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Abstract 

The need to deal with non-homogeneous clutter has driven much of the recent research in space-time adaptive 
processing (STAP). This paper presents an extension of the low-complexity, sigma-delta (ΣΔ) algorithm incor-
porating the direct data domain (D3) processing. The new algorithm is practical and improves target detection 
in non-homogeneous clutter environments. The algorithm employs a hybrid approach, combining D3 processing 
with the more traditional statistical approach, thereby obtaining advantages of both. In this paper, first, a modi-
fied D3 algorithm, which maximizes signal-to-interference-plus-noise ratio, is presented. Then this D3 algorithm 
is used as an adaptive transformer to create sum (Σ) and difference (Δ) beams. The residual interference after 
the D3 processing is further cancelled by ΣΔ STAP. The proposed hybrid algorithm using D3-ΣΔ STAP is tested 
in non-homogeneous clutter modelled using spherically invariant random variables (SIRV) and artificially in-
jected discrete interferers. Performance of the proposed methods is compared with those of traditional statisti-
cal approaches, illustrating significant benefits of hybrid processing in non-homogeneous scenarios. 

1 Introduction 

In an airborne radar system, ground clutter is the most severe interference and must be suppressed to detect rela-
tively weak moving targets. The ground clutter’s correlated characteristic in the angle-Doppler domain requires 
traditional array signal processing be extended to space time adaptive processing (STAP) [4]. Consider the op-
eration of an airborne phased array radar with N antennas processing M pulses within each coherent processing 
interval (CPI). The STAP algorithm assigns the optimal complex weight to each of the NM degrees-of-freedom 
(DOF) within one range cell at a time. The optimal weight vector is generally found in the minimum mean 
squared error (MMSE) sense assuming Gaussian interference. 
 

It is now well accepted that several fundamental issues make it impossible to implement the theoretically opti-
mal and straightforward algorithm in practical radar systems. An obvious problem with fully adaptive process-
ing is high computation load, O[(MN)3] per range cell; however, more fundamental limitation is the one with 
limited available training samples. The interference covariance matrix is unknown a priori and must be esti-
mated in real-time via training samples, usually obtained from range cells other than the range cell under test. 
Clearly, for the training to be effective, the interference statistics of secondary cell should match that of the test 
cell, i.e., the training data should be target free and homogeneous.  
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 The problem with training arises because the Reed-Mallet-Brennan rule [3] states that a reasonably accurate 
estimate of the interference covariance matrix requires that the number of training samples be at least twice the 
DOF, i.e., estimating the interference covariance matrix requires at least 2NM training samples, which are gen-
erally not available in practice. Furthermore, training samples should be statistically homogeneous, i.e., the 
ground clutter (and hence the ground itself) must be homogeneous over the entire training sample set. Typically 
most environments in which STAP operates are non-homogeneous, for example, due to terrain variations. The 
performance of traditional statistical algorithms using covariance matrices to determine the adaptive weights 
deems to be degraded in non-homogeneous environments. The importance and impact of non-homogeneous 
environments has been discussed in some detail in, for example, [12][19][20] and references therein. 
 

Several recent works have solved the problems with computation load and required training samples via reduced 
DOF schemes [2, 8, 9, 10]. Of particular interests in our work are transform domain approaches wherein adap-
tive processing takes place after transformation to the angle-Doppler space [2, 9, 10]. In the joint domain local-
ized (JDL) algorithm, adaptive processing occurs within a localized processing region (LPR) after transforma-
tion to angle-Doppler space. The LPR comprises ηa angles and ηd Doppler bins (where ηa and ηd are generally 
much smaller than N and M, respectively). In these approaches the angle-Doppler weights are obtained by 

1−=w R s , based on the estimated angle-Doppler interference covariance matrix R~ and the angle-Doppler 

steering vector s~ . The equivalent space-time weight vectors are then given by wTw ~= , where T is the angle-
Doppler transformation matrix. On the other hand, in ΣΔ processing of [8], sum (Σ) and difference (Δ) beams 
are formed and then adaptively combined. In either case, the overall DOF used is significantly reduced with 
attendant reduction in required computation load and training samples.  
 

