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Abstract

This paper presents a closed-form blind channel estimationscheme for orthogonal space-time block codes in

multiple-input single-output (MISO) systems, with specific focus on Alamouti’s code for two transmit antennas.

The channel matrix is estimated from the eigenvalue decomposition of the fourth-order cumulant matrix of the

received signal. Unlike previous blind estimation schemesfor MISO systems, the proposed algorithm is tested with

block and slowly fading channels. The proposed scheme performs very well in both cases. A single pilot-tuple is

required to correctly assign the estimated to the actual channels and to resolve the sign ambiguity common to all

blind estimators. It is shown that this scheme outperforms the only other available blind channel estimation scheme

for this scenario. To achieve good performance in terms of bit error rate,100− 300 sample points are sufficient to

provide accurate channel estimates. The main disadvantageof the proposed scheme is the complexity associated

with estimation of fourth-order cumulants. This complexity is reduced by exploiting the symmetry inherent in the

cumulant matrix.

I. I NTRODUCTION

The advantages of using multiple transmit and/or receive antennas along with space-time coding have

been extensively studied [1]–[3] and are now well accepted.In particular, the orthogonal space-time

block codes (O-STBC) [2], specifically Alamouti’s code [3], have been shown to be very attractive in

terms of providing full diversity with linear decoding complexity. However, the performance of these

codes depends on accurate knowledge of the channels betweenthe transmit and receive antennas. The

importance of channel information to space-time coding hasmotivated investigation of channel estimation
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for multiple-input-multiple output (MIMO) systems [4]. Aswith the single-input-single-output (SISO)

case, training, blind and semi-blind techniques have been proposed.

Focusing on MIMO systems using STBC, one class of approaches exploits the structure of the space-

time codes to enable channel estimation [5]–[14]. Budianu and Tong [5] and Larssonet al. [6] present

training based schemes for the orthogonal codes of Alamouti[3] and Tarokh [2]. Training bits, however,

reduce effective throughput and such schemes are inappropriate for systems where bandwidth is scarce.

By restricting themselves to real signals and transmit diversity order, Ammar and Ding estimate channels

for STBC from the null space of the received signal [7]. Swindlehurst and Leus present a scheme for

blind channel estimation with a generalized set of space-time codes [8]. Larssonet al. [10] present a blind

optimal, in maximum likelihood (ML) sense, scheme for channel estimation. Ma and co-authors [11]–

[13] simplify the problem by exploiting the O-STBC structureand semi-definite relaxation [11] or sphere

decoding [12]. However, the complexity of ML decoding remains. Similarly, Shahbazpanahiet al. present

a closed form channel estimate used for ML decoding of transmitted symbols [14].

A significant problem with most of these blind approaches is that they require the number of receive

antennas to be greater than or equal to the number of transmitantennas [7], [8]. In [10], [11] this

requirement is not explicit, but all numerical examples usesuch a scenario. In a large part, space-time

coding is designed for transmit diversity in the downlink. Assuming multiple receive elements on a mobile

device as at the base station may not be realistic. Stoica andGanesan [9] present an iterative algorithm

for blind channel estimation which does not place restrictions on the input signal or on the number of

antennas. However, the algorithm is very sensitive to initialization and the authors acknowledge the results

to be unsatisfactory; they improve the algorithm through semi-blind and training-based estimation. The

work in [14] develops a blind channel estimator for O-STBC which requires a precoder for the transmitted

data. To our knowledge, this is the only blind channel estimation algorithm appropriate to the scenario

discussed here. We show in this paper that at the price of increased complexity, the performance of this

scheme could be improved through the use of higher order cumulants.

This paper presents an effective blind channel estimation technique for downlink systems using a class

of O-STBC and only one receive antenna. The specific focus, andthe most important application, is

the Alamouti code for two transmit antennas. The technique builds on the work presented by Ding and

Liang [15], who introduce a special form of the cumulant matrix to estimate a finite impulse response

SISO channel. We show that multiple channels can be estimated from the eigenvectors of the cumulant
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matrix up to a single sign ambiguity. A single known symbol inserted into the transmitted data stream is

shown to be sufficient to resolve this ambiguity.

This paper is structured as follows. Section II presents thedata model used in this paper based on

a single receive antenna and the definition of cumulants usedlater. Section III presents the theory of

the proposed approach for MISO systems. Section IV discusses implementation issues while Section V

presents simulations to illustrate the performance of the proposed scheme. Section VI concludes this work.

