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Optimal Relay-Subset Selection and
Time-Allocation in Decode-and-Forward

Cooperative Networks
Elzbieta Beres and Raviraj Adve, Senior Member, IEEE

Abstract— We consider a half-duplex mesh network wherein
a single source communicates to a destination with the help of
N potential decode-and-forward relays. We develop the optimal
selection of a relaying subset and allocation of transmission time.
This resource allocation is found by maximizing over the rates
achievable for each possible subset of active relays; in turn, the
optimal time allocation for each subset is obtained by solving a
linear system of equations. An assumed relay numbering imposes
a causality constraint. We also present a recursive algorithm to
solve the optimization problem which reduces the computational
load of finding the required matrix inverses and the number
of required iterations. We show that (i) optimizing transmission
time significantly improves achievable rate; (ii) optimizing over
the channel resources ensures that more relays are active over
a larger range of signal-to-noise ratios; (iii) linear network
constellations significantly outperform grid constellations; (iv) the
achievable rate is robust to node ordering.

I. INTRODUCTION

COOPERATION has become a popular technique to im-
plement spatial diversity in the absence of multiple

antennas at receiving and transmitting nodes [1]–[3]. Of spe-
cific interest here, resource allocation in cooperative networks
has recently become an active research area and has been
investigated under many scenarios and metrics. In this paper,
we address the problem of resource allocation, in terms of
transmission-time in multiple-relay networks with arbitrary
connections. We describe the contributions of the paper in
detail after a brief review of the pertinent literature.

For the single-relay case, several works have dealt with var-
ious aspects of resource allocation, in terms of power and/or
bandwidth and time. Yao et al. determine the optimal power
and time allocation for relayed transmissions specifically in
the low-power regime [4]. Larsson and Cao present various
strategies for allocating power and channel resources under
energy constraints [5]. For the channel resource allocation
problem, however, the authors consider selection combining
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only and do not address the scenario of joint decoding of
the source and relay signals. The works in [6]–[8] address
the problem of power and channel resource allocation under
sum average power constraints. In [9], the authors obtain the
optimal time and bandwidth allocation, with power control, us-
ing instantaneous and average channel conditions is obtained.
Channel resource allocation under fixed power is developed
in [10].

In networks with multiple relays, the available literature
can be classified into two groups: parallel-relay networks
where relays do not communicate with one another and
arbitrarily-connected networks without this restriction on re-
lay communication. For the former, resource allocation has
been addressed in [11]–[14]. Ibrahimi and Liang develop
the optimal power allocation for a multi-relay cooperative
orthogonal frequency division multiple access amplify-and-
forward (AF) system [11]. By maximizing the channel mutual
information, Anghel et al. find the optimal power allocation
for multiple parallel relays in AF networks [12], [13]. A more
general solution is given in [14] where the authors develop the
optimal power and channel resource allocation for a parallel-
relay network with individual node-power constraints.

To the best of our knowledge, our problem of channel
resource allocation for arbitrarily-connected networks and
dedicated multiple access has not been addressed in the
literature. In general, works in the area of multi-relay systems
with arbitrary links neglect the bandwidth penalty arising
from multiple hops by assuming either full-duplex nodes, a
bandwidth-unconstrained system, or the availability of channel
phase information at the transmitter [15]–[27].

These assumptions, however, are not realistic for practical
wireless networks, where nodes are likely to be half-duplex,
phase information is very difficult to obtain at the transmitter,
and bandwidth is a scarce resource. To fill this void, in
this paper we investigate resource allocation in a bandwidth-
constrained, cooperative, decode-and-forward (DF), wireless
network. We consider the most general setting where multiple
relays cooperate with the source and with each other to trans-
mit information between source and destination. We address
the joint problem of optimal selection of a relaying subset
and allocation of time resources to the selected relays. The
resource allocation is framed in the context of mesh networks,
thereby removing power allocation from the optimization.
Resource allocation is, therefore, in terms of transmission
time only; allowing only orthogonal transmissions further
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simplifies the problem. This also reduces node-complexity,
allowing nodes to implement resource allocation simply by
switching on and off. Our solution provides an upper bound
on performance in a mesh network with orthogonal signaling.

To the best of our knowledge, no other work solves for time-
allocation in an arbitrarily-connected cooperative network. The
solution can be interpreted as a generalization of the oppor-
tunistic protocol of [6], where the relay is active only when it
increases the outage rate. The resource allocation solution is
a generalization, to networks of arbitrary size, of the solution
in [10] which considers a three-node DF network under fixed
power. Our problem and solution can also be interpreted as
a generalization of single-node selection [3], [28]–[30] with
relaxed transmission constraints, where multiple relays may be
selected, transmission can occur on multiple time-slots, uses
independent codebooks and relays can communicate with one
another. A key contribution here is achieving this efficiently.

This paper is structured as follows. Section II describes
the system model. In Section III and IV, respectively, we
develop the proposed resource allocation scheme and present a
significantly simplified recursive implementation. Simulation
results are presented in Section V before conclusions in
Section VI.