However, despite the required number of training samples are reduced, the need for homogeneity of training 
samples remains unresolved. The variation of interference within secondary sample support leads to an inaccu-
rate estimate of the interference statistics in the cell under test. To overcome the difficulties, a non-homogeneity 
detector (NHD) is used so as to identify non-homogeneous range cells [21, 22]. Once identified, non-
homogeneous range cells can be removed from the secondary sample set used to estimate interference statistics. 
 

Another cause of non-homogeneous environments is discrete interferers, such as coherent repeat jammers or 
other local interference sources, which exist within the cell under test i.e., the primary range cell.  Since the sec-
ondary samples have no information about these local interferers, traditional statistical algorithms are not able to 
suppress them. In this regard an interesting advance has been the development of the direct data domain (D3) 
algorithm that can handle discrete interferers in the primary range cell [13]. The approach is to adaptively mini-
mize the interference power while maintaining array gain to the direction of the signal. Not having to estimate 
covariance matrices eliminates the sample support problem and hence the D3 algorithm is particularly effective 
against non-homogeneous interference. However, ignorance of correlation between range cells lets D3 ap-
proaches not as effective against correlated interference.  
 

In [11], a two-stage hybrid algorithm was proposed, combining the D3 algorithm with traditional JDL processing 
to achieve the benefits of both. This hybrid approach basically employs the JDL framework and uses the D3 
weight as a first-stage filter to suppress discrete interferers present in the range cell under test. This first stage 
serves as an adaptive transformer from the space-time to angle-Doppler domain replacing the steering vector 
based non-adaptive transformer used in the original JDL algorithm. The hybrid algorithm played a crucial role 
in the use of knowledge based STAP (KB-STAP) wherein the adaptive algorithm is chosen to best match the 
interference scenario at hand [12].  
 

This paper addresses two issues raised by the two-stage hybrid algorithm as currently available in [11]. In [11], 
the first D3 stage is based on the maximization of the difference between terms related to the power of a target 
and interference. Maximizing this difference leads to unstable solutions requiring a good choice of the emphasis 
parameter weighing one term versus the other via trial and error. However, it is difficult to select an appropriate 



 3

parameter because the performance of the algorithm is highly sensitive to a small variation of the parameter 
value. Here the D3 algorithm is modified to remove the emphasis parameter while maintaining the original 
framework. The new algorithm is reformulated to maximize the signal to interference plus noise ratio (SINR) 
employing the forward smoothing technique [26] as well to make the method more reliable. Furthermore we 
adopt a projection-based method [23, 24] for the D3 algorithm to alleviate signal cancellation under calibration 
error. 
 

Another issue of the hybrid algorithm in [11] is that of computation load. When ηa angle bins and ηd Doppler 
bins in the localized processing region (LPR) are chosen for the second stage, the D3 algorithm must be exe-
cuted ηaηd times at each range cell while the original JDL uses predetermined non adaptive steering vectors. 
Therefore, with the hybrid algorithm the reduction of the DOF has more impact on the total computation load 
compared to the non-hybrid algorithm. In [12], this problem is addressed in a knowledge based approach by 
using a JDL-based non-homogeneity detector (NHD) and applying the hybrid algorithm only for those range 
cells declared non-homogeneous.  
 

While the JDL algorithm reduces the degrees of freedom from NM to ηaηd which is usually a much smaller 
number, an even more efficient algorithm is the ΣΔ algorithm [8]. The ΣΔ algorithm was first developed in the 
context of adding STAP capability to systems based on analog sum and difference beams. However, this ap-
proach can also be employed for systems using digital beamforming. One of main contributions of this paper is 
the ΣΔ based hybrid algorithm, where the ΣΔ strategy is applied to Doppler as well as angle domain. A crucial 
step is a new development of a D3 version of the difference or Δ beam. The overall approach combines the bene-
fits of D3 and statistical processing while being both stable and efficient.  
 

This paper is organized as follows. In Section 2, a modified D3 algorithm is introduced. An extension to the ΣΔ 
based hybrid algorithm is given in Section 3, and combined-STAP using two stage hybrid algorithms and NHD 
is summarized in Section 4. Numerical results illustrating the efficacy of the proposed ΣΔ based hybrid ap-
proaches are presented in Section 5. Finally, Section 6 presents some conclusions and suggestions for future 
directions.  

