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Abstract

This paper presents a closed-form blind channel estimattveme for orthogonal space-time block codes in
multiple-input single-output (MISO) systems, with specifocus on Alamouti’s code for two transmit antennas.
The channel matrix is estimated from the eigenvalue decsitipo of the fourth-order cumulant matrix of the
received signal. Unlike previous blind estimation schefoedISO systems, the proposed algorithm is tested with
block and slowly fading channels. The proposed scheme pasfoery well in both cases. A single pilot-tuple is
required to correctly assign the estimated to the actuatredla and to resolve the sign ambiguity common to all
blind estimators. It is shown that this scheme outperfoimesanly other available blind channel estimation scheme
for this scenario. To achieve good performance in terms toéoor rate, 100 — 300 sample points are sufficient to
provide accurate channel estimates. The main disadvanfathee proposed scheme is the complexity associated
with estimation of fourth-order cumulants. This complgxig reduced by exploiting the symmetry inherent in the

cumulant matrix.

. INTRODUCTION

The advantages of using multiple transmit and/or receiteraras along with space-time coding have
been extensively studied [1]-[3] and are now well acceptadparticular, the orthogonal space-time
block codes (O-STBC) [2], specifically Alamouti’'s code [3],vikabeen shown to be very attractive in
terms of providing full diversity with linear decoding cotegity. However, the performance of these
codes depends on accurate knowledge of the channels betived¢ransmit and receive antennas. The

importance of channel information to space-time codingrhativated investigation of channel estimation



for multiple-input-multiple output (MIMO) systems [4]. Awith the single-input-single-output (SISO)
case, training, blind and semi-blind techniques have beepgsed.

Focusing on MIMO systems using STBC, one class of approachssiexthe structure of the space-
time codes to enable channel estimation [5]-[14]. Budiandi Bong [5] and Larssomt al. [6] present
training based schemes for the orthogonal codes of Alanjduaind Tarokh [2]. Training bits, however,
reduce effective throughput and such schemes are inapg®por systems where bandwidth is scarce.
By restricting themselves to real signals and transmit ditieorder, Ammar and Ding estimate channels
for STBC from the null space of the received signal [7]. Swaidirst and Leus present a scheme for
blind channel estimation with a generalized set of spave-tiodes [8]. Larssoet al. [10] present a blind
optimal, in maximum likelihood (ML) sense, scheme for chelnestimation. Ma and co-authors [11]-
[13] simplify the problem by exploiting the O-STBC structuard semi-definite relaxation [11] or sphere
decoding [12]. However, the complexity of ML decoding rengiSimilarly, Shahbazpanaéi al. present
a closed form channel estimate used for ML decoding of tratestnsymbols [14].

A significant problem with most of these blind approacheshat they require the number of receive
antennas to be greater than or equal to the number of trarmitennas [7], [8]. In [10], [11] this
requirement is not explicit, but all numerical examples sgeh a scenario. In a large part, space-time
coding is designed for transmit diversity in the downlinksstiming multiple receive elements on a mobile
device as at the base station may not be realistic. StoicaGameésan [9] present an iterative algorithm
for blind channel estimation which does not place resbiwion the input signal or on the number of
antennas. However, the algorithm is very sensitive toah#ation and the authors acknowledge the results
to be unsatisfactory; they improve the algorithm throughidselind and training-based estimation. The
work in [14] develops a blind channel estimator for O-STBC aethiequires a precoder for the transmitted
data. To our knowledge, this is the only blind channel edimnaalgorithm appropriate to the scenario
discussed here. We show in this paper that at the price oéasedd complexity, the performance of this
scheme could be improved through the use of higher order leuntsu

This paper presents an effective blind channel estimagohrtique for downlink systems using a class
of O-STBC and only one receive antenna. The specific focus,tl@dnost important application, is
the Alamouti code for two transmit antennas. The techniqui&l® on the work presented by Ding and
Liang [15], who introduce a special form of the cumulant nxato estimate a finite impulse response

SISO channel. We show that multiple channels can be estilhfeden the eigenvectors of the cumulant



matrix up to a single sign ambiguity. A single known symbdarted into the transmitted data stream is
shown to be sufficient to resolve this ambiguity.

This paper is structured as follows. Section Il presentsdéi@ model used in this paper based on
a single receive antenna and the definition of cumulants leted Section Il presents the theory of
the proposed approach for MISO systems. Section IV dissussplementation issues while Section V

presents simulations to illustrate the performance of te@sed scheme. Section VI concludes this work.