II. PRELIMINARIES

A. Data and Channel Model

Consider a system withL > 1 transmit antennas and one receive antenna. A block ofN complex data

symbols,s, is encoded overK time slots using the generalized orthogonal space-time codes of [2]. The

channel is modelled as flat and Rayleigh. The assumptions usedin this work are:

1) source symbols are zero mean, independent, identically distributed (i.i.d.) random variables with

non-zero fourth-order kurtosis (defined later),γ4,

2) receiver noise is additive, white and Gaussian, and

3) the channel matrix is constant over theK time slots.

Under these assumptions, the length-K receive data vectorr can be written in the most general form as

r = Grh + jGih + w, (1)

whereGr andGi are related below tosr and si, the real and imaginary parts of the transmitted signal

s respectively,h = [h1, h2, . . . , hL]T denotes theL channels between the transmit antennas and receive

antenna andT the transpose of a matrix. The vectorw represents the additive white, Gaussian, receiver

noise. TheK ×L matrices,Gr andGi, dependent on the particular code used, represent the encoding of

the real and imaginary parts of the transmit signal vector. They are formed from real orthogonal matrices

Xn andYn, n = 1, . . . , N ,

Gr =
N

∑

n=1

Xnsrn, Gi =
N

∑

n=1

Ynsin. (2)
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Using O-STBC, the sets of matrices{Xn} and{Yn} satisfy the following properties [6]:

Xn
TXn = IL, Yn

TYn = IL, ∀n, (3)

Xn
TXm = −Xm

TXn, Yn
TYm = −Ym

TYn, n 6= m, (4)

Xn
TYm = Ym

TXn, n 6= m, (5)

As in [14], the real and imaginary parts of the received signal can be processed independently. We can

thus rewrite (1) as

r = Hcs + w, (6)

where the underline operator is used to denote the stacking operations, i.e.,

r =





ℜ(r)

ℑ(r)



 , (7)

whereℜ(x) andℑ(x) represent the real and imaginary parts ofx respectively. The real channel matrix

Hc is formed from the matrices{Xn} and{Yn} and the channel vectorh:

Hc =
[

X1h . . . XNh Y1h . . . YNh

]

. (8)

A important property of this matrixHc is that its rows and columns are orthogonal [14], i.e.,

Hc
THc = ||h||22I2N , (9)

where‖ h ‖2
2 denotes the 2-norm of the channel vector, andI2N is the 2N × 2N identity matrix. For

example, in the Alamouti scheme,h = [h1, h2]
T = [h1r + jh1i, h2r + jh2i]

T and the matrixHc is

Hc =



















h1r h2r −h1i −h2i

−h2r h1r −h2i h1i

h1i h2i h1r h2r

−h2i h1i h2r −h1r



















, (10)

andHH
c Hc = HcH

H
c =

(

|h1|2 + |h2|2
)

I2. As in [14], this property is essential to the estimation algorithm

presented in this paper.



5

B. Fourth Order Cumulants

The channel estimation algorithm in this paper is based on fourth-order cumulants. The required

definitions are presented below.

Let cq(x1, x2, . . . , xq) represent theqth order joint cumulant andmq(x1, x2, . . . , xq) theqth order moment

of q random variables(x1, x2, . . . , xq). The qth order moment is defined as

mq(x1, x2, . . . , xq) = E{x1x2 . . . xq}, (11)

whereE{·} represents statistical expectation. For the zero-mean random variables often used in practice,

the cumulants of order 2 and 4 are defined as

c2(x1, x2) = m2(x1, x2), (12)

c4(x1, x2, x3, x4) = m4(x1, x2, x3, x4) − m2(x1, x2)m2(x3, x4)

−m2(x1, x3)m2(x2, x4) − m2(x1, x4)m2(x2, x3). (13)

The quantityγq is defined asγq = cq(x, x∗, . . . x, x∗). The variance and kurtosis ofx are, respectively,

γ2 = c2(x, x∗) (14)

γ4 = c4(x, x∗, x, x∗) = E{|x|4} − 2
[

E{|x|2}
]2 − E{(x)2}E{(x∗)2}. (15)

Note that the cumulants are linear in each variable and that the 4th-order cumulant of jointly Gaussian

random variables, such as white noise, is zero [16]. Also, for a white process,{xn},

c4(xn, xn−n1
, xn−n2

, xn−n3
) = γ4δ(n1)δ(n2)δ(n3). (16)

III. C HANNEL ESTIMATION USING FOURTH ORDER CUMULANTS

A. The Estimation Algorithm

As in [15], define the joint cumulant matrix of the vectorr as

C
[k]
4 = c4(r, r

T , rk, rk) k = 1, . . . , 2K, (17)

i.e., C[k]
4 (i, j) = c4(ri, rj, rk, rk).

