher than can be expected for the system at
hand. Then we get an estimate for R from the number of
nonzero singular values of the matrix C. Now, using Eq. (9)
we get better estimates for P and Q. Letting P and Q stand
for these new estimates of the polynomial orders, we can
recalculate the matrix C. Therefore,

[C] [g] = 0. (10)

[C] is a rectangular matrix with more rows than columns.
Another SVD of this matrix brings us back to the equation

uEvT 5] - ¢ (1)

This homogeneous matrix equation can be solved by the total
least squares (TLS) {3]. By the theory of the TLS, the solution
Is proportional to the last column of the matrix V. Since any
constants of proportionality cancel out while dividing the two
polynomials, we can choose

[z] = [V]P+Q+-2- (12)

Using this solution for the coefficients, the desired param-
eter can be approximated at any frequency point of interest.

3. THE EFFECT OF NOISE ON THE SOLUTION VECTOR

As seen above, the solution vector belongs to the invariant
subspace that is spanned by the right singular vector [V]p, o.2.
This singular vector is associated with the smallest singular
value. However, because of the noise in the data, the entries
of matrix C are perturbed from their true values. Hence, the

solution vector 1s also perturbed. We need to quantify the
perturbation of this subspace.

Notation. In this article a perturbed parameter or matrix
will be represented by a tilde (~) above the corresponding
unperturbed parameter or matrix.

3.1. Perturbation of Invariant Subspaces. Let & denote the
set of real numbers, R" the set of real vectors of length n,
and «X"*? the set of real matrices of order n X p.

~ Consider an arbitrary matrix A € ®N¥*F with P < N. Let

A = A + E, where E is the perturbation to the matrix A,
and

g, 0 ]
T — 0 21'2 P -1
AV =\, ¢! (13)
| P -1

Here the figures below the matrix indicate the number of
columns 1n each submatrix, while the figures to the side of

the matrix indicate the number columns in each submatrix.
Also,

U = (u \ Uzl Us),
V = (v, l Va).

Here, u, € /N, U, € @M P-D U, € NNV P) . € QP
and V, € ®P*"-D_ g is the singular value corresponding to
the left singular vector u; and the right singular vector v,.
This singular value can be the one of interest and not just the
largest singular value. In the Cauchy method the singular
value of interest 1s the smallest or the zero singular value. 2
1S the diagonal matrix with the rest of the singular values of
C as 1ts entries. These singular values can be ordered arbi-
trarily as long as the columns of U and V are permuted ap-
propriately so as to maintain the equality of Eq. (13).

If

| Y &1
|UVIEN[V] = gy Gnl, (14)
gy G

where Y11 & R, 812, 821 &31 & H{PJI, Ggg & ERPAIEP_I, and
Gy € K P-IxP-17and if oy is not repeated as a singular
value, then [4]

V) = v, + Vz(G'%I — 2%)1 h

O(|El3), (15)
where
h = o812 + 228

3.2. Perturbation of the Solution in the Cauchy Method. In
all measurements the true value of the measured parameter
(here H;) 1s perturbed by an additive noise component.
Hence,

H,-=H,-+€,-._.

where H; is the value of H, after it has been perturbed by
noise e,.
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In the following discussion we are assuming

1. The noise is only in the measurement of the parameter
|H(s)], not in the measurement of the frequency (s).

2. Cx = 0 has a solution which 1s unique to within »
constant.

(a) X = U, with g = 1.

(b) oy = 01s a simple singular value. This assump
tion is valid because in the solution procedure
we made sure that the rank of the null space of
C 1s one.

3. H(s) = H(s;) + e;, {e}Y, are zero mean, Gaussian,
uncorrelated, and have equal variances o

Using the foregoing notation for a perturbed matrix and
Eq. (10), we get

~+ | a
]3] -0 (16
where
1 S| S{) —Hl —Hlsl'” _HlSjQ
. P _F _E ver — H ¢¥
(€] = L sy 83 'HZ H s, HZSZ: . (17)
] SN'“S;:; _HN "‘HNSN“‘ ‘“‘HNSg
where
P = estimate of the order of the numerator,
() = estimate of the order of the denominator,
N = number of sample points.
> [C] = [C] + [E], (18)

where E 1s the additive error to the matrix C due to noise in
the data. Hence,

[E] = [0 | Ey] (19)
where {0] is a zero matrix of order N x P + 1 and

€1 €19 GIS% EIS?