Il. PRELIMINARIES
A. Data and Channel Model

Consider a system withh > 1 transmit antennas and one receive antenna. A blodk cbmplex data
symbols,s, is encoded ovekK time slots using the generalized orthogonal space-timesaod [2]. The
channel is modelled as flat and Rayleigh. The assumptionsiog®d work are:

1) source symbols are zero mean, independent, identicadtyibdited (i.i.d.) random variables with

non-zero fourth-order kurtosis (defined latey),

2) receiver noise is additive, white and Gaussian, and

3) the channel matrix is constant over thetime slots.

Under these assumptions, the lengfhreceive data vectar can be written in the most general form as
r = Gh+jGh+w, 1)

where G, and G, are related below tg, ands;, the real and imaginary parts of the transmitted signal

s respectivelyh = [hy, ho,. .., hL]T denotes the. channels between the transmit antennas and receive
antenna and' the transpose of a matrix. The vecterrepresents the additive white, Gaussian, receiver
noise. ThekK x L matrices,G, andG;, dependent on the particular code used, represent the iagoofd

the real and imaginary parts of the transmit signal vectbeyTare formed from real orthogonal matrices

X,andY,,n=1,...,N,

Gr = Zanrna Gz = ZYnsm (2)



Using O-STBC, the sets of matricéX,,} and{Y,} satisfy the following properties [6]:

XnTXn = IL7 YnTYn = IL; vn7 (3)
XnTXm = _XmTXm YnTYm - _YmTYm n 7A m, (4)
XnTYm - YmTXm n 7é m, (5)

As in [14], the real and imaginary parts of the received digraa be processed independently. We can

thus rewrite (1) as

r=Hcs+w, (6)

: (7)

where R(z) and &(x) represent the real and imaginary partsrofespectively. The real channel matrix

H. is formed from the matrice$X,} and{Y,} and the channel vectdr:

ch[xlh ... Xxh Yih .. YNh]. (8)

A important property of this matrisH., is that its rows and columns are orthogonal [14], i.e.,
HCTHC = HhHgIZZ\U (9)

where || h |3 denotes the 2-norm of the channel vector, dnd is the 2N x 2N identity matrix. For

example, in the Alamouti schemB,= [hy, ho]" = [hy, + jhas, har + jhs;]” and the matrixH, is

H, = A (10)

andH/H, = H.H! = (|h,|* + |ho|*) L. As in [14], this property is essential to the estimation aityon

presented in this paper.



B. Fourth Order Cumulants

The channel estimation algorithm in this paper is based amtieorder cumulants. The required

definitions are presented below.

Letc,(z1, 2o, ... ,z,) represent the’” order joint cumulant aneh, (1, 7o, . . ., z,) the¢™ order moment
of ¢ random variable$z,, xs, ..., z,). The¢™ order moment is defined as
mg(x1, e, ..., x,) = E{x12a. .. 2.}, (11)

where E{-} represents statistical expectation. For the zero-meatorarvariables often used in practice,

the cumulants of order 2 and 4 are defined as

02(33'1,552) = m2($1,$2>7 (12)
C4(SC1,I2,$3,SC4) = m4($1,3€27$3,$4) - m2<$17$2)m2(5€37$4)
—m2(l‘17 I3)m2($2, $4> - mz(l‘h x4)m2(1’2, I3)- (13)

The quantityy, is defined asy, = ¢,(z,z*, ...z, z*). The variance and kurtosis af are, respectively,
Y = oz’ (14)
v o= alwa’z,2") = E{el'} - 2 [B{2}]" - B{(2)} E{(+")*}. (15)
Note that the cumulants are linear in each variable and tieat't-order cumulant of jointly Gaussian
random variables, such as white noise, is zero [16]. Alspafavhite process{z, },
Ca(Tny Tnny» Trnys Tnng) = Y40(n1)d(n2)d(n3). (16)

[1l. CHANNEL ESTIMATION USING FOURTH ORDER CUMULANTS
A. The Estimation Algorithm

As in [15], define the joint cumulant matrix of the vectomls
Cz[Lk] = C4(£7£Tark7rk) k= 17"-72K7 (17)

ie., CL](z,j) = (13,7, Tk, k)
Proposition: Each eigenvector of the cumulant mat(bgcl is an unknown permutation of a scaled column

of the channel matrixH..