II. SYSTEM MODEL

The system under consideration is a static, half-duplex,
mesh network comprising a source node, a destination node
and N potential relays. The inter-node channel powers are
denoted as |aij |2, where i and j represent the source node
s, relay nodes rk, k = 1 . . .N , or the destination node d.
The channel powers are assumed independent of each other
and are modeled as flat, slowly-fading and exponential with
parameter λij . λij is inversely proportional to the average
channel power and is a function of inter-node distance, dij ,
through the path loss exponent pa, e.g., 1/λij = (1/dpa

ij ). The
fading model does not include shadowing, although this can
easily be incorporated on an instantaneous basis. Note that this
model is for simulations only and the theory does not assume
a specific model.

If transmitting, each node in the network transmits is allo-
cated its own time slot, thereby eliminating interference. Our
resource allocation scheme assumes knowledge of all channel
powers (although not channel phases). This is justified by the
fact that the nodes are static and the channels gains, if not
phases, are assumed to vary extremely slowly with time. These
channel gains must be transmitted to a central processing
node; however, how this information is communicated and
the impact of the associated overhead are beyond the scope
of this paper.

The relays are assumed to be numbered in some predeter-
mined order such that relay rj transmits after ri if j > i; e.g.,
the relays may be in a linear constellation as shown in Fig. 1;
however the simulation results will show that the performance
is robust to node ordering. DF cooperation uses independent
codebooks, which allows for the optimization of transmission
time (see [31] for an overview of current DF coding methods).
Note that repetition coding does not allow for this form of
resource allocation.

With these assumptions, the cooperation framework for the
N -relay fully-connected network is as follows: the half-duplex
constraint precludes the relays from transmitting and receiving
simultaneously on the same channel and the unavailability of
forward-channel phase information at transmitting nodes pre-
cludes simultaneous transmissions. The transmission between
the source and destination is thus divided into N+1 time-slots,
of normalized duration t0, t1, . . ., tN , with t0+t1+. . .+tN =
1. In the first time-slot, of duration t0, the source transmits its
information to all the nodes. The first relay, r1, decodes this
information and the remaining N−1 relays and the destination
store the information for future processing. In the second slot,
of duration t1, the first relay re-transmits the information
using an independent codebook; the second relay decodes
the information using the signals from the first relay and the
source, and the remaining N − 2 relays and the destination
store the information for further processing. In general, each
relay rk decodes information from the source and from the
previous relays r1 . . . rk−1 using the signals received up to
and including time-slot tk−1. This process continues until all
relays have transmitted and the destination attempts to decode
the information.

Assuming that each node uses power P and W Hz per
transmission (noting that although each node transmits for a
different length of time, the symbol durations and thus the
corresponding bandwidth used by each node is the same), the
signal-to-noise ratio (SNR) at node j resulting from trans-
mission from node i can be written as SNRij = P

N0W |aij |2,
where N0 is the noise power spectral density. In the rest of
the paper, we use the notation Lij to denote log2(1+SNRij),
the capacity of the corresponding channel.

III. OPTIMAL RESOURCE ALLOCATION AND RELAY

SELECTION

In this section, we develop and solve the problem of
joint resource allocation and relay selection for the network
discussed above. Essentially, we obtain the optimum values
of ti, i = 0 . . .N , such that the achievable rate between
source and destination is maximized. We begin here with
a fully-connected network, where each node is within the
communication range of all other nodes.

A. Fully Connected Network

For a fully connected network, assuming that each relay
is active, the mutual information at each relay, and the
destination, can be written as

I1(t0) = t0Lsr1 , (1)

Ik(t0, t1, t2, . . . , tk−1) = t0Lsrk
+ . . . + tk−1Lrk−1rk

, (2)

ID(t0, . . . , tk, . . . , tN−1, tN ) = t0Lsd + . . . + tNLrNd, (3)

where Ik and ID denote the mutual information at relay rk

and the destination, respectively.
With all N relays cooperating, the achievable rate under

orthogonal transmissions is the minimum of the mutual infor-
mation obtained at each relay node. The maximum of these
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achievable rates is:

RN = max
t0,...,tN

min{I1(t0), I2(t0, t1), . . . , Ik(t0, . . . , tk−1),

. . . , IN (t0, . . . , tN−1), ID(t0, . . . , tN )}, (4)

such that ti ≥ 0, ∀i,

t0 + t1 + . . . tN ≤ 1.

The above expression is a straightforward generalization of the
cut-set bound for the single-relay network. This generalization
maintains orthogonal transmissions for each relay, a model
which represents practical networks with simple nodes that
cannot implement complex interference cancellation. We use
this model as the basis of the optimization in the rest of this
paper. We note, however, that because each relay transmits
using an orthogonal channel, RN is clearly not the channel
capacity. For literature on the channel capacity of arbitrarily-
connected networks, we direct the reader to [32]–[37] for full-
duplex relays, and [38] for half-duplex relays.