Proposition: Each eigenvector of the cumulant matrixC
[k]
4 is an unknown permutation of a scaled column

of the channel matrix,Hc.
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Proof:

¿From the definition in (13), the joint cumulant is linear in each of its arguments. As in [15], the

cumulant matrix can therefore be decomposed as

C
[k]
4 = c4(r, r

T , rk, rk) = c4(Hcs, s
THT

c , rk, rk)

= Hcc4(s, s
T , rk, rk)H

T
c = HcBkH

T
c . (18)

The entry in rowi and columnj of the inner matrix,Bk, is given byc4(si, sj, rk, rk). From (16), this term

is non-zero only fori = j, i.e., Bk is diagonal. Therefore, using (9), the fourth-order cumulant matrix

can be written as [15]

C
[k]
4 = γ4HcFkHc

T . (19)

From (15),γ4 = −P 2

2
, whereP is the total transmitted power. The structure of matrix2N×2N diagonal

matrix Fk depends on the constellation used. For complex constellations, it can be written as

Fk = diag
(

|hk1|2, |hk2|2, . . . , |hk2N |2
)

, (20)

wherehk = [hk1, hk2 . . . hk2N ] is the kth row of Hc. In this case, the entries of this diagonal matrix,

denoted withfj, j = 1, . . . , 2N , are a real and imaginary permutation of theL channels and(N − L)

zeros. With real constellations, theN last diagonal entries ofFk are zero:

Fk = diag
(

|hk1|2, |hk2|2, . . . , |hkN |2, 0, . . . 0
)

. (21)

The eigenvaluesλj and eigenvectorsvj of the cumulant matrix,C[k]
4 , can be determined using prop-

erty (9)

C
[k]
4 vj = λjvj ⇒ γ4HcFkHc

Tvj − λjvj = 0, (22)

⇒ γ4Hc
THcFkHc

Tvj − Hc
T λjvj = 0,

(

γ4||h||2FFk − λjI2N

)

Hc
Tvj = 0

⇒
(

γ4||h||2FFk − λjI2N

)

Hc
Tvj = 0, (23)

The eigenvalueλj = γ4||h||2F fj reduces the rank ofFk by one and consequentlyHH
c vj is proportional
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to pj, the jth column of the size-2N identity matrix, i.e.,

Hc
Tvj = βpj. (24)

Substituting this result into (22) results in ,

γ4HcFkβpj = λjvj,

⇒ vj =
βγ4|hkj|2

λj

Hcpj. (25)

Thus for |hkj| 6= 0, pj extracts successive columns of the channel matrixHc �

The proof above is valid as long as not all channels are equal,i.e., hi = hj, ∀i, j is not allowed. This

ensures that the non-zero eigenvalues of the cumulant matrix are distinct and that (24) is sufficient and

necessary. Since the probability ofh1 = h2 = · · · = hL is zero, the length-L channel vector can thus

be recovered from an eigenvector of the cumulant matrix. In general, however, no information in the

code identifies the permutation in which the eigenvectors are arranged: there is no way to assign each

eigenvector to its corresponding column of the channel matrix. This problem can be solved by inserting

pilot symbols, as is discussed in IV-A.

As in [14], this procedure leaves the channel estimate ambiguous up to a single multiplicative factor.

This ambiguity is common to all blind channel estimation techniques [8] and may be resolved using a

singlepilot symbol inserted at the beginning of the data block. If required, as shown in Appendix I, the

magnitude of the ambiguity can be resolved using the eigenvalues of the cumulant matrix. The remaining

sign ambiguity can be easily resolved with a pilot symbol.

The cumulant matrixC[k]
4 has as its final two argumentsrk, corresponding to thekth received symbol.

Theoretically, any choice ofk, k = 1 . . . 2K provides the required channel estimate. In practice, due to

noise and the finite data record used to estimate the cumulants, each choice ofk in the matrixC[k]
4 provides

a slightly different channel estimate. Clearly, at the expense of computation load, one could obtain better

channel estimates by repeating the process for all validk and averaging the results.