Proof:
¢ From the definition in (13), the joint cumulant is linear iack of its arguments. As in [15], the

cumulant matrix can therefore be decomposed as

k
Cz[l] - 04(£,£T,T'k,7’k> - C4<HCS7sTHZ7Tk’Tk)

- HCC4(§a §T7 Tk, Tk)HZ = HCBkHZ (18)

The entry in rowi and columnj of the inner matrix By, is given byc,(s;, s;, rx, ri). From (16), this term
is non-zero only fori = j, i.e., By is diagonal. Therefore, using (9), the fourth-order cumuiaatrix

can be written as [15]
C}) = v HFH,". (19)

From (15),y4 = —%2, whereP is the total transmitted power. The structure of ma2ixx 2V diagonal

matrix F;,, depends on the constellation used. For complex consteiiatit can be written as
Fk = dlag (|hk1|27’hk2‘27"'7|hk2N|2) ) (20)

wherehy, = [hg, hio - . . hion] is the K™ row of H.. In this case, the entries of this diagonal matrix,
denoted withf;,j =1,...,2N, are a real and imaginary permutation of thechannels andN — L)

zeros. With real constellations, theé last diagonal entries df, are zero:
F;. = diag (|l ]?, [hue2)?, - - -, [hin]?,0,...0) . (21)

The eigenvalues\; and eigenvectors; of the cumulant matrixdf], can be determined using prop-

erty (9)

CLk]Vj = )\jvj = ’)/4HCF/€HCTV]' — /\jvj = 0, (22)
= v HHFH v, -H \;v; = 0,
(yallb|[3Fx — XIon) He vy = 0

= (’)/4||h||%~Fk — )\jI2N) HCTVj = O, (23)

The eigenvalue\; = 4| |h||%.f; reduces the rank dF; by one and consequentBl?v; is proportional



to p;, the j® column of the size&N identity matrix, i.e.,
Substituting this result into (22) results in ,

74Hchﬁpj = /\jVja

s |2
=, = Dl (25)
J

Thus for |hy;| # 0, p; extracts successive columns of the channel maiixal

The proof above is valid as long as not all channels are eqealh; = h;, Vi, j is not allowed. This
ensures that the non-zero eigenvalues of the cumulantxvati distinct and that (24) is sufficient and
necessary. Since the probability bf = h, = --- = hy, is zero, the lengthz channel vector can thus
be recovered from an eigenvector of the cumulant matrix. énegal, however, no information in the
code identifies the permutation in which the eigenvectoesaranged: there is no way to assign each
eigenvector to its corresponding column of the channelimalihis problem can be solved by inserting
pilot symbols, as is discussed in IV-A.

As in [14], this procedure leaves the channel estimate amabig up to a single multiplicative factor.
This ambiguity is common to all blind channel estimationhi@ques [8] and may be resolved using a
single pilot symbol inserted at the beginning of the data block.eljuired, as shown in Appendix I, the
magnitude of the ambiguity can be resolved using the eidgeesaf the cumulant matrix. The remaining
sign ambiguity can be easily resolved with a pilot symbol.

The cumulant matri>C£f“] has as its final two arguments, corresponding to thé*® received symbol.
Theoretically, any choice of, £ = 1...2K provides the required channel estimate. In practice, due to
noise and the finite data record used to estimate the cumsukenth choice of in the matrixCL’“] provides
a slightly different channel estimate. Clearly, at the exggeof computation load, one could obtain better

channel estimates by repeating the process for all Vakishd averaging the results.

The steps of the proposed algorithm are therefore:
1) Using a block of data, estimate the cumulant ma@‘iﬁ} for k =1 using (13) and (17).
2) Perform an eigendecomposition of this matrix and seleetprinciple eigenvector.

3) Use a pilot symbol to resolve the sign ambiguity and togas#ie eigenvector to one of the columns



of H,. This procedure is described in Section IV-A.

4) If required, resolve the magnitude ambiguity using (33).

5) Repeat fork = 2,...2K.