For reasons that will soon be clear, consider the case with
relay rk removed from the network. The maximum achievable
rate Rk

N−1 becomes

Rk
N−1 = max

t0,...,tk−1,tk+1,...tN

min

{I1(t0) . . . , Ik−1(t0, . . . , tk−2), Ik+1(t0, . . . , tk−1),
. . . , ID(t0, . . . , tk−1, tk+1, . . . , tN )}, (5)

such that ti ≥ 0, ∀i,

t0 + . . . tk−1 + tk+1 + . . . tN ≤ 1.

Removing relay rk is thus equivalent to removing tk and
Ik from the optimization. [The subscript in Rk

N−1 denotes
the maximum number of potentially active relays and the
superscript denotes the relay(s) removed]. The maximum rate
at which the source can transmit to the destination can thus
be written as the maximum of the rate obtained by using all
N relays and the rate obtained by successively removing each
relay:

RT = max{RN , R1
N−1, R

2
N−1, . . . , R

N
N−1}. (6)

If RT = Rk
N−1, the maximum rate can be obtained by

iterating through (4) and (5), successively removing a relay
each step. Note that obtaining Rk

N−1 includes the cases where
two or more relays are removed. In theory, therefore, all 2N

possible cases must be checked. Since, even with reasonably
low choices of N , the associated computation load would be
impossible, in Section IV we develop an implementation with
reduced complexity.

Let t∗ = (t∗0, t
∗
1, . . . , t

∗
N )T denote the resource allocation

that solves the optimization problem. We begin an outline of
the solution to the optimization problem in (4), (5) and (6)
with the following proposition.

Proposition 1: With a maximum number of potential relays
N , the maximum achievable rate RT = RN only if t∗k �= 0,
∀k. Otherwise, if t∗k = 0, RT = Rk

N−1.

Proof: With exactly N active relays, and with k < n < N ,
the resulting rate can be written explicitly as:

RN = max
t0,...,tN

min {(t0Lsr1), (t0Lsr2 + t1Lr1r2), . . . ,

(t0Lsrk
+

k−1∑
i=1

tiLrirk
), (t0Lsrn +

n−1∑
i=1

tiLrirk
), . . . ,

(t0Lsd +
N∑

i=1

tiLrid)

}
. (7)

Setting tk = 0 gives (8)–(11) on next page, since (10) has
one fewer term in the minimization than (9). �

To solve the optimization problem of (4) we thus require
only the critical points for which t∗k �= 0, ∀k. In the following
proposition, we show that for each RN , i.e., given a set of
potential relays, only one solution satisfies t∗k �= 0, ∀k.

Proposition 2: The unique solution to the minimization
problem in (4) for which t∗k �= 0, ∀k is given by I1(t0) =
I2(t0, t1) = . . . = IN (t0, . . . , tN−1) = ID(t0, t1, . . . , tN).

Proof: We consider all possible critical points obtained from
the optimization in (4). The points are obtained either by
maximizing each individual term in (4) or at the intersection
of all possible combinations of the terms in (4). We show
that the only solution leading to non-zero solutions is at the
intersection of all terms is in (4).

The critical points for the optimization problem can be
obtained by solving the following:

1) Maximize the individual terms in (4) except
ID(t0, . . . , tN ):

∀k ≤ N, max
t0,...,tk−1

Ik(t0, . . . tk−1)

s.t. t0 + . . . + tk−1 ≤ 1. (12)

Because the optimization is not over tm, ∀k ≤ m ≤ N ,
the solution to this problem clearly has all tm = 0, ∀k ≤
m ≤ N , and thus cannot be a solution to the overall
optimization problem.

2) Maximize ID(t0, . . . , tN ):

max
t0,...,tN

ID(t0, . . . tN )

= max
t0,...,tN

{t0Lsd + . . . + tNLrNrd
},

s.t. t0 + . . . + tN ≤ 1. (13)

In this case, all variables are included in the opti-
mization. It is easy to show, however, that this func-
tion is maximized by selecting the largest L value,
i.e., evaluating the Kuhn-Tucker conditions leads to
a solution of the form tm = 1, tk = 0, ∀k �= m,
where m = argmaxk{Lsd, Lr1d, . . . , Lrkd, . . . , LrN d}.
Therefore, this solution is also not a solution to the
overall optimization problem.

3) Maximize the function that results from the intersection
of all possible combinations of the functions Ik. Let
M denote all possible subsets of {1 . . .N}. M then
contains 2N such subsets, i.e., |M| = 2N . Consider
one such subset δk = (m1, m2, . . . , mk), with m1 <
m2 < mk. One critical point then is

max
t0,...,tmk−1

Imk
(t0, . . . tmk−1) (14)

such that

Im1(t0, . . . tm1−1) = . . . = Imk
(t0, . . . tmk−1). (15)

This optimization then gets repeated for all sets δk ∈
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RN = max
t0,...,tk−1,tk+1,...tN

min

{(t0Lsr1), (t0Lsr2 + t1Lr1r2), . . . , (t0Lsrk
+

k−1∑
i=1

tiLrirk
), (8)

