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Efficient Solution of the Differential Form of 
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and Raviraj S. Adve, Student Member, IEEE 

Abstract-One of the problems of the finite element and the 
finite difference method is that as the dimension of the problem 
increases, the condition number of the system matrix increases 
as e(1/h2) (of the order of h2, where h is the subsection 
length). Through the use of a suitable basis function tailored for 
rectangular regions, it is shown that the growth of the condition 
number can be checked while still retaining the sparsity of the 
system matrix. This is achieved through a proper choice of entire 
domain basis functions. Numerical examples have been presented 
for efficient solution of waveguide problems with rectangular 
regions utilizing this approach. 

I. INTRODUCTION 

HE finite difference [ l ]  and the finite element method T [2] have been developed over the last few years in the 
microwave area for efficient solution of the differential form 
of Maxwell’s equations. Researchers have primarily focused 
their attention on development of basi? functions for treating 
boundaries with edges and open region problems, spurious- 
free solutions of eigenvalue problems, and efficient solution 
of sparse matrix equations. 

However, one of the problems with the finite difference and 
finite element method lies in the solution of a large matrix 
equation (either a direct solution with several right-hand sides, 
or an eigenvalue problem). The problem here is that as the 
number of basis functions increases (and hence the dimension 
and size of the matrix), the condition number of the matrix also 
increases. The increase of the condition number of the matrix 
creates various types of solution problems. For example, the 
condition number directly dictates the solution procedure as a 
highly ill-conditioned matrix prohibits application of a direct 
matrix solver like Gaussian Elimination [3], [4], and more 
sophisticated techniques like singular value decomposition 
may have to be introduced [SI. There are various ways to 
stop the increase of the condition number as the dimension of 
the matrix increases. One wch procedure has been outlined 
by Mikhlin [4]. In [4], the basis functions are chosen in 
such a way that the growth of the condition number can 
be controlled. In this paper, wc utilize a particular set of 
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basis functions primarily tailored for rectangular regions for 
an efficient solution of the resulting matrix equation. This 
particular choice of the basis is related to the “wavelet” 
concepts [6]-[8]. 

The basic philosophy of this paper then lies in the choice of 
a particular set of basis functions (which of course is dependent 
on the nature of the problem, e.g., TM or TE and on particular 
shape of the domain) which attempts to diagonalize the system 
matrix that arises when Galerkin’s method is applied to the 
differential form of Maxwell’s equations. The ideal situation 
will of course be to make the large sparse “Galerkin System 
Matrix” diagonal. Then the solution of such a matrix (either 
solution of the matrix equation due to different right hand 
sides or solution of an eigenvalue problem) problem would be 
trivial. However, because of various boundary conditions, this 
goal cannot be achieved. Therefore, the next best procedure is 
an attempt to make say 80% of the sparse system matrix [SI 
diagonal. So for a 21 x 21 system matrix [SI, we would have 
an 18 x 18 matrix block that is diagonal, so the solution of 
a 21 x 21 matrix equation is simply to reduce to inversion 
to a 3 x 3 matrix [B] and two 3 x 18 and 18 x 3 matrices 
as illustrated below: 

where * denotes conjugate transpose. 
For obtaining the cutoff frequencies of a waveguide, one 

needs to solve for the eigenvalues of a large matrix equation. 
However, if the matrix is sparse and “almost” diagonal, then 
an iterative technique like the conjugate gradient [9] can be 
utilized to converge on the first few of the eigenvalues in a 
relatively few iterations to yield the cutoff frequencies. Some 
numerical examples are presented to illustrate the problem. 