[E1] - fi'z f’zSZ BES% 62329 (20)

2 ...
EN ENSN  ENSN eN‘gg NxQ+1

e, 00 - Ofl1 sy st -+ ¢
2 ... ¢
e PR | R )
' 0 0 0 - en|l1 sy s - s%
N N —
NXxN NxQO+1

. [ V;’z]
UVIENV] = (WTOIED [0f | Vi) §h) @

1 P+Q+2
= [U'E v | UTE,V7]. (23)

Using the notation of Section 3.1,

T
Y 812

[UT[E][V] = [UTEw] | UTEV)] = | gn Gn |- (24)
g3 U3

Because v 18 the solution of the unperturbed Cauchy equa-
tion

and v is the vector of the last O + 1 entries of v, v} is the
vector of denominator coefficients. Also, the singular value
of interest (o) is zero. Hence, in the notation of Section 3.1,

h = g + 27821 (25)
= 2,821 (26)

Also, using Eq. (15)
by = vy + V3258 + O(IE]S). (27)

Hence, gy, 1s of no consequence.
From Eq. (24),

Y11
[UI'[EA[vi] = | 821 | (28)
831

Using Eq. (21), and the fact that v] is the vector of denom-
inator coefficients,

e, 0 0 - 0[] de(s))
Elvrlr _ 0 E,':?_ (? 0 df‘:'(:Sz) , (29)
0 0 0 EN de(SN)

where de(s)) = 2¥_, byst is the value of the unperturbed
denominator polynomial evaluated at s;. For convenience we
define a new vector ¢ as

e, de(s;)
€2 d?(-f" 2) (30)

en d'e(s N)

Using this equation, the fact that U = [u; | U, | U;], and
Eq. (28),

821 = Ugé ' (31)
Therefore, using Eq. (27),

f”l = Uy T szz_lUgé

O(IEN). (32)

Because the eclements of € are Gaussian random variables,
0, 18, to the first order of approximation, a Gaussian random
vector.

Now, using Eq. (13) and the fact that oy = 0,

C = nggvg
= V3, WU = ¢+, (33)

where C* is the pseudoinverse of C. Therefore, to the first
order of approximation,

f”i = + (C*e. (34)
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Using the fact that C* is unperturbed and the noise is zero

mean, the expectation value of the solution vector (v,) is given
by |

E(v) = v, + C E(?) (35)

U). (36)

Here E 1s the expectation operator and not the error matrix.

Theretore, to the first order of approximation, the estimator
Is unbiased.

The covariance matrix of v, is given by
cov(vy) = E[D; — v)(0, — v)7].
Using Eq. (34), we have

E[EJI — Ul)(al - UI)T] = E[C+ééTC+T]
C-E[eeT|C-T.  (37)

1

Now,
ey de(s))

e = | D) | (e, des))e, de(sy) - e de(s)l. (39
ey de(sy)

Therefore, the ijth entry of this matrix is given by
[ééT]U — e,-e),— dE(Sf) dE(S;) . (39)

Because ¢; and ¢; are assumed to be zero mean, independent,
and identically distributed with variance o?,

Elee] = o25;, (40)
where
5, = {1 Mi=]
g 0, otherwise
de(s) 0 0 - 0
E[¢é] = o2 | O de":(“"Z) ) S (41)
0 0 0 - deX(sy)
E[(0, — v)(0, - v1)']
dEZ(Sl) 0 0 -- 0
2
=gic-| D 4l U0 e g
0 0 0 - deXsy)

Letting C; = c¢;, the autocovariance of the ith entry of
0, 1s given by

N
E[C-¢ée’C*]; = o? 21 cf,- de*(s;). (43)
=

This 1s the variance of the ith entry in the vector of coefficients.
Hence, 1if i = P + 1, we are dealing with a numerator coef-
fictent, else we are dealing with a denominator coefficient.

Because we have solved a matrix equation in which the
elements of the matrix are Gaussian random variables, each
element of the solution vector is a Gaussian random variable.
Also, the numerator and denominators are linear combina-
tions of the coefficients. Hence, the numerator and denom-
inator are (Gaussian random variables as functions of fre-
quency. Hence, to completely characterize the numerator and
denominator random variables, we only need their expecta-
tion values and variances.

To make this problem of the ratio of two Gaussians solv-
able, we have to assume that any two coefficients are inde-
pendent of each other. Hence, the cross-covariance matrix of
v, 1s assumed to be diagonal.

Now,
) P
A(s) = ,;, a, s (44)
Y,
B(S) = Z BkSk. (45)
k=0
Therefore,
E[A(s)] = kZU Ela,]s, (46)
and
. Q -
E[B(s)] = é} E[b]s*. (47)

However, because to the first order of approximation the
coefficients are unbiased,

E[AG)] = 3 as (48)
k=0
and
Q
E[B(s)] = D, bs*. (49)
k=0

Therefore, the estimators for the numerator and denom-
ator as a function of frequency are unbiased. However, as
we will see, because the ratio of two variables is not a linear
function, this does not mean the final estimator is unbiased.