(
t0Lsrn +

k−1∑
i=1

tiLrirk
) +

n−1∑
i=k+1

tiLrirn

)
, . . . ,

(
t0Lsd +

k−1∑
i=1

tiLrid) +
N∑

i=k+1

tiLrid

)}
(9)

≤ max
t0,...,tk−1,tk+1,...tN

min {(t0Lsr1), (t0Lsr2 + t1Lr1r2), . . . ,

(t0Lsrn + . . . + tk−1Lrk−1rn + tk+1Lrk+1rn . . . tn−1Lrn−1rn), . . . ,
(t0Lsd + . . . + tk−1Lrk−1rd

+ tk+1Lrk+1rd
+ . . . tNLrNrd

)} (10)

= Rk−1
N−1, (11)

M. In all but one combination, this optimization is not
over all the variables {t0, . . . tN}. As in point (1), this
maximization also leads to tk = 0 for some value of k.

4) Maximize the intersection of all terms in (4):

I1(t0) = I2(t0, t1) . . . = IN (t0, . . . , tN−1)
= ID(t0, . . . , tN ). (16)

This is the only case that leads to tk �= 0, ∀k = 0 . . .N .
�

Essentially, this proposition shows that if all N relays are to
contribute, all terms in the minimization in (4) must be equal.
This proposition applies to any value of N . Therefore, if the
optimal solution has k < N relays, an expression like that
in (4) can be written for those k relays.

B. Optimal Solution

The linear system of equations in (16) has a simple solution.
Setting each equation to a constant, solving for the vector of
unknowns t = [t0, t1 . . . tN ]T and normalizing, we obtain

LN+1tN+1 = 1N+1,

⇒ tN+1 =
L−1

N+11N+1

||L−1
N+11N+1||1

=
L−1

N+11N+1

1T
N+1L

−1
N+11N+1

, (17)

where ||v||1 denotes the sum of the elements of v, i.e., the
1-norm, 1N+1 is the length-(N +1) vector of ones and LN+1

is the (N + 1) × (N + 1) rate matrix

LN+1 =

⎡
⎢⎢⎢⎢⎢⎣

Lsr1 0 0 . . . 0
Lsr2 Lr1r2 0 . . . 0
Lsr3 Lr1r3 Lr2r3 . . . 0

...
...

...
. . . 0

Lsd Lr1d Lr2d . . . LrN d

⎤
⎥⎥⎥⎥⎥⎦ . (18)

The solution in (17) does not guarantee that the constraint tk >
0 ∀k = 0 . . .N is satisfied. To ensure that only solutions
for which this constraint is satisfied are considered, we again
consider the set M. Each entry in the set corresponds to a rate
matrix, Lm, similar to that in (18), formed using the relays in

that entry of the set. Furthermore, let |m| denote the size of
the rate matrix Lm. A relay set and its corresponding solution,
denoted as tm, is included as a potential solution if tm satisfies
the constraint

tm > 0|m|, (19)

where 0|m| is the all-zero vector of size |m| and the inequality
operates on an element-by-element basis. Let the set K form
the subset of M that comprises all potential solutions. Let Lk,
t∗k and |k| denote the rate matrix, its corresponding solution
and size, respectively, for each entry of the set K. Note that
the number of active relays being considered in each entry is
|k| − 1. Finally, the optimum solution, t∗, can be obtained by
solving (17) for all possible combinations of active relays in
the set K i.e.,

t∗ = max
k

L−1
k 1|k|

1T
|k|L

−1
k 1|k|

, ∀k = 1, . . . , |K|. (20)

Assuming that entry k∗ corresponds to t∗, the maximum
achievable rate vector can thus be written as

Lk∗t∗ = Lk∗
L−1

k∗ 1|k∗|
1T
|k∗|L

−1
k∗ 1|k∗|

=
1|k∗|

1T
|k∗|L

−1
k∗ 1|k∗|

, (21)

and the maximum achievable rate under our model, R∗, is

R∗ =
1

1T
|k∗|L

−1
k∗ 1|k∗|

, (22)

Note that the solution described above is equivalent to the
iterative maximization in (6), and that removing a relay rk

translates to removing the kth row and (k+1)th column from
the rate matrix in (18). Removing the first relay, for example,
reduces the rate matrix in (18) to

LN =

⎡
⎢⎢⎢⎣

Lsr2 0 . . . 0
Lsr3 Lr2r3 . . . 0

...
...

. . . 0
Lsd Lr2d . . . LrNd

⎤
⎥⎥⎥⎦ . (23)
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Fig. 1. Location of the relays with respect to the source and destination.

Since |M| = 2N , in theory 2N possible solutions must be
tested to find the global optimum.

C. Numbering

In Section III-A, the solution provided to the optimiza-
tion problem assumes a predetermined ordering, e.g., as in
Fig. 1. The numbering of the relay nodes impacts perfor-
mance through causality: relay rk decodes information from
relay rk−1, but not vice-versa. A complete solution to the
optimization problem must therefore take into account an
optimal numbering scheme. In the worst case (in terms of
computational power), an optimal solution can be obtained for
a specific numbering scheme, and the truly optimal solution
can be maximized over all possible numbering schemes.