The main contribution of this paper is that for rectangular 
regions, a suitable basis can be found which produces a system 
matrix which has a large diagonal block. The size of the 
block increases as the dimension of the problem increases. 
Hence, the system matrix can then be subdivided into a square 
matrix of relatively small dimension which is sparse, and two 
sparse rectangular matrices and a large diagonal matrix. This 
improves the computational efficiency of the new technique 
over conventional finite element methods as the condition 
number of the system matrix does not increase significantly 
as the dimension of the problem increases. 
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11. SOLUTION OF HELMHOLTZ’S 
EQUATION UTILIZING THE NEW BASIS 

Consider the solution of Helmholtz equation 

V2u(x, y) + k”u(z: y) = F ( x :  y). ( 1 )  

We focus our attention on the particular case, when the domain 
of (1) is restricted to rectangular regions L defined by the 
contour 1. In this paper, we have focused our attention only 

shaped region R can be made of rectangular regions L of the 
type 

on rectangular regions, and have assumed that any arbitrary b 

L: 0 5 x 5 a and 0 5 y 5 b. (2) 

To solve (1) in the region (2), one multiples ( I )  by the function 
U(.) and integrates over the region L to obtain v 2  

X - * 
a 

Fig. I .  Geometry for the 2-D basis functions. 

F ( x ,  Y)V(Z, Y) dzdy. (3) =s, where the inner product in the two-dimensional rectangular 
region R is defined by the usual Hilbert inner product After integrating by parts, the result is 

( V u )  (Vu) dz dy + k 2  

where n is the direction of the outward normal. 
Next, it is assumed that the unknown u(z, y)  can be 

represented by a complete set of basis functions, which have 
first-order differentiability, as 

nr N 

where A,, , B,, , and C,, are the unknowns to be solved for. 
Basically, the function 4,J (x. y)  satisfy the homogeneous 

boundary conditions, and NZJ and T, are there to take care 
of the inhomogeneous Dirichlet conditions and enforcing 
continuity of the fields from one rectangular region to the next. 

Specifically, for the waveguide problems involving rectan- 
gular regions, the basis functions have been chosen in the 
following form: 

dij (x .  y) = sin (F) sin (a> 
The rationale for choosing these specific basis functions 

is the fact that these functions are not only orthogonal to 
themselves, but their partial derivatives are also orthogonal 
in the rectangular region defined in (2), i.e., 

(10) 

where the overbar denotes complex conjugate. 
In addition, we need four edge basis functions Ni j ,  where 

Nij is zero everywhere on the boundary (i.e., on all edges) 
except on edge E;. This implies N3j is zero on edges El ,  E2, 
and E4 and unity on edge E3 (as in Fig. 1). Hence, 

In an analogous fashion, one can illustrate that the basis 
T; in (5) provide the matching conditions needed for the four 
vertices VI, V2, V3. and V4 as shown in Fig. 1. Specifically, 
the basis associated with each vertex can be written as 

Tl(lr, y) = (1 - E) (1 - 5 )  
T2(z, y) = ; (1 - b )  Y 

(15) 

(16) 

(17) 

(18) 

- I : Y  

a b  
T3(lr, y) = - . - 

(41.1: 4pq)  = 0 for # P i 3  # 4 (7) Substitution of (6) ,  ( 1  I)-( 14), (15)-(19) in (5) and then into 
(4), with v(x, y)  replaced by 4,,, NZ3.  and T, results in a 
matrix equation of the form 

and 

(v4LJ: V4pq) = for # p ; j  # 4 (8) 
( 4 2 , ;  V&Jq) = 0 for 1 # p : J  # 4 (9) [PI [AI + k 2  [QI[Al = [VF] + [VI?]. (19) 
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TABLE I 
CUTOFF WAVENUMBERS OF THE TMm, MODES 

N=5 

TG2 

4.44 5.66 6.48 7.05 7.85 

4.44 5.66 6.48 7.04 7.85 8.51 8.90 

4.44 5.66 6.48 7.03 7.85 8.48 8.89 

I N=6 I 3.51 I 4.44 I 5.66 I 6.48 I 7.03 I 7.85 I 8.47 I 8.89 I 

Because of a special choice of the basis functions tailored for 
rectangular domains, the system matrices [PI and [Q] have a 
certain structure, namely, 

where [D] is a diagonal matrix, [B]  is a sparse matrix, [GI 
is a sparse matrix, and [GI* is its conjugate transpose. [VF] 
is a vector containing the excitation terms. [VB] is a vector 
containing the boundary terms. The percentage of the matrix 
that is diagonal depends, first, on how many rectangular 
regions the original region has been divided into and, second, 
the nature of the boundary condition on the contour 1. 