The theory developed above focuses on the MISO case. Wittipteuteceive antennas, the procedure
above can be repeated at each element. If the number of tittgrss greater than the number of receivers,
the procedure and the work in [14] above appear to be the diggtee blind schemes available. However,
as mentioned earlier, if there are at least as many receitrarz@mit antennas, several other blind channel
estimation techniqgues have been proposed [5]-[8], [1]]. [1

Before discussing implementation issues associated witlpiaposed algorithm, we note a significant
difference from the estimation algorithm of [14]. The algfom of [14] is based on the estimation of the
covariance matrix that, in the case of most orthogonal catessgned for one receive antenna can be
decomposed as

R = HAH.” + %ZIQN, (26)
where A, is the diagonal covariance of the real matsixJsing the property in (9), it is clear th& is a
scaled identity matrix, and thus the only way to blindly estte the channel in those cases is to precode
the data, thus replacing, with Doy A, whereD,y is the precoding diagonal matrix. This procedure
leads to a covariance matrix with a similar structure as thmwant matrix in (19) in this paper, with
the main difference that the matri®,y A, is known a priori, while the matri¥';, is composed of the
unknown channel powers.

Precoding is thus necessary to enable channel estimatigbnantovariance matrix; its use, however,
does not introduce the ambiguity of the permutation, bexdlis form of the precoding matrix is known
a priori. Estimation using the cumulant matrix can be penied without precoding; it does, however,
introduce the permutation ambiguity which must be resolwétth the insertion of a pilot-tuple into a

window of data. As expected, both schemes are ambiguoushvétmultiplicative constant.

IV. IMPLEMENTATION ISSUES
A. Ambiguity Resolution

The proposed channel estimation scheme extracts chanimedtss from the eigenvector of the cumulant

matrix. Each eigenvector is a permutation of a column of th@nael matrix H.. The scheme, however,



does not identify the permutations. This ambiguity is samilo the ambiguity described by the authors
in [17]. The O-STBC encoded’ data symbols oveK epochs and transmits the code oveantennas.
Only for square STBCN = K = L) schemes are the columns of the channel matrix the perronsadf
the channel vectoh = [hy, ho, ..., hz]. This is the case for the Alamouti code, as well as for reahsgju
codes utilizing4 and 8 antennas. This case is investigated in detail in this sectiowever, we begin
with the simpler case of generalized rectangular block sode

For such codes, the columns of the channel matrix, and theugitienvectors of the cumulant matrix,
are augmented witB(IN — L) zeros. In the case of the full-rate real code 3oantennas, for example,

each column of the channel matrix is augmented with two zeros

hiy  hop  hs, 0
hayr —hy 0 —hg,
hs, 0  —hy  ho,
N e o
hi;  ho hs; 0
hayi —hy 0 —hg
hsyi 0 —hy  hy
0 hgi —hy —hy

The locations of the zero in the eigenvector can help resiblgepermutation, i.e., identify which entry
in the eigenvector corresponds to which channel. In the chdbe real rectangular code shown, for
example, the column number can be identifiedkas- p, + 1, wherep, is the location of the first zero
in the column. This is also true for the generalized compleSTBC.

For a space-time code witN = K = L, such as Alamouti’s scheme, the eigenvector provides attsn
of the L channels. However, no information in the code itself all@aveorrect assignment between the
estimated eigenvectors of the cumulant matrix and the aoduof the channel matrix. A resolution of this
problem therefore requires the use of one time slot for alsipipt transmissioh This ambiguity can be
resolved by transmitting a single pilot symbol which extsaa chosen column from the channel matrix.
Exploting the orthogonal property of the channel matrix tlesulting vector can be used to determine
the corresponding column from the estimated channel makhis procedure is summarized below:

1) Transmit the known pilot symbal = p;. As defined in Section IlI-Ap; is the j®* column of the

INote that all this ambiguity is independent of the phase ambiguity that imptditna schemes
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size2N identity matrix. The received signal can thus be written as = h. +w, wherehcj is
the j** column of the channel matril..

2) Form the size&N row vectorm = hgﬁc.

3) Determine the location of the maximum entry ofm|. Due to the orthogonality of the columns
of H,, j indicates the column off. corresponding th,.,. The sign of thej*™® entry of m also

determines the sign ambiguity.