The steps of the proposed algorithm are therefore:

1) Using a block of data, estimate the cumulant matrixC
[k]
4 for k = 1 using (13) and (17).

2) Perform an eigendecomposition of this matrix and select the principle eigenvector.

3) Use a pilot symbol to resolve the sign ambiguity and to assign the eigenvector to one of the columns



8

of H̃c. This procedure is described in Section IV-A.

4) If required, resolve the magnitude ambiguity using (33).

5) Repeat fork = 2, . . . 2K.

The theory developed above focuses on the MISO case. With multiple receive antennas, the procedure

above can be repeated at each element. If the number of transmitters is greater than the number of receivers,

the procedure and the work in [14] above appear to be the only effective blind schemes available. However,

as mentioned earlier, if there are at least as many receive astransmit antennas, several other blind channel

estimation techniques have been proposed [5]–[8], [10], [11].

Before discussing implementation issues associated with our proposed algorithm, we note a significant

difference from the estimation algorithm of [14]. The algorithm of [14] is based on the estimation of the

covariance matrix that, in the case of most orthogonal codesdesigned for one receive antenna can be

decomposed as

R = HcΛsHc
T +

σ2

2
I2N , (26)

whereΛs is the diagonal covariance of the real matrixs. Using the property in (9), it is clear thatR is a

scaled identity matrix, and thus the only way to blindly estimate the channel in those cases is to precode

the data, thus replacingΛs with D2NΛs, whereD2N is the precoding diagonal matrix. This procedure

leads to a covariance matrix with a similar structure as the cumulant matrix in (19) in this paper, with

the main difference that the matrixD2NΛs is known a priori, while the matrixFk is composed of the

unknown channel powers.

Precoding is thus necessary to enable channel estimation with a covariance matrix; its use, however,

does not introduce the ambiguity of the permutation, because the form of the precoding matrix is known

a priori. Estimation using the cumulant matrix can be performed without precoding; it does, however,

introduce the permutation ambiguity which must be resolvedwith the insertion of a pilot-tuple into a

window of data. As expected, both schemes are ambiguous within a multiplicative constant.

IV. I MPLEMENTATION ISSUES

A. Ambiguity Resolution

The proposed channel estimation scheme extracts channel estimates from the eigenvector of the cumulant

matrix. Each eigenvector is a permutation of a column of the channel matrix,Hc. The scheme, however,
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does not identify the permutations. This ambiguity is similar to the ambiguity described by the authors

in [17]. The O-STBC encodesN data symbols overK epochs and transmits the code overL antennas.

Only for square STBC (N = K = L) schemes are the columns of the channel matrix the permutations of

the channel vectorh = [h1, h2, . . . , hL]. This is the case for the Alamouti code, as well as for real square

codes utilizing4 and 8 antennas. This case is investigated in detail in this section. However, we begin

with the simpler case of generalized rectangular block codes.

For such codes, the columns of the channel matrix, and thus the eigenvectors of the cumulant matrix,

are augmented with2(N − L) zeros. In the case of the full-rate real code for3 antennas, for example,

each column of the channel matrix is augmented with two zeros:

Hc =











































h1r h2r h3r 0

h2r −h1r 0 −h3r

h3r 0 −h1r h2r

0 h3r −h2r −h1r

h1i h2i h3i 0

h2i −h1i 0 −h3i

h3i 0 −h1i h2i

0 h3i −h2i −h1i











































. (27)

The locations of the zero in the eigenvector can help resolvethe permutation, i.e., identify which entry

in the eigenvector corresponds to which channel. In the caseof the real rectangular code shown, for

example, the column number can be identified asK − pz + 1, wherepz is the location of the first zero

in the column. This is also true for the generalized complex O-STBC.

For a space-time code withN = K = L, such as Alamouti’s scheme, the eigenvector provides estimates

of the L channels. However, no information in the code itself allowsa correct assignment between the

estimated eigenvectors of the cumulant matrix and the columns of the channel matrix. A resolution of this

problem therefore requires the use of one time slot for a single pilot transmission1. This ambiguity can be

resolved by transmitting a single pilot symbol which extracts a chosen column from the channel matrix.

Exploting the orthogonal property of the channel matrix, the resulting vector can be used to determine

the corresponding column from the estimated channel matrix. This procedure is summarized below:

1) Transmit the known pilot symbols = pj. As defined in Section III-A,pj is the jth column of the

1Note that all this ambiguity is independent of the phase ambiguity that impacts all blind schemes
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size-2N identity matrix. The received signalr can thus be written asr = hcj
+ w, wherehcj

is

the jth column of the channel matrixHc.