If the original domain R has been subdivided into L 
secondary rectangular regions, then the continuity of the 
function U is imposed along all boundary edges, and at each 
vertex through the coefficients Bi, and C,. In addition, the 
continuity of the first derivative of I L  in the normal direction 
to the L subdomain boundaries is also enforced. This condition 
is imposed by making the boundary terms in the formulation 
from one subdomain to its connecting neighbor equal. 

Depending on the type of the boundary condition-ither 
Dirichlet or Neumann-the structure of the system matrices 
[PI and [Q] are different. We now consider the structure of 
the system matrices as a function of the boundary condition. 

Case A-Dirichlet: For this case, where the original do- 
main has been subdivided into L regions and the highest order 
of approximation M .  N .  and P in ( 5 )  has been assumed to be 
the same, all N .  i.e., they are considered to be the same in all 
L regions for comparison purposes. 

Because of the special choice of the basis in (5 ) ,  the 
maximum dimension of the system matrix [PI and [Q] will 
be L ( N 2  + 4N + 3 ) .  However. if the boundary conditions are 
strictly homogeneous, then the total dimension of the system 
matrices [PI and [Q] will be somewhat less than L ( N 2  + 
4N + 4). However, for the choice of the special basis, the 
dimension of the diagonal submatrix [D] in (20) will be LN2.  
This clearly demonstrates that as the number of unknowns N 
increase, the majority of the system matrix becomes diagonal. 

Fig. 2. Rectangular waveguide. 

This is because the row size increase of [PI is dominated by 
the term L N 2 ,  and so is the row size of the diagonal matrix 
[D]. The rectangular submatrix [GI has the dimension of rows 
as ( N  times the number of internal edges + number of internal 
comers) and the column is L N 2 .  The square matrix [B] has a 
row and column dimension of ( N  times the number of internal 
edges + number of internal comers). Hence, the size of B goes 
up as essentially B(L + 1)N. Therefore, the computational 
complexity goes up as B[{(L + 1)N}3] ,  when the number 
of unknowns go up by L N 2 .  This amounts to a significant 
decrease in the reduction of computational complexity. 

Case B-Neumann: For this case, the diagonal submatrix is 
the same size as that for the previous case of Dirichlet bound- 
ary conditions. But now, the coefficients of all the matching 
functions are unknowns. Hence, the size of the system matrix 
[PI is L N 2  + N* {(number of edges) + (number of comers)}. 
Even though the size of the diagonal matrix is the same as 
before, case B produces a system matrix P which is almost 
diagonal. 

Case C-Mixed: It is easy to extrapolate the results to a 
mixed Dirichlet and Neumann condition. The important point 
is that due to the choice of the “tailored” basis, the major 
portion of the system matrix [PI and [Q] is diagonal. 

Because a large portion of the system matrix is diagonal, 
the growth of the condition number with the increase in the 
number of unknowns can be controlled by proper scaling. 
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I Matrix Size of the 
size Diagonal Block 
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% Diagonal 

N=l  3 

N=2 10 

I I I I i - 
2 66.7% 

8 80% 
r 

N=3 21 ia  85.7% 

N=4 36 32 88.9% 

N=5 

N=6 

55 50 90.9% 

78 72 92.3% 

N=7 

N=8 

105 98 93.3% 

136 128 94.1% 

TABLE I11 
CUTOFF WAVENUMBERS OF THE TE,, MODES 

N=9 

N=10 

171 162 94.7% 

210 200 95.2% 

13.3% 

28.6% ii; 
N=4 48.5% 

N=5 91 50 54.9% 

N=6 120 60% 

Matrix Size of the 
size Diagonal Block 

I N=7 I 153 I 98 I 64.0% I 

% Diagonal 

N=8 

N=9 

N=10 

111. APPLICATION TO SOME WAVEGUIDE PROBLEMS used one region ( L  = 1) to solve the problem and increase N .  
But to illustrate the flexibility and accuracy of the procedure, 
we divide the rectangular region into two regions A(') 1.3 x 1 
and A(2)  0.6 x 1 as shown in Fig. 2. The basis chosen is the 
same as in Section 11. 