B. Cumulant Estimation

A crucial limiting factor in the implementation of the proged algorithm is the complexity associated
with estimating the fourth-order cumulant matrix. We praskere schemes to limit the complexity of

this estimation. Using (13), the fourth-order cumulant nmais:

Cé[lk} = C4 (E? £T7 Tk Tk)
- m4(£7 £T7 Tk, Tk) - m?(E? ET)mQ(T]ﬁ rk)) - [m2(£7 Tk>m2<£T7 Tk)}2

= ma(r,x", re, %) — ma(r, x)ma(ry, i) — [ma(x, re)mi (x, r4)]%. (28)

Note thatms(r, 7,) andmes(ry, 7)) are thek™ column and diagonal entry ofi,(r, r”), respectively. Thus
to determine the cumulant matrix, only the following twonter need be calculated(r, r”, 7, r), and

ma(r,r1). Other efficient estimates of the fourth order cumulantsaise possible [18].

C. Error Analysis

This section discusses the relationship between the namedamean squared error (NMSE) and the
number of sample points used to estimate the cumulant m&ien estimatéh of the true channeh,
the NMSE, is defined by

I ~ ~

i [nf? |2

where]|| - || refers to the 2-norm.

Proposition: For the case of the Alamouti code with= 2 two transmit and one receive antenna, and a
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h
given channeh = ° , Where|hg| # |hi1|, the NMSE is approximated by

ha

|hol* + 3|ho[*|Pa|* + | |*

NMSE ~ )
B(lho|*> — |h1])?)?

(30)

where B is the number of points used to calculate the cumulant estima

Proof: See Appendix II.

This expression is valid for the estimation scheme usingile@gcumulants, and without channel
averaging, i.e. the channel estimate is obtained from oné/amulant matrix. As shown in Appendix Il,
the restriction thathy| # |h,| is due to an assumption, in the derivation, of distinct eigéres of the
cumulant matrix. For identical channel magnitudes, themiglues are identical (see Appendix I). Since

the channels are modelled as Rayleigh, the event of equaheharagnitudes has zero probability.

V. NUMERICAL EXAMPLES

In this section, the channel estimation algorithm presemteSection Il is tested using simulations. All
examples use BPSK for data modulation. Most examples arel lwasa slow, flat, Rayleigh block fading
channel, i.e., the channel is constant over a block of dadachanges independently from block to block.
An important, and apparently unusual, test presented inidde¥-B is based on a slow time-varying
channel. The performance of the proposed scheme is evdluaieg the normalized mean squared error
and the resulting bit error rate (BER). The BER results are coetp#o that of a clairvoyant receiver

using perfect knowledge of the channel.

A. Block Fading Channel

In the section, the channel to be estimated is held constamteach block of data. We focus on the
important case of the Alamouti code for two transmit and @eeive antenna. All data points in a window
are used to estimate the cumulant matrix. As discussed ino8d¥-A, the data in the first time slot of
a window is assumed known to resolve any ambiguities. Thardlachanges independently from block
to block. The results shown are averaged oM&r Monte Carlo simulations.

We first investigate the NMSE, defined in (29) between the éne estimated channels. The NMSE as
a function of SNR is shown in Figure 1 for window siz&$ 100, 300 and500. As expected, the NMSE

is a decreasing function of SNR. Although it is true that, iadty, cumulant estimates for white Gaussian
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NMSE vs. SNR using n—point cumulant estimates in a time-invariant channel
T T T T T T

T T T
—+ 50-point Cumulant Estimates
—&- 100-point Cumulant Estimates | |
—©— 300-point Cumulant Estimates
—%— 500-point Cumulant Estimates

NMSE

2 4 6 8 10 12 14 16 18 20
SNR

Fig. 1. Time Invariant Channel. NMSE vs. SNR usif@ 100, 300 and 500 point cumulant estimates.

noise are zero and the channel estimates should be ingensitSNR, this occurs when the number of
points used in the cumulant estimates is very large (we nete that4'" order cumulants require a very
large number of samples, of the order of thousands or morghéestimated cumulants to converge to
their true statistics. However, we do not require such aelargmber of samples to get fairly accurate
channel estimates). When using a realistic number of sampbegever, noise affects the accuracy of the
estimation, and the channel estimates are sensitive to SNRreF1 also indicates that, as expected, the
NMSE is a function of window size: in a static environmentragasing the window size will improve
the performance of the algorithm.