2) Form the size-2N row vectorm = hT
cj
H̃c.

3) Determine the locationj of the maximum entry of|m|. Due to the orthogonality of the columns

of Hc, j indicates the column of̃Hc corresponding tohcj
. The sign of thejth entry of m also

determines the sign ambiguity.

B. Cumulant Estimation

A crucial limiting factor in the implementation of the proposed algorithm is the complexity associated

with estimating the fourth-order cumulant matrix. We present here schemes to limit the complexity of

this estimation. Using (13), the fourth-order cumulant matrix is:

C
[k]
4 = c4

(

r, rT , rk, rk

)

= m4(r, r
T , rk, rk) − m2(r, r

T )m2(rk, rk) − [m2(r, rk)m2(r
T , rk)]

2

= m4(r, r
T , rk, rk) − m2(r, r

T )m2(rk, rk) − [m2(r, rk)m
T
2 (r, rk)]

2. (28)

Note thatm2(r, rk) andm2(rk, rk) are thekth column and diagonal entry ofm2(r, r
T ), respectively. Thus

to determine the cumulant matrix, only the following two terms need be calculated:m4(r, r
T , rk, rk), and

m2(r, r
T ). Other efficient estimates of the fourth order cumulants arealso possible [18].

C. Error Analysis

This section discusses the relationship between the normalized mean squared error (NMSE) and the

number of sample points used to estimate the cumulant matrix. Given estimatêh of the true channelh,

the NMSE, is defined by

NMSE =

∑L

k=1 |hk − ĥk|2
∑L

k=1 |hk|2
=

||h − ĥ||2
||h||2 , (29)

where|| · || refers to the 2-norm.

Proposition: For the case of the Alamouti code withL = 2 two transmit and one receive antenna, and a
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given channelh =





h0

h1



, where|h0| 6= |h1|, the NMSE is approximated by

NMSE ≈ |h0|4 + 3|h0|2|h1|2 + |h1|4
B(|h0|2 − |h1|)2)2

, (30)

whereB is the number of points used to calculate the cumulant estimate.

Proof: See Appendix II.

This expression is valid for the estimation scheme using regular cumulants, and without channel

averaging, i.e. the channel estimate is obtained from only one cumulant matrix. As shown in Appendix II,

the restriction that|h0| 6= |h1| is due to an assumption, in the derivation, of distinct eigenvalues of the

cumulant matrix. For identical channel magnitudes, the eigenvalues are identical (see Appendix I). Since

the channels are modelled as Rayleigh, the event of equal channel magnitudes has zero probability.

V. NUMERICAL EXAMPLES

In this section, the channel estimation algorithm presented in Section III is tested using simulations. All

examples use BPSK for data modulation. Most examples are based on a slow, flat, Rayleigh block fading

channel, i.e., the channel is constant over a block of data and changes independently from block to block.

An important, and apparently unusual, test presented in Section V-B is based on a slow time-varying

channel. The performance of the proposed scheme is evaluated using the normalized mean squared error

and the resulting bit error rate (BER). The BER results are compared to that of a clairvoyant receiver

using perfect knowledge of the channel.

A. Block Fading Channel

In the section, the channel to be estimated is held constant over each block of data. We focus on the

important case of the Alamouti code for two transmit and one receive antenna. All data points in a window

are used to estimate the cumulant matrix. As discussed in Section IV-A, the data in the first time slot of

a window is assumed known to resolve any ambiguities. The channel changes independently from block

to block. The results shown are averaged over106 Monte Carlo simulations.

We first investigate the NMSE, defined in (29) between the trueand estimated channels. The NMSE as

a function of SNR is shown in Figure 1 for window sizes50, 100, 300 and500. As expected, the NMSE

is a decreasing function of SNR. Although it is true that, in theory, cumulant estimates for white Gaussian
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Fig. 1. Time Invariant Channel. NMSE vs. SNR using50, 100, 300 and500 point cumulant estimates.

noise are zero and the channel estimates should be insensitive to SNR, this occurs when the number of

points used in the cumulant estimates is very large (we note here that4th order cumulants require a very

large number of samples, of the order of thousands or more, for the estimated cumulants to converge to

their true statistics. However, we do not require such a large number of samples to get fairly accurate

channel estimates). When using a realistic number of samples, however, noise affects the accuracy of the

estimation, and the channel estimates are sensitive to SNR. Figure 1 also indicates that, as expected, the

NMSE is a function of window size: in a static environment, increasing the window size will improve

the performance of the algorithm.