To calculate the variances of the numerator and denomi-
nator as a function of frequency,

var[A(s)] = var i as'|. (50)
k=0

Using the assumption that each coefficient is independent of
the others,

P

var[A(s)] = gﬂ var(a;)s®. (51)
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Therefore, from Eq. (43),

P+1 N
var[A(s)] = o 21 s 21 ci; de’(s;). (52)
I= ]=
Similarly,
P+(Q+2 N
var[B(s)] = a2 >, %> ci; de’(s;). (53)
i=P+2 j=1

Let N = E[A(s)], D = E[B(s)], a> = var[A(s)], and b? =
var[B(s)]. Therefore, the problem has reduced to: Given the
means and variances of two independent Gaussian random
variables, what is the PDF of their ratio? This problem has
been solved in Reference [5].

In the notation of [5], if N and D are independent Gaussian
random variables with means N and D, respectively, and vari-
ances a” and b?, respectively, and if

N
R—B,

then the probability density function of R is given by

flr) = \/ L

b%r? + a?

o (N%2a° + D?*I2b%)

X [Z erf(Z) exp(Z?) + \/i;], (54)

where

ZZ =

| (_lfﬁr + a_z_ﬁ_)
VaFa \VBr + &)’

and the error function i1s defined as

erf(Z) = %Jj e~" dt.

Hence, we have the theoretical PDF of the ratio of two
random variables. However, this density function 1s an ap-
proximation of the true density function. To obtain the true
density function we would need to take into account the cross
correlation between the coefficients. This leads to a problem
that is highly difficult to solve.

4. NUMERICAL EXAMPLES

To test the above theory, the Cauchy method was tested with
a simple example. As an example the function chosen to be
the testing function was

E?{;ﬂ ksk _
2.0 (K + 1)s*

H(s) = (55)

This ratio of two polynomials was evaluated at 31 points
in the range s = 2.0 and s = 4.0. Two tests were performed
on these data.

In the first test, Gaussian noise was added to the data
directly. A numerical Gaussian random number generator
was used. The power in the noise was chosen such that the

Adding noise to the data - - - -

Numerical Ssmulation ‘X
Theoretical PDF —

-1 -0.5 0 0.5 1

Figuret Comparison of theoretical PDF and numeérically simulated
PDFs. SNR = 30 dB

signal-to-noise ratio (SNR) was 30 dB. These perturbed data
were used as inputs to the Cauchy program. The resulting
polynomials were used to evaluate the parameter at s = 3.0.
This was considered to be one sample of the random variable
at s = 3.0. Samples taken numbered 1001. A PDF estimator
was used to estimate the PDF at s = 3.0. Figure 1 shows the
PDF found using this method. This is the plot marked **Add-
ing noise to the data.”

In the second test, the original unperturbed data between
s = 2.0 and s = 4.0 were used as inputs to the Cauchy
program. The unperturbed numerator and denominator coet-
ficients were evaluated. The means of the numerator and
denominator were evaluated using Egs. (48) and (49). re-
spectively. Also, the variances of the numerator and denom-
inator were evaluated using Eqs. (52) and (53), respectively.
Using these values of means and variances, a Gaussian ran-
dom variable, with the numerator mean and variance, was
divided with another Gaussian random variable with the de-
nominator mean and variance. This was repeated 1001 times.

Adding noise to the data - - -

Numerical Simulation ‘X:
Theoretical PDF —

0.5

Figure2 Comparison of theoretical PDF and numerically simulated
PDFs. SNR = 40 dB
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The Gaussian random numbers were generated using the
same random number generator as in the first test.

The 1001 samples gotten from this test were used as input
to the same PDF estimator. The result from this estimation
of the PDF is shown in Figure 1. This plot is labeled “Nu-
merical Simulation.”

Finally, these two PDFs are compared with the theoretical
PDF in Eq. (54). The choices of N, D, a2, and b? are gotten
from the theoretical means and variances used in the second
test.

At s = 3.0, using the above function

Actual Value: 0.2126

Mean (adding noise to the data): 0.2124

Mean (dividing two Gaussians with the theoretical means
and variances): 0.1804

Figure 2 shows the same three PDFs for a signal-to-noise
ratio of 40 dB. Here the agreement is better than in the earlier
case. This 1s to be expected, because the assumptions come
closer to being satisfied as the noise reduces.
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