The proposition in Section IV-C is verified in Figure 2. Theuiig plots the NMSE of the channel
estimate as a function @B, the number of samples used to estimate the cumulant matnx.channel
estimates in this plot were obtained from only one cumulaatrix; the NMSE performance is thus
expectedly slightly worse than that obtained in Figure 1erghthe channel estimate was obtained by
averaging oveR K estimates fron2 X' cumulant matrices. Because the expression is only validigindt
eigenvalues (which are identical for equivalent channegmitades), it is not accurate when the channel
magnitudes become very close. For this reason, the differbatween the channel magnitudes is restricted

to 0.2 and above. The analytical expression approaches the sedutairve asB increases. This is as
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o Actual and Predicted NMSE vs. N
10 T T T

T
— Actual NMSE ]
O Predicted NMSE | |

107

Normalized Mean Squared Error (NMSE)

1 | 1 |
0 500 1000 1500 2000 2500 3000
N — Number of Points in the Cumulant Estimate

10 !

Fig. 2. Time-Varying Channel. NMSE vs. number of points used in cuntigatimates.

expected, since the approximations used to obtain (30) asedoon a largés.

Channel estimation is one important step towards decodmgréimsmitted data. From a communication
point of view, it is the BER that is finally important. The nexof shown in Fig. 3 demonstrates the
efficacy of the channel estimation in terms of the resultindRBEhe BER is compared to that obtained
by the clairvoyant receiver, which has knowledge of the tla@nnel. As with the NMSE plots, the results
are shown for window sizes0, 100, 300 and 500.

Depending on the number of points used in cumulant estimdtesystem BER, when using estimated
channels, closely tracks that of the clairvoyant receMéth 300 and500-point cumulant estimates result
in almost equivalent BER curves less thanB from the Clairvoyant BER curve. As expected, in block
fading channels, the performance of the algorithm can avimeyimproved by increasing the number of
points used in cumulant estimates.

In Figure 4, we compare our scheme to that presented in [1fgrms of BER. To obtain results for
this algorithm, we use a precoding matrix for BPSK symbbls= diag(1/0.4,1/1.6,0,0. In [14], this
matrix, used for QPSK symbols, is chosen in an ad hoc fashenthus did not optimize this matrix,
but chose a similar one.

The figure demonstrates that our algorithm outperforms therme based on covariance estimates by

2 dB. The improved performance of our cumulant scheme is duédodecreased sensitivity to noise



BER vs. SNR using n—point cumulant estimates in a time-invariant channel

T T T T T T T T
—+— 50-point Cumulant Estimates
—8- 100-point Cumulant Estimates
—©- 300-point Cumulant Estimates
—*—

107 P

500-point Cumulant Estimates
Clairvoyant Receiver
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w
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Fig. 3. Time Invariant Channel. BER vs. SNR usifi@ 100, 300 and 500 point cumulant estimates.

BER vs. SNR using n—point cumulant and covariance estimates in a time—invariant channel

T T T T T T T T T
1 —— 100-point Covariance Estimates
10 3 —B- 100-point Cumulant Estimates |7
—— 300-point Covariance Estimates |{
-6~ 300-point Cumulant Estimates  |]
—— Clairvoyant Receiver J
107°F
e
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10°F
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x
1]
107k
| | I 1 1 1 | I 1 ]
2 4 6 8 10 12 14 16 18 20
SNR

Fig. 4. Time Invariant Channel. BER vs. SNR usih@ and 300 point cumulant estimates.

14
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NMSE vs. SNR using n—point cumulant and covariance estimates in a time-invariant channel
10 T T T T T

T T T T

—— 100-point Covariance Estimates |
—8— 100-point Cumulant Estimates |
—*— 300-point Covariance Estimates |4
—©— 300-point Cumulant Estimates |4

NMSE

0 2 4 6 8 10 12 14 16 18 20
SNR

Fig. 5. Time Invariant Channel. BER vs. SNR usih@) and 300 point cumulant estimates.

of higher order cumulants, and the elimination of the rezgmient for data precoding. This improved

performance is obtained, of course, at the price of inckasenplexity.

B. Time-Varying Channel

The efficacy of the proposed channel estimation algorithnowg examined when used in a time-varying
fading environment. The example is based on two transmérenats and the Alamouti STBC. The data is
sampled at a rate of 20 MHz and is modulated using a carriér avitequency of 5.5 GHz. The mobile is
assumed to be moving at 100 km/h. Clearly, such channels greaofical importance and better reflect
the real world than the block fading model used in Section.V-A

For each Monte Carlo rur2,x 10° bits are corrupted by the time varying channel. The chanstehate
for a particular window of data is obtained from the cumulestimate resulting from that same window.
Channel estimates in one window are fixed, but change fromaminid window. To correctly identify
the channels, a pilot symbol is inserted at the beginningvefyewindow. We focus here on the BER,
which is more meaningful in terms of practical implicatioi$e results are averaged ov&0 Monte
Carlo runs.