The proposition in Section IV-C is verified in Figure 2. The figure plots the NMSE of the channel

estimate as a function ofB, the number of samples used to estimate the cumulant matrix.The channel

estimates in this plot were obtained from only one cumulant matrix; the NMSE performance is thus

expectedly slightly worse than that obtained in Figure 1, where the channel estimate was obtained by

averaging over2K estimates from2K cumulant matrices. Because the expression is only valid for distinct

eigenvalues (which are identical for equivalent channel magnitudes), it is not accurate when the channel

magnitudes become very close. For this reason, the difference between the channel magnitudes is restricted

to 0.2 and above. The analytical expression approaches the simulated curve asB increases. This is as
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Fig. 2. Time-Varying Channel. NMSE vs. number of points used in cumulant estimates.

expected, since the approximations used to obtain (30) are based on a largeB.

Channel estimation is one important step towards decoding the transmitted data. From a communication

point of view, it is the BER that is finally important. The next plot, shown in Fig. 3 demonstrates the

efficacy of the channel estimation in terms of the resulting BER. The BER is compared to that obtained

by the clairvoyant receiver, which has knowledge of the truechannel. As with the NMSE plots, the results

are shown for window sizes50, 100, 300 and500.

Depending on the number of points used in cumulant estimates, the system BER, when using estimated

channels, closely tracks that of the clairvoyant receiver.With 300 and500-point cumulant estimates result

in almost equivalent BER curves less than1 dB from the Clairvoyant BER curve. As expected, in block

fading channels, the performance of the algorithm can always be improved by increasing the number of

points used in cumulant estimates.

In Figure 4, we compare our scheme to that presented in [14] interms of BER. To obtain results for

this algorithm, we use a precoding matrix for BPSK symbolsD = diag(
√

0.4,
√

1.6, 0, 0. In [14], this

matrix, used for QPSK symbols, is chosen in an ad hoc fashion;we thus did not optimize this matrix,

but chose a similar one.

The figure demonstrates that our algorithm outperforms the scheme based on covariance estimates by

2 dB. The improved performance of our cumulant scheme is due to the decreased sensitivity to noise
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Fig. 3. Time Invariant Channel. BER vs. SNR using50, 100, 300 and500 point cumulant estimates.
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Fig. 4. Time Invariant Channel. BER vs. SNR using100 and300 point cumulant estimates.
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Fig. 5. Time Invariant Channel. BER vs. SNR using100 and300 point cumulant estimates.

of higher order cumulants, and the elimination of the requirement for data precoding. This improved

performance is obtained, of course, at the price of increased complexity.

B. Time-Varying Channel

The efficacy of the proposed channel estimation algorithm isnow examined when used in a time-varying

fading environment. The example is based on two transmit antennas and the Alamouti STBC. The data is

sampled at a rate of 20 MHz and is modulated using a carrier with a frequency of 5.5 GHz. The mobile is

assumed to be moving at 100 km/h. Clearly, such channels are ofpractical importance and better reflect

the real world than the block fading model used in Section V-A.

For each Monte Carlo run,2×106 bits are corrupted by the time varying channel. The channel estimate

for a particular window of data is obtained from the cumulantestimate resulting from that same window.

Channel estimates in one window are fixed, but change from window to window. To correctly identify

the channels, a pilot symbol is inserted at the beginning of every window. We focus here on the BER,

which is more meaningful in terms of practical implications. The results are averaged over250 Monte

Carlo runs.

The BER for window sizes of50, 100, 300 and 500 are shown in Fig. 6. Unlike in the block fading

example, the estimates obtained using300-point windows outperform those obtained using500-point
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Fig. 6. Time-Varying Channel. BER vs. SNR using50, 100, 300 and500 point cumulant estimates.

windows at higher SNR. This occurs because when the channel changes over time, the cumulant estimate

does not necessarily become more accurate for longer inputs. The variation in signal statistics therefore

imposes a limit on the maximum number of points that can be used in cumulant estimates. The faster

these channel variations, the fewer the points that can be used.

In Figure 7, we compare BER performance of our scheme to that that of [14] in time-varying channels.