Clearly, such an approach is impractical. Although a search
for an optimal or effective sub-optimal solution is beyond the
scope of this paper, we study the effects of numbering on the
solution and resulting rate by considering some numbering
schemes based on heuristics. We consider two approaches:
numbering based on average channel conditions, and number-
ing based on instantaneous channel conditions.

1) Numbering Based on Average Channel Conditions:
In the case of the linear network in Fig. 1, the numbering
is trivial: node numbers increase away from the source and
towards the destination. In the case of square network with
nodes arranged in a grid, we consider two numberings which
we refer to as Average Descending Numbering and Average
Linear Numbering, shown in Figs. 2 and 3, respectively, for
a 4 × 4 network.

• Average Descending numbering: node numbers in-
crease towards the destination and downwards,

• Average Linear numbering: node numbers increase
towards the destination but vertical numbering ensures
that nodes closest to each other retain close numbering.

2) Numbering Based on Instantaneous Channel Condi-
tions:

• Instantaneous s − rk numbering : node numbers in-
crease with increasing source-relay channels. The first
node has the best source-relay channel, the second node
has the second-best source-relay channel, etc.

• Instantaneous rk−rm numbering : nodes are numbered
to maximize the channel between adjacent nodes. The
first relay has the best source-relay channel. The sec-
ond relay has the strongest r1-relay channel. Numbers
are assigned in this process to unoccupied relays. This
heuristic is based on the notion that we should maximize
the capacity of each (Rk, Rk+1) hop.

• Random numbering : nodes are numbered randomly.
This case evaluates the worst-case scenario and tests the
robustness of the optimization to numbering.

Fig. 2. Numbering in a square 4 × 4 network in descending order.

Fig. 3. Numbering in a square 4 × 4 network in linear order.

These schemes are evaluated via simulations in Section V. As
we will see, the achievable rate is remarkably robust to the
chosen numbering scheme.

D. Partially Connected Network

In this section we briefly discuss the more practical case of
a partially connected network in which some links between the
nodes in the network are unavailable. This is a generalization
of the fully-connected network discussed in Section III-A.
Such a network is more likely to represent a large scale
network where, in any case, the solution in (20) would be
computationally infeasible.

As an example, consider the two-relay network with the link
between r1 and r2 is removed. The rate matrix thus becomes

L3 =

⎡
⎣ Lsr1 0 0

Lsr2 0 0
Lsd Lr1d Lr2d

⎤
⎦ . (24)

Removing the link thus reduces the rank of this matrix by
one, and the rate matrix is now non-invertible, eliminating the
solution defined by I1 = I2 = I3, where both relays are active.
The optimal solution in this case is thus to select r1, r2, or
not to relay. Note, however, that removing a link does not
automatically lead to a non-invertible rate matrix. Consider,
for example, the three-relay network with the link between r1

and r3 removed. The corresponding rate matrix

L4 =

⎡
⎢⎢⎣

Lsr1 0 0 0
Lsr2 Lr1r2 0 0
Lsr3 0 Lr2r3 0
Lsd Lr1d Lr2d Lr3d

⎤
⎥⎥⎦ (25)

is full-rank and invertible.
The approach to the optimization problem for the case

of the arbitrary connected network is that the same as for
the fully-connected network, with the exception that the rate
matrix LN+1 may not be invertible, in which case the corre-
sponding solution is inadmissable. The remaining steps remain
unchanged.
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IV. IMPLEMENTATION WITH REDUCED COMPLEXITY

The solution to the optimization problem in (4), (5) and (6)
involves checking 2N potential solutions. Although the pro-
cess is conceptually simple, each solution involves the inverse
of a rate matrix. In this section, we show how the optimization
problem in the previous section can be significantly simplified
using a recursive solution. This solution, which exploits the
special structure of the rate matrix, greatly simplifies the
matrix inversion, as well as reduces the number of possible so-
lutions to check. Essentially, while the solution in Section III-
A was a top-down approach, the approach we suggest here is
bottom-up.

Consider a set of p relays, P = {r(1), r(2), . . . , r(p)}, p ≥ 0,
with r(k) < r(k+1), and its corresponding rate matrix LP

p+1,
solution vector tPp+1 and maximum rate (if available) RP .
Note that if p = 0 and the set is empty, the rate matrix
and solution vector are constants, Lsd and 1, respectively.
Denote as P ′ the set P appended with another relay, i.e.,
P ′ = {r(1), r(2), . . . , r(p), r(p+1)} with r(p) < r(p+1). Also,
denote as LP′

p+2, tP
′

p+2, and RP′
the matrix, solution vector

and rate corresponding to set P ′.