2 Direct data domain (D3 ) algorithm 

In [13] an algorithm that obtains adaptive weights is developed, in the least squares sense, for signals impinging 
from a fixed look-direction. This method minimizes the error between the received voltages (signal plus noise) 
and a signal from the look angle. This approach does not employ data from outside the radar range cell being 
evaluated, i.e., this method does not require secondary data.  This makes the algorithm an attractive alternative 
to traditional statistical processing in the presence of non-homogeneous clutter. The original algorithm in [13] 
focuses on one-dimensional spatial adaptivity. This work has later been extended to two-dimensional space-time 
processing in [11] where the authors maximize the difference between the signal and interference power after 
adaptive processing. The most serious drawback is that these two terms are balanced via the so-called emphasis 
parameter that is picked in either an ad hoc manner or via exhaustive search. Since this algorithm forms a basis 
of our D3 processing, we briefly describe it below before proposing the new algorithm.  
 

Consider a linear array with N antennas uniformly spaced with the half wavelength separation, where M pulses 
are transmitted with a PRF of fr within a CPI. For a target direction of φt, with the angle referred to broadside, 
the signal advances from one element to the next by the phase factor zs=exp(jπsin(φt)). Associated with this di-

rection the spatial steering vector is a(φt) = [ 1, zs , zs
2 ,… , zs

N-1] T , where ( )T⋅ denotes transposition. Similarly, 

for a target Doppler frequency of ft, the phase of the target signal advances from one pulse to the next by the 
factor of zt=exp(j2π ft/fr) resulting a temporal steering vector of  b(ft) = [ 1,  zt , zt

2 , … , zt
M-1] T. 

 

The scheme in [11] computes spatial and temporal weight vectors independently.  
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For the spatial D3 weight vector, defining xnm as the signal received at the n-th element and the m-th pulse within 
the range cell under test, the term, xnm – zs

-1x(n+1)m is free of target and contains interference only. The D3 algo-
rithm minimizes the interference power while maintaining a finite gain in the look direction.  To best present the 
D3 algorithm, the signal from the N antennas due to M pulses in a CPI is written as an N×M matrix X whose m-
th column corresponds to the N returns from the m-th pulse. The received signal can be represented as a sum of 
the target signal and interference terms 
 

( ), ,s t tfα φ= + + +X S C J N                                                             (1) 
 

where αs is the target amplitude and S(φt , ft)= a(φt) b(ft) T is the space-time steering matrix corresponding to the 
look direction of φt and look Doppler of ft . The matrices C, J and N represent clutter, jammer and noise signals, 
respectively. 
 

Define the (N-1) × M matrix A to be 
 

1 1 1
00 10 01 11 0( 1) 1( 1)

1 1 1
10 20 11 21 1( 1) 2( 1)

1 1 1
( 2)0 ( 1)0 ( 2)1 ( 1)1 ( 2)( 1) ( 1)( 1)

s s M s M

s s M s M

N s N N s N N M s N M

z z z
z z z

z z z

− − −
− −

− − −
− −

− − −
− − − − − − − −

⎡ ⎤− − −
⎢ ⎥− − −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

X X X X X X
X X X X X X

A

X X X X X X

,                    (2) 

 

where ,i jX  denotes the ( , )i j  element of X , and define the length N-1 spatial steering vector a(0:N-2) of the look 

direction φt and length N-1 spatial weight vector ws. Both vectors are of length N-1 due to the one DOF lost to 
the subtraction operation. The original D3 algorithm of [11] maximizes the difference between output power 
from target and the interference: 

2 22

2 2
(0: 2) (0: 2)1 11

max[ ] max[ ] max [ ]
s s s

s ss

H H H
s N N sR T Iκ κ− −= ==

= − = −w w ww ww
w a a AA w  

where 

2

(0: 2) (0: 2) (0: 2)s

H H H
s N s N N sT − − −= =w w a w a a w ,

2

s

H H H
s s sI = =w w A w AA w , and   

                               2 2
(0: 2) (0: 2) .

s s s

H H H H
s N N s s sR T Iκ κ− −= − = −w w w w a a w w AA w  

(3) 
 

Here, H)(⋅ denotes conjugate transposition. The term κ in the definition of 
s

Rw represents a parameter to empha-

size the power gain on either the target or interference. The D3 algorithm finds the spatial weight sw that maxi-

mizes
s

Rw  with the constraint of 1
2s =w which guarantees a non-zero solution. Using the method of Lagrange 

multipliers, it can be shown that the desired spatial weight vector is the eigenvector associated with the maxi-
mum eigenvalue of the (N-1)×(N-1) matrix 2

(0: 2) (0: 2)[ ]H H
N N κ− − −a a AA . 