The BER for window sizes 050, 100, 300 and 500 are shown in Fig. 6. Unlike in the block fading

example, the estimates obtained usiiy-point windows outperform those obtained usib@)-point
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BER vs. SNR using n—point cumulant estimates in a time-varying channel
T T T T T T T T

—t— 50-point Cumulant Estimates
10'F s —8- 100-point Cumulant Estimates : 4

[ S —©— 300-point Cumulant Estimates ]
—— 500-point Cumulant Estimates
—— Clairvoyant Receiver

10

BER

107

10" E R : 3

L L L I I I I ! I
2 4 6 8 10 12 14 16 18 20
SNR

Fig. 6. Time-Varying Channel. BER vs. SNR usif@, 100, 300 and 500 point cumulant estimates.

windows at higher SNR. This occurs because when the chanaefjeb over time, the cumulant estimate
does not necessarily become more accurate for longer inphésvariation in signal statistics therefore
imposes a limit on the maximum number of points that can bel usecumulant estimates. The faster
these channel variations, the fewer the points that can . us
In Figure 7, we compare BER performance of our scheme to thabfi{14] in time-varying channels.

This comparison is important, since covariance estimatesassumed to require less data than cumulant
estimates; it is thus conceivable that the comparison colb&hge in time-varying channels. The figure
demonstrates, however, that the number of points requiredttimate cumulants and then to obtain accurate
channel estimates, are sufficiently low to not be affectedhieyvarying channel. The BER superiority of

our proposed scheme over the scheme in [14] holds in thisasicen

VI. CONCLUSIONS

This paper presents a blind channel estimation algorithnofthogonal space-time block coded data
in the important MISO situation, i.e., in systems using oalgingle receive antenna. It is shown that the
algorithm outperforms in terms of BER the only other existaigorithm applicable to this scenario. A
significant cost of the algorithm is the complexity involMedestimating the required cumulants. Cumulant

estimates are generally assumed to be impractical singeeheire too many samples to be effective. Very
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BER vs. SNR using n—point cumulant and covariance estimates in a time—varying channel
T T T T T

T T T T

—+— 100-point Covariance Estimates

107 3 —8- 100-point Cumulant Estimates H
[ —*— 300-point Covariance Estimates |

-6~ 300-point Cumulant Estimates ~ |]

—— Clairvoyant Receiver

-2

BER

10

10 " F

[ | | I 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
SNR

Fig. 7. Time-Varying Channel. BER vs. SNR usifg@, 100, 300 and 500 point cumulant estimates.

good estimation results, however, are obtained when ussnigva as100 — 300 points in the cumulant
estimates. The numerical simulations prove that even igushe the sample number of samples, the
cumulant-based scheme presented here outperforms theysigvproposed scheme based on covariance

estimates.

APPENDIXI

CHANNEL MAGNITUDES

The channel magnitudes can be obtained from the non-zeem&ilyies\; as follows:

A; = yllhl[% 5, (31)

= Yal s [*| [ o[

where f; represents the thg" non-zero diagonal entry of matri®, defined in (20) and (21) for complex

and real data, respectivelijh||?. is found by summing the non-zero eigenvalugsof each cumulant
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matrix, Cl/':

L L
DoN=D 0 (rlhlPlhllz) = avllhlf. (32)

[ — @)
5742]':1)\]'

Here,« is a parameter dependent on the constellatios: 2 for real andn = 4 for complex constellations.

APPENDIX I

NMSE ANALYSIS

In this appendix we show that for the Alamouti STBC with oneeree antenna and for a particular
channel pair, the NMSE can be approximated by (30). We asshwere a high SNR region, and thus
channel estimation errors are due only to estimation emaes to a finite number of samples, and are
insensitive to noise. In this section, we do not separategakand imaginary parts of the received signal,

and use the model

r hys1 + has
r L 151 252 tw, (34)
i T9 i —h13§ + hQST
T1 S1
=1 = = H., +w, (35)
i 5 | Sy
where
h h
H = | @ 7. (36)
hy —hi

Without loss of generality, we define, andv, as the normalized eigenvectors of the cumulant matrix
C,, such thatvi’v, = vi’v, = 1. v; andv, correspond to the scaled columns of the channel m&irix

such that

1 h(] 1 hl

V] = s Vi =
Vihol? +[maf? | ps Vihol* + [haf? | —ps

(37)
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Defining v, andv, as the eigenvectors of the estimated cumulant mafvjlx,andévj = v, —Vv; as the
error between them, the NMSE of the estimated channels istlgx®’0,, = 6//6,,. Because the two are
equivalent, we will focus on the error in the first eigenvectd J,, .