Proposition 3: Given
(
LP

p+1

)−1
,
(
LP′

p+2

)−1

can be ob-

tained with computational complexity order of O(p2)
Proof: For p ≥ 0, the rate matrix LP′

p+2 can be written as

LP′
p+2 =

[
LP

p+1(1 : p, 1 : p) 0p×2

F2×p T2

]
, (26)

where LP
p+1(1 : p, 1 : p) denotes the first p rows and columns

of the rate matrix LP
p+1, 0p×2 is a (p×2) matrix of zeros, T2

is a (2 × 2) lower- triangular matrix, and F2×p is a (2 × p)
fully-loaded matrix. Note that LP

p+1(1 : p, 1 : p) is triangular.

Using the inverse of a partitioned matrix [39],
(
LP′

p+2

)−1

is
given by (27) on next page.

Here
(
LP

p+1(1 : p, 1 : p)
)−1

is the inverse of a partition of
the triangular matrix LP

p+1. Using the inverse of a partitioned
matrix one more time, however, it is easy to see that(

LP
p+1(1 : p, 1 : p)

)−1
= (LP

p+1)
−1(1 : p, 1 : p), (28)

and thus (29) (see top of next page), and hence obtaining(
LP′

p+2

)−1

is an O(p2) operation. �
Using this proposition, the solution vector tP

′
p+2 of LP′

p+2

can be obtained from the solution vector tPp+1 of LP
p+1 as:

tP
′

p+2 =

(
LP′

p+2

)−1

1p+2

1T
p+2

(
LP′

p+2

)−1
1p+2

=

⎡
⎣ tPp+1(1 : p)

tP
′

p+2(p + 1)
tP

′
p+2(p + 2)

⎤
⎦ , (30)

where tPp+1(1 : p) represents the first p entries of the solution
vector tPp+1 already-calculated. tP

′
p+2(p + 1) and tP

′
p+2(p + 2)

are the last two entries of the solution vector tP
′

p+2 that remain

to be calculated. RP′
=
[
1T

p+2

(
LP′

p+2

)−1

1p+2

]−1

is the

maximum achievable rate obtained using the set P ′ of relays.
The last two entries of the solution vector tP

′
p+2(p + 1) and

tP
′

p+2(p+2) can be written as (31) (see top of next page). With
a corresponding achievable rate RP′

(see (32) on next page),

where we use
∑

i,j A(i, j) to denote the summation over all
the elements of matrix A.

Using the discussion above, the optimization problem for
a network of N potential relays can be solved recursively as
follows:

1) Determine the set of all potential relay combinations.
Sequence the set as:

M = {(r1), (r1, r2), (r1, r2, r3), . . . (r1, r2, . . . , rN ),
(r1, r3), (r1, r3, r4), . . . , (r1, r3, . . . , rN ),

. . . . . .

(r1, rN ),

(r2), (r2, r3), (r2, r3, r4), . . . (r2, r3, . . . , rN ),
(r2, r4), (r2, r4, r5), . . . , (r2, r4, . . . , rN ),

. . . . . .

(r2, rN ),
. . .

(rN−1, rN )}.
Note that each “row" of M is a subset of relay combina-
tions in which each element is formed from the previous
element by adding a relay. We had used this approach
earlier to form P ′ from P .

2) In each “row", obtain the rate matrix, its respective
optimized time allocation vector and achievable rate
for each element (i.e., relay combination) recursively
using (29), (30), (31) and (32).

3) Check that for each particular set P of p relays, the so-
lution tp and achievable rate Rp satisfies the constraints:

RP ≥ 0, (33)

tPp+1 > 0p+1. (34)

• If both constraints are satisfied, place the solution
in the potential set of valid solutions K, advance
elements and return to step (1).

• If (34) is not satisfied, check which element of
the the allocation vector tp does not satisfy the
constraint.
– If any of the first (p − 1) entries of tp are

less than zero, i.e., tp(1 : p − 1 < 0p−1), this
constraint will not be satisfied for any other relay
combinations in this “row”. Advance rows and
return to item (1).

– If the constraint is not satisfied by either of the
last two items in the solution vector, discard
the solution but check the other elements in the
“row".

4) From the set K, pick the highest achievable rate and its
corresponding time allocation.

The recursive algorithm given above simplifies the optimiza-
tion problem in two ways:

1) It reduces the computation load of determining succes-
sive matrix inverses by writing each matrix inverse as
a function of another, already known, matrix inverse,
and two other matrices obtained through simple matrix
multiplication.
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(
LP′

p+2

)−1

=

[ (
LP

p+1(1 : p, 1 : p)
)−1

0p×2

−T−1
2 F2×p

(
LP

p+1(1 : p, 1 : p)
)−1

T−1
2

]
(27)

(
LP′

p+2

)−1

=
[

(LP
p+1)−1(1 : p, 1 : p) 0p×2

−T−1
2 F2×p(LP

p+1)
−1(1 : p, 1 : p) T−1

2

]
(29)

[
tP

′
p+2(p + 1)

tP
′

p+2(p + 2)

]
= RP′ [ −T−1

2 F2×p

(
LP

p+1

)−1 (1 : p, 1 : p) T−1
2

]
1(p+2)×1, (31)

RP′
=

1

1T
p+2

(
LP′

p+2

)−1
1p+2

=

⎛
⎝∑

ij

(
LP′

p+2

)−1

(i, j)

⎞
⎠

−1

,

=

⎛
⎝∑

i,j

(
LP

p+1

)−1
(i, j) −

∑
i,j

T−1
2 F2×p

(
LP

p+1

)−1
(1 : p, 1 : p)(i, j) +

∑
ij

T−1
2 (i, j)

⎞
⎠

−1

(32)

2) It may eliminate infeasible solutions by discarding re-
lay combinations which do not satisfy constraints. For
example, if the relay combination (r1, r2, r3) does not
satisfy the constraints, the combination (r1, r2, r3, r4)
can be automatically discarded.