 

A significant drawback with the above approach is that the performance of the D3 method is sensitive to the 
choice of the emphasis parameter κ. In this paper we make a fairly simple modification of the D3 algorithm, 
based on the well-known concept of maximizing the signal-to-interference pulse noise ratio (SINR) [1]. When 

s
Iw  in equation (3) is redefined as 1

s

H H
s sI

M
⎛ ⎞= ⎜ ⎟
⎝ ⎠

w w AA w , this serves as a proxy for the residual interference 
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power after the data are filtered by the weight ws. Here, ˆ ( ) /H M=R AA  acts as a sample spatial covariance 

matrix (where samples are taken over different pulses) in the cell under test. The target signal power 
s

Tw  is also 

redefined as in Eqn. (4) using the target signal amplitude αs : 

                                 
2 2

(0: 2) (0: 2) (0: 2)( ) .
s

H H H
s s N s s N N sT α α− − −= =w w a w a a w                                        (4) 

 

Using the two terms defined above, the effective SINR is  
 

                                        
2 2

(0: 2) (0: 2) (0: 2) (0: 2)

*
SINR ˆ1

s

s

H H H H
s s N N s s s N N s

H
H T s s
s s

T
I

M

α α− − − −= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

w

w

w a a w w a a w
w Rww A A w

.                   (5) 

Now the modified D3 algorithm maximizes the SINR in (5), resulting the weight vector 
)2:0(

1)ˆ( −
−= Ns aRw  assum-

ing R̂ is non-singular. As we can see in (2), the matrix A contains only interference terms, therefore in most 
cases R̂  can be assumed to be non-singular. If this matrix is singular then the weight vector may be obtained 
using the pseudo-inverse or diagonal loading [1, 18].  The proposed algorithm using the SINR maximizing strat-
egy is, therefore, simple and has no need for an emphasis parameter κ. Once we obtain the length N-1 spatial 
weight vector ws, we set [ 0]T T

s s=w w  appending a zero to restore the loss of the single DOF.  
 

In the SINR based D3 algorithm, the matrix R̂  may be viewed as an interference covariance matrix estimated by 
M snapshots which may not be enough for adequate estimation. To make the algorithm even more stable, the 
forward smoothing technique of [26] is applied. This technique uses a sliding window with the size of 1sN ×  to 

slide over the matrix A , where ( 1)sN N≤ −  is the number of spatial DOF. Then, we can get ( )sL N N M= −  sub-

vectors which may be enough for adequate covariance estimation, at the cost of DOF losses. Let 
 

,

,

1 2

[ : 1, ], 1, , , 1, ,
, ( 1)( )

[ , , , ].

i k s s

l i k s

L

i i N k i N N k M
l k N N i

= + − = − =

= = − − +

=

z A
a z

A a a a

                            (6) 

 

Replacing ˆ ( ) /H M=R AA  with ( ) /H L=R AA , and
(0: 2)N−a  with 

(0: 1)sN −a  in the equation (5), the spatial 

weight vector is obtained as 1
(0: 1)ss N

−
−=w R a  with appropriate zeros appended. In our work, the DOF reduction is 

three, resulting  1 3sN N= − −  to get L=4M available snapshots. Hence, 4 zeros (one is for the DOF lost to the 

subtraction operation in A, the others are caused by additional DOF reduction to increase number of snapshots) 
should be appended at appropriate positions.  
 

The temporal weight wt is determined in a similar manner using the (M-1)×N matrix B as defined below 
 

1 1 1
00 01 10 11 ( 1)0 ( 1)1

1 1 1
01 02 11 12 ( 1)1 ( 1)2

1 1 1
0( 2) 0( 1) 1( 2) 1( 1) ( 1)( 2) ( 1)( 1)

t t N t N

t t N t N

M t M M t M N M t N M

z z z
z z z

z z z

− − −
− −

− − −
− −

− − −
− − − − − − − −

⎡ ⎤− − −
⎢ ⎥− − −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

X X X X X X
X X X X X X

B

X X X X X X

,                 (7) 

 

the temporal steering vector of the look Doppler ft , b(ft ), and the number of temporal DOF ( 1)tN M≤ −  . 