In [19], Yuen and Friedlander derive the covariance matfithe error between the estimated and true
eigenvectors of a cumulant matrix. The expression is valicaises where the cumulant matrix has distinct

values. Applied to the problem in this work, the expressiendmes

2 2 2 2
1 * * ~ A
Opt b0y = o — ) DYDY 0501002, E{(Cs — Ca)aras(Ca — Ca)pry,  (38)
a1=1az2=1b1=1bo=1

1

where the quantity; ; is defined as thg'" element of vector, and (C, — C4)ij is theij*" element of
(C, — Cy). C4 is as defined in (17).

In [20], Porat and Friedlander derive expressions for theagance matrix of fourth-order sample
cumulants of zero-mean and symmetrically distributed agnThe analysis in [20] assumes that a large
number of data points3, are used in the estimation of the cumulant matrix. In thiglysis, the input
to the forth-order cumulants is the received signal in (This signalr is both zero-mean and symmetric
for both BPSK and QAM input signals, and thus the expression derived in [20] is valid. It is répda

here for convenience.

B x E{lcy(ky, ko, 17,15) — é4(kq, ko, 17, 13)] - [ca(my, ma, n],ny) — éy(mq, ma, ny, n3)|}
~ ug(ky, ko, my, mo, 17,15, 15, n3) (39)
= Yo Yo (s, ) (ks ko, 15,15, 15)
- Z?:l 2]2‘:1 pr2 (k3 l;-j) pe(ma, ma, ki, ny, n3, l}k)
S Y Y pa(may ) pia(ks—i 15 ) gk, my, 12, m)
— [lua(kr, k2, 17, 15) = 2ua(kn, 1) ua(ke, 13) — 2ug(ky, 15) ua(ka, 17)]
[ug(my, mo, ni,ng) — 2ua(my, ny) us(me, i) — 2us(my, ni) us(me, ni)l| .
To determine the expression in (38), thé corresponding cumulant covariances must be determined

using (39). This can be simplified using the fact th@t, — (54) is Hermitian, and thus, for example
(Ci— Ca)11(Ca — Ca)jy = (Ca— Ca)aa (Ca — Co)7y. (40)

The calculations for the necessary cumulant covarianaegealious but straightforward, and the results
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are given below:

E{(Cs = Ca)n(Ca — Ca)u} =13 (hghy" + h'hy + 18 ho[*|hal* + 8[ho[*|ha[° + 8[ho[*| 1 [?)  (41)
E{(Ci— C1)22(Cs — Ca)ao} =75 (hghi* + hg'hi + 2lho|*[ha ") (42)
E{(Cy — C)11(Cs — Ca)ra} =73 (=hohi® + hi®h} — 3hoha | ho|* | |

+ 3hohy|ho*[ha|* + 2hohy R |® — 2hohy|ha|®) (43)
E{(Cy = C)1a(Cs — Ca)fo} =73 (=hohi" — hi'hi + 3lho|*|ha]® + 3[ho* |l |® + 2|ho| | n|*)  (44)
E{(Cis— Ca)n1(Cy — Ca)aa} =75 (—hghi* — by — 2|hol*| 1 |*) (45)
E{(Cy — C)12(Cs — Ca)ra} =73 (=6hghilhol*[hn[* — 2h5h3 (|hol* + [ha]") + hGhi® + h*hS)  (46)

E{(Cy — Cy)aa(Cy — Cy)ia} =3 (AR — hi*hi — hoha|hol?|ha|[* + hoha|hol*|ha ) (47)

Using (41) - (47), the expression for the eigenvalues of timaudant matrix given in (32) and using (37)

are substituted in (38), results in

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

|hol* + 3|ho|?|Pa|” + |ha|*

NMSE =
B([hol? = [])?)?

(48)
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