This comparison is important, since covariance estimates are assumed to require less data than cumulant

estimates; it is thus conceivable that the comparison couldchange in time-varying channels. The figure

demonstrates, however, that the number of points required to estimate cumulants and then to obtain accurate

channel estimates, are sufficiently low to not be affected bythe varying channel. The BER superiority of

our proposed scheme over the scheme in [14] holds in this scenario.

VI. CONCLUSIONS

This paper presents a blind channel estimation algorithm for orthogonal space-time block coded data

in the important MISO situation, i.e., in systems using onlya single receive antenna. It is shown that the

algorithm outperforms in terms of BER the only other existingalgorithm applicable to this scenario. A

significant cost of the algorithm is the complexity involvedin estimating the required cumulants. Cumulant

estimates are generally assumed to be impractical since they require too many samples to be effective. Very



17

2 4 6 8 10 12 14 16 18 20

10
−4

10
−3

10
−2

10
−1

SNR

B
E

R

BER vs. SNR using n−point cumulant and covariance estimates in a time−varying channel

100−point Covariance Estimates
100−point Cumulant Estimates
300−point Covariance Estimates
300−point Cumulant Estimates
Clairvoyant Receiver

Fig. 7. Time-Varying Channel. BER vs. SNR using50, 100, 300 and500 point cumulant estimates.

good estimation results, however, are obtained when using as few as100 − 300 points in the cumulant

estimates. The numerical simulations prove that even if using the the sample number of samples, the

cumulant-based scheme presented here outperforms the previously proposed scheme based on covariance

estimates.

APPENDIX I

CHANNEL MAGNITUDES

The channel magnitudes can be obtained from the non-zero eigenvaluesλj as follows:

λj = γ4||h||2F fj, (31)

= γ4|hkj|2||h||2F ,

wherefj represents the thejth non-zero diagonal entry of matrixFk defined in (20) and (21) for complex

and real data, respectively.||h||2F is found by summing the non-zero eigenvaluesλj of each cumulant
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matrix, C[k]
4 :

2K
∑

k=1

L
∑

j=1

λj =
2K
∑

k=1

L
∑

j=1

(γ4|hkj|2||h||2F ) = αγ4||h||4F . (32)

⇒ ||h||2F =
1

√

1
α
γ4

∑L

j=1 λj

. (33)

Here,α is a parameter dependent on the constellation:α = 2 for real andα = 4 for complex constellations.

APPENDIX II

NMSE ANALYSIS

In this appendix we show that for the Alamouti STBC with one receive antenna and for a particular

channel pair, the NMSE can be approximated by (30). We assumehere a high SNR region, and thus

channel estimation errors are due only to estimation errorsdue to a finite number of samples, and are

insensitive to noise. In this section, we do not separate thereal and imaginary parts of the received signal,

and use the model

r =





r1

r2



 =





h1s1 + h2s2

−h1s
∗

2 + h2s
∗

1



 + w, (34)

⇒ r′ =





r1

r∗2



 = Hc





s1

s2



 + w, (35)

where

Hc =





h1 h2

h∗

2 −h∗

1



 . (36)

Without loss of generality, we definev1 andv2 as the normalized eigenvectors of the cumulant matrix

C4, such thatvH
1 v1 = vH

2 v2 = 1. v1 andv2 correspond to the scaled columns of the channel matrixHc,

such that

v1 =
1

√

|h0|2 + |h1|2





h0

h∗

1



 , v1 =
1

√

|h0|2 + |h1|2





h1

−h∗

0



 . (37)
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Defining v̂1 and v̂2 as the eigenvectors of the estimated cumulant matrix,Ĉ4, andδvj
= v̂j −vj as the

error between them, the NMSE of the estimated channels is exactly δH
v1

δv1
= δH

v2
δv2

. Because the two are

equivalent, we will focus on the error in the first eigenvector, δH
v1

δv1
.

In [19], Yuen and Friedlander derive the covariance matrix of the error between the estimated and true

eigenvectors of a cumulant matrix. The expression is valid in cases where the cumulant matrix has distinct

values. Applied to the problem in this work, the expression becomes

δH
v1

δv1
=

1

(α1 − α2)2

2
∑

a1=1

2
∑

a2=1

2
∑

b1=1

2
∑

b2=1

v∗

2,a1
v1,a2

v2,b1v
∗

1,b2
E{(C4 − Ĉ4)a1a2

(C4 − Ĉ4)b1b2 , (38)

where the quantityvi,j is defined as thejth element of vectori, and (C4 − Ĉ4)ij is the ijth element of

(C4 − Ĉ4). C4 is as defined in (17).