Once we obtain the length N spatial weight vector ws and the length M temporal weight vector wt, the length-
MN space time adaptive weight vector is given by sttt f www ⊗=),(φ , where ⊗ denotes the Kronecker tensor 

product. 
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The development so far has ignored array effects such as mutual coupling, channel mismatch or array imperfec-
tions. In a practical setting, these must be eliminated using a calibration or compensation technique [11, 17, 21, 
23, 24]. In this paper, we shall show that the simple projection-based compensation method in [24] gives good 
performance for the D3 algorithm under calibration error.  
 

The 
s sN N×  spatial covariance matrix can be decomposed into its eigenvalues and outer products of correspond-

ing eigenvectors, the leading ( )sK K N≤ eigenvectors span the signal subspace and the remaining eigenvectors 

associated with small eigenvalues span the noise subspace, where K is the effective rank of the covariance ma-
trix: 

                                                
1 1

sNK
H H

i i i j j j
i j K

λ λ
= = +

= +∑ ∑R e e e e .                                                         (8) 

In the D3 case the signal subspace is defined by the strong mainlobe clutter plus jammer signals, while the noise 
subspace is defined by negligible sidelobe clutter.  
 

The spatial weight, sw , that optimizes the output SINR may be written as  

1
(0: 1) (0: 1) (0: 1)

1 1

1 1( ) ( )
s

s s s

NK
H H

s N i i N j j N
i j Ki jλ λ

−
− − −

= = +

= = +∑ ∑w R a e e a e e a ,                         (9) 

where  
(0: 1)s

H
i N −e a  is a complex scalar

ip  that represents the projection of the steering vector onto the signal sub-

space. Similarly, 
(0: 1)s

H
j N −e a is a complex scalar 

jp  that represents the projection of the steering vector onto the 

noise subspace. We note that the error-free exact steering vector 
(0: 1)sN −a must lie on the signal subspace of R , 

resulting 
(0: 1) 0

s

H
j j Np −= =e a . However, if the steering vector has errors, 

jp  is nonzero and what the projection 

method does to reduce the effect of the steering vector error is to force 0jp = .    

(0: 1)
1

1 ( )
K

H
s i i Ns

i iλ
−

=

=∑w e e a .                                                         (10) 

Here a good choice of K could be found using for example the minimum description length (MDL) or Akaike 
information criterion (AIC) method [27]. 
 

Since the D3 processing scheme uses samples from the primary range cell, it is possible to suppress a discrete 
interferer in the cell under test. Similarly, removing the requirement for secondary sample support makes it an 
attractive approach in a severely non-homogeneous environment. However, by ignoring correlation across range 
cells, the D3 scheme is inherently unable to suppress correlated interference (such as distributed clutter and bar-
rage noise jamming) [11]. This motivates the search for a hybrid approach that combines the benefits of both D3 
and statistical processing. This framework was first suggested in [11] wherein the drawbacks of D3 processing 
were first documented. 

3 Two-stage hybrid algorithm 

In this section we present a hybrid algorithm based on the new D3 approach of the section 2 and the ΣΔ statisti-
cal algorithm of [8]. We begin by briefly reviewing the original two-stage hybrid algorithm proposed in [11] 
combining the D3 algorithm with JDL processing. The combination and sequencing of the two presented here is 
made possible because the JDL and ΣΔ STAP, beamspace algorithms, process data after transformation to the 
angle-Doppler domain 
 

To describe the two-stage hybrid algorithm it is helpful to consider the general framework of JDL-STAP. The 
JDL algorithm begins with a non-adaptive transform of the samples from a space-time domain to a localized 
processing region (LPR) in the angle-Doppler domain. This is followed by a statistical detection algorithm 
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within the LPR in the angle-Doppler space. The main difference between JDL and the two-stage hybrid algo-
rithm in [11] is the data transformation process. In the JDL algorithm, a domain transformation is achieved by 
an inner product with the steering vectors associated with the angle-Doppler points within the LPR. The hybrid 
algorithm of [11], on the other hand, uses an adaptive transformation based on the D3 processing weights, re-
placing non-adaptive steering vectors. The key principle is that any adaptive process forms an estimate of the 
signal at the look angle/Doppler (comparing to a threshold for target detection is part of post-processing). As 
shown in Figure 1, the first stage of the hybrid algorithm uses D3 weights to suppress discrete interferers in the 
cell under test and to transform the data domain simultaneously.  
 