As a first example, consider the solution of the cutoff 
frequencies of the various TE and TM modes of a rectangular 
waveguides of dimension 2 cm x 1 cm. Here we could have 

190 128 67.4% 

231 162 70.1% 

276 200 72.5% 
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TABLE V 
CUTOFF WAVENUMBERS FOR THE TM MODES OF AN L-SHAPED WAVEGUIDE 

TABLE VI 
PERCEP~TAGE OF THE MATRIX THAT IS DIAGONPI. FOR THE TM CASE 

Table I presents the cutoff wavenumbers of the TM,, 
mode. The * indicates that the order was not sufficient to 
perform reliable computation for the modes for a rectangular 
waveguide with better than 1% accuracy. The exact solution 
is obtained from [ I  I ] .  Table I1 indicates the percent of the 
matrix that is diagonal. The computational efficiency of the 
new basis now becomes clear. For this case, 95% of the matrix 
is diagonal when a large number of unknowns are taken, and 
as the number of unknowns increase so does the size of the 
diagonal matrix! Table I11 presents the cutoff wavenumbers 
for the TE,,,,, modes in a rectangular waveguide. The exact 
solution is obtained from [ I  I ] .  Table IV shows that as the 
number of unknowns increases, so does the size of the diagonal 
block maintaining the computational efficiency. For the same 
value of N ,  the size of the matrix i$ different for the TE case 
as opposed to the TM case because many of the boundary 
terms go to zero for the TM case and not for the TE case. 

As a second example, we consider an L-shaped waveguide 
as shown in Fig. 3. The largest dimensions are all 1 cm. The 
structure has been subdivided into three subregions. This prob- 
lem has been solved using a finite difference approximation [9] 
and an integral equation approach 1121. The results produced 
by this new approach are accurate and convergence is very 
rapid. 

TABLE VI1 
CUTOFF WAVENUMBERS FOR THE TE MODES OF AN L-SHAPED WAVEGUIDE 

Table V provides the cutoff wavenumbers for first few 
dominant TM modes for the L-shaped waveguide. Table VI 
shows that, as usual, as the number of unknowns increase, 
so does the size of the diagonal block. Table VI1 provides 
the cutoff wavenumbers for the first few TE modes of the L- 
shaped waveguide. Again, the percentage of the matrix that is 
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N = l  