A. Complexity and Number of Operations

In this section we calculate this complexity, which also
quantifies the computational savings of the recursive scheme
presented above in Section IV.

The complexity of the recursive scheme is bounded by
complexity of matrix multiplication. The number of operations
(multiplications and additions) required in the product of two
matrices of size (m, n) and (n, p) is 2mpn − mp [40], and
the number of operations required for the product of a matrix
of size (m, n) with a square, size-n diagonal matrix is

m

(
n−1∑
k=0

k +
n∑

k=1

k

)
= mn2. (35)

We now calculate the number of operations required for
each rate matrix of size (q + 1), corresponding to the set Q′

of q relays. The calculation of the matrix fundamental to the
recursive algorithm,

“
LQ′

q+1

”−1

= −T−1
2 F2×(q−1)

“
LQ

q

”−1

(1 : q − 1, 1 : q − 1). (36)

requires a total of 2q2 + 2q + 1 operations, broken down as:
1) −T−1

2 → 5 operations,
2) −T−1

2 F2×(q−1) = A2×(q−1) → 6(q − 1) operations
using 2mpn− mp,

3) A2×(q−1)

(
LQ

q

)−1 (1 : q − 1, 1 : q − 1) → 2(q − 1)2

operations, using (35).

From (32), the number of operations required to calculate RQ′

is q2+2q+4. Using (31), the number of operations required to
update the solution vector is 1+2(q +1) = 2q +3. Summing
the above, we obtain the total number of operations required
in one iteration of the resource allocation algorithm:

Op(q) = (2q2 + 2q + 1) + (q2 + 2q + 4) + (2q + 3)
= 3q2 + 6q + 8. (37)

Note that the complexity order of calculating each rate and
solution vector is O(q2). Without the recursion, this complex-
ity is of order O(q3), resulting from the inverse of the rate
matrix. The recursion thus introduces significant savings in
terms of complexity.

We now calculate the worst-case total number of operations
required by the resource allocation algorithm. In the worst
case, the algorithm cycles through 2N operations consisting
of
(
N
q

)
sets of q relays which require 3q2 +6q +8 operations.

The total worst case number of operations is therefore

N∑
q=0

(
N

q

)
(3q2 + 6q + 8). (38)

This calculation could be rendered more precise if it were pos-
sible to account for the savings obtained in Section IV which
eliminates some infeasible solutions a priori by discarding
relay combinations known to not satisfy the constraints. The
probability of this occurring for particular channel realizations
is unfortunately very difficult to compute, and we thus develop
only the worst-case result in closed form.

V. SIMULATIONS

This section results of simulations testing the resource
allocation scheme discussed in Section III. Two networks
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Fig. 4. Outage rate vs. SNR using 1, . . . 6 potential relays and with resource
allocation.

Fig. 5. Outage rate vs. SNR using 1, . . . 6 potential relays and without
resource allocation.

considered have 1 to 6 relays arranged linearly, and 4 and 9
nodes arranged in a grid. The figure of merit is the achievable
rate Ra with an outage probability of 10−3, i.e., Pr[R∗ <
Ra] = 10−3. A closed form expression for the outage
probability of optimized cooperation is very complicated and
beyond the scope of the paper. The outage probability and rate
are thus obtained numerically.

The relays are equispaced on a line between the source and
destination, as in Fig. 1, and we use an attenuation exponent
of pa = 2.5. This choice is motivated by the application of
static mesh-nodes installed on posts; transmissions between
such nodes should undergo little shadowing and a lower atten-
uation exponent. From 60000 fading realizations we obtain the
cumulative density function of the instantaneous rate FR(r).
The outage rate is the rate for which the probability of outage
is 10−3, i.e., F−1

R (10−3).

Fig. 6. Average number of active relays with 1, . . . 6 potential relays and
with resource allocation.

Fig. 7. Average number of active relays with 1, . . . 6 potential relays and
without resource allocation.

Figs. 4 and 5 plot the outage rate as a function of the average
end-to-end SNR, P

N0W , for optimized and non-optimized co-
operation, respectively. The rate for the optimized cooperation
is obtained from (20). Non-optimized cooperation uses equal
time allocation, i.e., the rate for a particular relay set is simply
the minimum of the mutual information at each node. Non-
optimized cooperation, however, does optimally select relays
by choosing the best, in terms of outage rate, of the 2N

relay combinations. Comparing Fig. 4 and Fig. 5 shows that
optimizing resources increases rates significantly, as expected.
The outage rate increases as a function of nodes available
to relay. We also note the typical phenomenon of decreasing
marginal returns: the gains of adding each additional relay
decreases with increasing number of relays.