In both the JDL algorithm of [2] and the hybrid algorithm of [11], the transformation to the angle-Doppler do-
main is represented as multiplication of the space-time samples with a transformation matrix. For example, the 
transformation matrix of the JDL based hybrid algorithm for three angles (φ-1 ,φ0 ,φ1 ; ηa = 3) and three Doppler 
bins (f-1 , f0 , f1 ; ηd = 3) in the LPR is given by the NM×9 matrix 

 

)](),(),,(),(),(),,(),(),(),,([ 110111100010110111 fffffffff φφφφφφφφφ wwwwwwwwwT −−−−−−= ,       (11) 

where ( , )fφw  is the D3 weight for the look angle φ  and look doppler f. 

Once we get the transformation matrix T, it is used to transform the primary and secondary data to the angle-
Doppler space. Furthermore, the target steering vector s is also transformed to the angle-Doppler domain using 
the same transformation matrix. Unfortunately, unlike the original JDL algorithm, the transformation matrix of 
the hybrid algorithm changes from a range cell to another. This is the major drawback of the hybrid algorithm 
which induces high computation load. To obtain a transformation matrix T for one range cell, ηaηd  D3 -weight 
computations are needed (the new D3-weight computation has at most O[((N-1)(N-1)) 3]+O[((M-1)(M-1)) 3] = 
O[((M-1)(M-1)) 3] complexity, where M≥N), while, in JDL, a predetermined transformation matrix is used for 
every test cell. The computation load associated with the hybrid algorithm is, therefore, significantly higher; by 
the order of (L×ηaηd×O(((M -1)(M -1)) 3) ×O((ηaηd) 3)) compared to the JDL algorithm of L×O((ηaηd) 3), 
where L is the number of range cells to be tested. Reducing the DOF, therefore, has a great impact on the total 
computation load, setting the stage for an important contribution of a ΣΔ based hybrid algorithm in this paper. 

3.1 ΣΔ-DDL based hybrid algorithm  

We extend the hybrid concept to the ΣΔ algorithm of [8] wherein the adaptive processing focuses on just two 
spatial DOF (ηa=2), the sum (Σ) and difference (Δ) channels. In the ΣΔ-DDL STAP, DDL (Doppler domain 
localized) processing in the temporal domain and ΣΔ processing in the spatial domain are used as illustrated in 
Figure 2. In the ΣΔ-DDL based hybrid algorithm, we use the D3 processing for both the cancellation of discrete 
interferers and the data transformation to the angle-doppler domain, followed by the traditional detection algo-
rithm of ΣΔ-DDL STAP. In developing our algorithm, we exploit the fact that the space-time weight vector in 
the D3 processing (as mentioned in Section 2) is computed by a Kronecker product of individual spatial and 
temporal weights. This makes it possible to separate spatial and temporal domain transformation for hybrid 
schemes. 
 

To get Σ and Δ transformation matrix in terms of D3 weights, some modifications are needed in the first stage 
rather than forming the sum and difference beams as products of steering vectors and appropriate tapers [8]. 
Note that the sum and difference beams can also be obtained based on two auxiliary look directions:  

 

( ) { ( ) ( )} , ( ) { ( ) ( )}s t L R s t L Rφ φ φ φ φ φ= + = −s a a d a a ,                                   (12) 

where φL = φt –φdel , φR = φt + φdel with the look angle φt and angle interval φdel ,and a(φ) is the spatial steering 
vector for direction φ. The technique is extended to the ΣΔ-DDL based hybrid algorithm proposed here. Let spa-
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tial D3 weight vectors corresponding to φL and φR be ws(φL) and ws(φR) respectively, and define the correspond-
ing sum and difference weight vectors as 

)()(,)()( RsLssRsLss φφφφ wwwwww −=+= Δ−Σ− .                         (13) 

The spatial transform matrix for ΣΔ-DDL based hybrid approach is then represented as  

[ ]Δ−Σ−ΣΔ = ss wwG .                                                               (14) 

For the ΣΔ-DDL based hybrid approach, the transformation matrix in the temporal domain is given by temporal 
D3 weight vectors corresponding to Doppler frequencies f-1, f0, f1, in LPR (ηd = 3 Doppler bins) 
 

[ ]1 0 1( ) ( ) ( )DDL t t tf f f−=F w w w ,                                            (15) 
 

where wt(f) denotes the temporal D3 weight vector for a Doppler frequency f. Note that this is equivalent to the 
scheme to set up the temporal transformation matrix in the JDL based hybrid process [11].  
 