In [20], Porat and Friedlander derive expressions for the covariance matrix of fourth-order sample

cumulants of zero-mean and symmetrically distributed signals. The analysis in [20] assumes that a large

number of data points,B, are used in the estimation of the cumulant matrix. In this analysis, the input

to the forth-order cumulants is the received signal in (II).This signalr is both zero-mean and symmetric

for both BPSK and QAM input signalss, and thus the expression derived in [20] is valid. It is repeated

here for convenience.

B × E {[c4(k1, k2, l
∗

1, l
∗

2) − ĉ4(k1, k2, l
∗

1, l
∗

2)] · [c4(m1,m2, n
∗

1, n
∗

2) − ĉ4(m1,m2, n
∗

1, n
∗

2)]}

≈ µ8(k1, k2,m1,m2, l
∗

1, l
∗

2, n
∗

2, n
∗

2)

−∑2
p=1

∑2
q=1 µ2(m3−p, n

∗

3−q) µ6(k1, k2,mp, l
∗

1, l
∗

2, n
∗

q)

−
∑2

i=1

∑2
j=1 µ2(k

∗

3−i, l
∗

3−j) µ6(m1,m2, ki, n
∗

1, n
∗

2, l
∗

j )

+
∑2

i=1

∑2
j=1

∑2
p=1

∑2
q=1 µ2(m3−p, n

∗

3−q) µ2(k3−i, l
∗

3−j) µ4(ki,mp, l
∗

j , n
∗

q)

− [[u4(k1, k2, l
∗

1, l
∗

2) − 2u2(k1, l
∗

1) u2(k2, l
∗

2) − 2u2(k1, l
∗

2) u2(k2, l
∗

1)]

· [u4(m1,m2, n
∗

1, n
∗

2) − 2u2(m1, n
∗

1) u2(m2, n
∗

2) − 2u2(m1, n
∗

2) u2(m2, n
∗

1)]] .

(39)

To determine the expression in (38), the16 corresponding cumulant covariances must be determined

using (39). This can be simplified using the fact that(C4 − Ĉ4) is Hermitian, and thus, for example

(C4 − Ĉ4)11(C4 − Ĉ4)
∗

12 = (C4 − Ĉ4)21(C4 − Ĉ4)
∗

11. (40)

The calculations for the necessary cumulant covariances are tedious but straightforward, and the results
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are given below:

E{(C4 − Ĉ4)11(C4 − Ĉ4)11} =γ2
4(h

4
0h

∗4
1 + h∗4

0 h4
1 + 18|h0|4|h1|4 + 8|h0|2|h1|6 + 8|h0|6|h1|2) (41)

E{(C4 − Ĉ4)22(C4 − Ĉ4)22} =γ2
4(h

4
0h

∗4
1 + h∗4

0 h4
1 + 2|h0|4|h1|4) (42)

E{(C4 − Ĉ4)11(C4 − Ĉ4)12} =γ2
4(−h5

0h
∗3
1 + h∗3

0 h5
1 − 3h0h1|h0|4|h1|2

+ 3h0h1|h0|2|h1|4 + 2h0h1|h1|6 − 2h0h1|h1|6) (43)

E{(C4 − Ĉ4)12(C4 − Ĉ4)
∗

12} =γ2
4(−h4

0h
∗4
1 − h∗4

0 h4
1 + 3|h0|6|h1|2 + 3|h0|2|h1|6 + 2|h0|4|h1|4) (44)

E{(C4 − Ĉ4)11(C4 − Ĉ4)22} =γ2
4(−h4

0h
∗4
1 − h∗4

0 h4
1 − 2|h0|4|h1|4) (45)

E{(C4 − Ĉ4)12(C4 − Ĉ4)12} =γ2
4(−6h2

0h
2
1|h0|2|h1|2 − 2h2

0h
2
1(|h0|4 + |h1|4) + h6

0h
∗2
1 + h∗2

0 h6
1) (46)

E{(C4 − Ĉ4)22(C4 − Ĉ4)12} =γ2
4(h

5
0h

∗3
1 − h∗3

0 h5
1 − h0h1|h0|2|h1|4 + h0h1|h0|4|h1|2) (47)

Using (41) - (47), the expression for the eigenvalues of the cumulant matrix given in (32) and using (37)

are substituted in (38), results in

NMSE ≈ |h0|4 + 3|h0|2|h1|2 + |h1|4
B(|h0|2 − |h1|)2)2

(48)
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