N=2 

N=3 

N=4 

N=5 

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 3, MARCH 1995 

Dimension of Dimension of the % Diagonal 
System Matrix Diagonal Block 

21 3 14.3% 

40 12 30% 

65 27 41.5% 

96 48 50% 

133 75 56.4% 

TABLE VI11 
PERCENTAGE O F  THE MATRIX THAT IS DIAGONALIZABLE FOR THE TE C A S E  

N=7 

N=8 

N=9 

225 147 65.3% 

280 192 68.6% 

34 1 243 71.3% 

I N=6 I 176 1 108 I 61.4% 1 

N=l  

N=2 

1.60 2.21 3.32 3.55 4.58 

1.57 2.17 3.17 3.31 4.26 5.41 

* 

TABLE IX 
CUTOFF WAVENUMBERS O F  THE TE MODES OF A VANED RECTANGULAR WAVEGUIDE 

N=3 

N=4 

N=5 

1.57 2.15 3.15 3.30 4.26 4.75 

1.57 2.14 3.15 3.30 4.25 4.74 

1.57 2.13 3.14 3.30 4.25 4.72 

N=6 

N=7 

N=8 

1.57 2.12 3.14 3.30 4.25 4.72 

1.57 2.12 3.14 3.30 4.25 4.72 

1.57 2.12 3.14 3.30 4.25 4.72 

N=9 

N=10 

Ref. [91 

Ref [121 

TABLE X 
PERCENTAGE OF THE MATRIX THAT IS DrAGoNALlZABLE FOR THF TE C A S E  

1.57 2.12 3.14 3.30 4.25 4.71 

1.57 2.21 3.14 3.30 4.25 4.71 

1.57 2.00 3.13 3.28 4.23 4.66 

1.57 2.11 3.16 3.30 

N=l  

1 N=2 1 52 I 16 I 30.8% I 

Dimension of Dimension of the % Diagonal 
System Matrix Diagonal Block 

21 4 14.8% 

1 N=3 1 85 I 36 1 42.3% 1 

N=5 

N=6 

N=7 

1 N=4 I 126 I 64 I 50.8% I 
175 100 57.1% 

232 144 62.1% 

297 196 66% 

N=10 

1 N=8 1 370 1 256 1 69.2% 1 

540 400 74.0% 

I N=9 1 451 I 324 I 71.8% I 

diagonal increases consistently with the number of unknowns 
as shown in Table VIII. 

As a final example, consider the vaned rectangular wave- 
guide shown in Fig. 4. Table IX provides the cutoff wavenum- 
bers of the first few dominant TE modes. The results have been 

compared to that of finite difference solution technique [9] 
and an integral equation technique [12]. Again, as the number 
of unknowns increase, the majority of the system matrix is 
diagonal as shown in Table X ,  and hence the computational 
efficiency increases. 
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N=7 

N=8 

N=9 
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3.70 5.00 6.48 6.51 7.02 7.76 

3.70 4.99 6.48 6.50 7.02 7.76 

3.70 4.99 6.48 6.50 7.02 7.75 

Ref. [91 

TABLE XI 
CUTOFF WAVENUMBERS OF THE TM MODES OF A VANED RECTANGULAR WAVEGUIDE 

3.65 4.87 6.31 

6.48 

6.48 6.59 7.03 7.87 

Dimension of 
Svstem Matrix 

N=4 I 3.71 I 5.01 I 6.48 I 6.55 I 7.03 I 7.80 I 

Dimension of the % Diagonal 
Diagonal Block 

N=5 I 3.71 I 5.01 I 6.48 I 6.53 I 7.03 I 7.78 I 

-~ ~ 

N=8 370 297 80.3% 

N=9 451 370 82.0% 

N=10 540 45 1 83.5% 

N=fi I 3.70 I 5.00 I 6.48 I 6.52 I 7.02 1 7.76 I 

1 cm 1- 

N=10 I 3.70 I 4.99 I 6.48 I 6.50 I 7.02 I 7.75 I 

I N = l  I 27 I 10 I 37.0% I 
51.9% 

61.2% 

N=4 67.5% 

N=5 175 126 72.0% 

N=6 232 175 75.4% 

I N=7 I 297 I 232 I 78.1% I 

< 1 cm D 

Fig. 3. L-shaped waveguide. 

Finally, Table XI provides the cutoff wavenumbers of TM 
modes of a vaned rectangular waveguide, and Table XI1 shows 
the size of the system matrix that is diagonal. 

< 2 cm D 

Fig. 4. Vaned rectangular waveguide. 

IV. CONCLUSION 

An entire domain basis function is presented for efficient 
solution of a Helmholtz equation confined to two-dimensional 
rectangular regions. Since this particular choice of the basis 
function transforms the majority of the system matrix into a 
diagonal one, the growth of condition number can easily be 
controlled by proper scaling, and the computational efficiency 
can be significantly enhanced over the conventional technique. 
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This principle has been applied to the cutoff wavenumbers Of 
me rate of convergence and accuracy of 

the new basis is reasonable. In addition, these basis functions 
can easily be extended to 3-D ~~CtangUlX regions and to 
problems with dielectric inhomogeneity. 
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