Using the spatial and temporal transformation matrices defined above, the overall transformation matrix for the 
ΣΔ-DDL based hybrid STAP is given by 
 

DDL DDLΣΔ− ΣΔ= ⊗T F G .                                                       (16) 
 

The space-time domain data are transformed to the LPR in the angle-Doppler domain using the transformation 
matrix TΣ Δ -DDL, as H

DDLΣΔ−=x T x  , H
DDLΣΔ−=s T s  and H

DDL DDLΣΔ− ΣΔ−=R T RT . After domain transformation, a statis-

tical detection algorithm is applied to the LPR data with weight vector sRw 1~~~ −= , and a target in the primary 
range cell is declared if, for example, the modified sample matrix inversion (MSMI) statistic [16] is above a 
chosen threshold ( oη ) 

1

0

2

01

HH

MSMI H
H

η η><−=
w x

s R s
 .                                                               (17) 

The MSMI statistic is used in our simulation because it is known be a constant false alarm rate (CFAR) statistic 
in Gaussian interference. 

3.2 ΣΔ- ΣΔ based hybrid algorithm  

In the ΣΔ-ΣΔ based hybrid STAP, we further reduce the temporal DOF to two Doppler bins (fs, fd; ηd = 2) apply-
ing the ΣΔ strategy, using sum and difference temporal beams, instead of the DDL scheme of (15). Let fL = ft – 
fdel, fR = ft + fdel be the left and right Doppler frequency with respect to the look Doppler frequency ft where fdel is 
a properly chosen frequency interval. Similar to the spatial case, sum and difference temporal vectors can be 
defined as 
 

( ) { ( ) ( )}, ( ) { ( ) ( )}t t L R t t L Rf f f f f f= + = −s b b d b b ,                                       (18) 
 

where b(f) is the temporal steering vector for look Doppler f.  
 

Based on this fact, the temporal D3 weights for ΣΔ-ΣΔ based hybrid STAP can be easily obtained in a manner 
similar to that in equation (13) and (14), 
                                               )()(,)()( RtLttRtLtt ffff wwwwww −=+= Δ−Σ−

.                                         (19) 
 

The temporal transformation matrix is then 
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[ ]t tΣΔ −Σ −Δ=F w w .                                                            (20) 
 

Using the beamformer matrix GΣΔ in equation (14) and temporal transformation matrix defined above, the 
space-time matrix to form the 2×2 LPR for ΣΔ-ΣΔ based hybrid STAP is 
 

ΣΔ−ΣΔ ΣΔ ΣΔ= ⊗T F G .                                                                (21) 

 
As before, the transformation matrix TΣΔ- ΣΔ is used to transform both the data and the steering vector as  

xTx H
ΣΔ−ΣΔ=~  , sTs H

ΣΔ−ΣΔ=~ , ΣΔ−ΣΔΣΔ−ΣΔ= RTTR H~  , and sRw 1~~~ −= .  
 

The ΣΔ-ΣΔ based hybrid algorithm is the most efficient algorithm considered in this paper, because it uses only 
2 spatial channels and 2 temporal DOF.  
 

One potential issue in the use of the ΣΔ algorithm is that of clutter dimensionality. The JDL algorithm provides 
the flexibility to increase the adaptive DOF to cope with higher dimensional clutter. However, it is worth em-
phasizing that, in practical non-homogeneous scenarios, the adaptive DOF allowed is determined largely by the 
training samples available more than the dimensionality of the clutter. In this regard, minimizing the adaptive 
DOF in the ΣΔ is almost always a positive. The gains are both in the quality of the estimate of the interference 
covariance matrix and in the reduced computation load. Finally, we conclude this section by noting that there 
has been little theoretical analysis of the hybrid approaches. Attempts of theoretical analyses have proven to be 
intractable. 