Figs. 6 and 7 show the average number of relays that
are active from the set of potential relays for optimized and
non-optimized cooperation as a function of SNR. For each
network size, this number is a decreasing function since,
with increasing SNR, each node can communicate with a
node further away. Interestingly, the number of active relays
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Fig. 8. Outage rate vs. SNR using resource allocation and for 4 and 9 relays
arranged in a grid and in a line.

Fig. 9. Outage rate vs. SNR using resource allocation and for various
numbering schemes for 9 potential nodes arranged in a grid.

decreases much faster for non-optimized as compared to
optimized cooperation, suggesting that optimizing resources
distributes the relaying burden more effectively and equitably.

To test the effect of geometry on the outage rate, we
compare the rates obtained by optimizing resources and the
placing relays on a line, as in Fig. 4, to those obtained
by placing the relays on a regular square grid. We number
the relays in the grid in ascending order downwards and
towards the source; a derivation of the optimal numbering is
beyond the scope of this paper. The results are demonstrated
in Fig. 8, where we place 4 and 9 relays on a 2 × 2 and
3 × 3 square grid. As shown in the figure, the rate for the
linear constellation is significantly higher than that obtained
by the grid constellation, suggesting that the path-loss incurred
by traversing all the nodes laterally results in non-negligible
performance loss.

We evaluate the performance of the numbering schemes

Fig. 10. Average number of active relays using resource allocation and with
various numbering schemes for 9 potential nodes arranged in a grid.

discussed in Section III-C in Fig. 9. The four schemes, includ-
ing two based on average channel conditions and two based
on instantaneous channel conditions, exhibit indistinguishable
performance in terms of rate. There is an expected drop in
rate with random numbering, though, note that this drop is no
more than approximately 0.25 bits/channel use. The algorithm
is thus quite robust to numbering schemes.

Fig. 9 also shows the outage rate for a network with
randomly placed nodes. Here the node locations are chosen
from a uniform distribution over an area equivalent to that of
the square grid. The internode channels are obtained as before.
This example eliminates possible dependencies of the results
obtained earlier on the chosen array geometry. The numbering
here is based on the instantaneous S − Rk channels. In such
a random network, as expected, the available outage rate is
lower than in a square grid network; however, at higher SNR
levels this difference disappears. Again, the significant gains
due to resource allocation are clear.

In Fig. 9 we also compare the effect of numbering when
used without resource allocation, and show only the case of
instantaneous s − rk numbering and random numbering. The
improvement from instantaneous over random numbering in
this case is less than 0.1 bits/channel use. The robustness of
the numbering scheme thus increases by eliminating time opti-
mization. To gain insight into this phenomenon, in Fig. 10 we
plot the average number of active users for the instantaneous
and random numbering schemes with and without resource
allocation.

We first observe that the instantaneous numbering scheme
uses more relays than the random numbering scheme when
resource allocation is used, and that this difference is constant
over the SNR region of interest. Without resource allocation,
on the other hand, the number of relays used when using
instantaneous and random numbering decreases quickly and
is constant for SNR values higher than 10 dB. It is clear from
this figure that the difference in rate performance between
instantaneous and random numbering is an increasing function
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of the number of selected relays. Because so few relays are
selected without resource allocation, the effect of the num-
bering scheme is negligible. The influence of the numbering
scheme increases when time allocation is introduced, increas-
ing the number of relays used for both numbering schemes
and increasing the sensitivity to the numbering scheme. This
sensitivity increases slowly, however, and is negligible for the
various numbering schemes based on heuristics.

VI. CONCLUSIONS

In this paper, we determined the optimal channel resource
allocation, in terms of transmission-time allocation, for the
N -node cooperative diversity, multihop network using DF.
Time-allocation requires use of independent codebooks. For
a particular network, i.e., set of potential relays, the unique
solution for a particular relay numbering scheme is obtained
by taking the inverse of the triangular rate matrix. The optimal
solution overall is found by choosing the network size with
the maximum rate for each possible sub-network. One require-
ment assumed here is that there is an ordering of relays such
that relay rk+1 transmits after relay rk , but not vice-versa.
Not explored here is an optimal ordering of relays using the
channel values; through simulations, however, the optimization
is shown to be robust to the numbering scheme. In the second
phase of the paper, we showed that by exploiting the special
structure of the rate matrix, the optimization can be performed
in a recursive fashion which decreases the computation load of
the rate matrix inverse and the number of required iterations.

Multiple-node selection, a generalization of the single-node
selection in [3], [28]–[30], is inherent to the optimization
strategy. Simulation results show significant gains in achiev-
able rate due to resource allocation, but diminishing marginal
returns as a function of network size. Furthermore, we show
a significant benefit to arranging the nodes in a linear, as
opposed to a grid, constellation.
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