3.3 Comparison of computation load 

The algorithms we have discussed so far share a common theme of reduced DOF, and the resulting reduced sec-
ondary data. In Table 1 we compare the strategies of reducing DOF and the computation load for different algo-
rithms assuming M≥N . In keeping with the contributions of this paper, the table focuses on the JDL based hy-
brid, ΣΔ-DDL based hybrid and ΣΔ-ΣΔ based hybrid algorithms. 
 

Table 1: Comparison of hybrid algorithms 

 JDL based hybrid  ΣΔ-DDL based hybrid ΣΔ-ΣΔ based hybrid 
Spatial DOF reduction 

strategy 
JDL  ΣΔ ΣΔ 

Temporal DOF reduction 
strategy 

DDL DDL ΣΔ 

LPR(ηa×ηd) ηa ×ηd 2×ηd 2×2 

Computation load 
L×O(((M-1)(M-1)) 3) 
×ηaηd ×O((ηaηd)3) 

L×O(((M-1)(M-1)) 3) 
×2ηd ×O((2ηd)3) 

L×O(((M-1)(M-1)) 3) 
×2×2 ×1/6×43 

 
As is clear from Table 1, reducing the DOF has significant impact on the computation load for the hybrid ap-
proach. The smaller the overall DOF becomes, the lower the complexity of the algorithm will be. Considering 
that a major drawback of the hybrid schemes is their computation load, the development of the ΣΔ-ΣΔ based 
hybrid algorithm has a significant advantage over previously available hybrid approaches. 

3.4 Non-homogeneity detector combined algorithm 

A non-homogeneity detector (NHD) is used to detect non-homogeneous cells within the measured data in a CPI. 
We combine the NHD with the proposed STAP algorithm to improve the performance. Figure 3 shows a com-
prehensive block diagram for this combination. As shown in the figure, the first step is an NHD that classifies 
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range cells as non-homogeneous or homogeneous. Once range cells are identified as either non-homogeneous or 
homogeneous by the NHD, a traditional non-hybrid algorithm is applied for homogeneous cells and a hybrid 
algorithm for non-homogeneous cells. In both cases, the secondary data required to estimate the interference 
covariance matrix are obtained using nearby homogeneous range cells. 
 

It should be noted that there are several NHD schemes for clutter model and the choice of an NHD is another 
topic of STAP research. The NHD chosen in this paper is simply the original statistical STAP applied to the data 
with no regard for the non-homogeneous characteristics of clutter environment. Range cells with its MSMI sta-
tistic above a threshold are treated as non-homogeneous. 

4 Simulation results  

In this section, we present simulations results to demonstrate performance of the proposed algorithms. The sys-
tem parameters that are to be used commonly throughout simulations are listed in Table 2. The overall interfer-
ence is a sum of clutter, barrage noise jamming and discrete interfering sources. The discrete clutter model of 
Ward [4] is used and the jammer is modelled to be homogeneous in range, arriving from a single angle, but cov-
ering all Doppler bins. The discrete interference is a target-like signal, localized in space and Doppler frequency. 
The jammer, clutter and discrete interferer powers are referenced to the noise level. 
 

Table 2: System parameters  

Parameter Value Parameter Value 

N, Number of  antennas 18 M, Number of  pulses/CPI 18 

Operating frequency 450MHz PRF 300Hz 

Pulse width 200 us Antenna spacing 
half of  the 
wavelength 

Look angle (azimuth) 0deg Look Doppler 100Hz 

Instantaneous bandwidth 4MHz System loss 4dB 

Ground reflectivity -3dB Element pattern Cosine 

Backlobe attenuation 30dB Number of clutter patches 361 

Clutter range 130km Transmit array tapering Uniform 

Intrinsic velocity 0 m/s Platform altitude 9km 

Thermal noise power Unity Platform velocity 50 m/s 

Transmit peak power 400 kW Velocity misalignment angle 0 deg 

β  (clutter slope) 1   

 
4.1 Performance of direct data domain (D3 ) algorithm 
 
Performance of the proposed D3 algorithm which uses the SINR maximization strategy and employs additional 
three DOF reductions is illustrated in Figure 4. Parameters of the signals such as clutter, jammer and discrete 
interferers are shown in Table 3. Among the two discrete interferers, only one is used at a time.  
 

Figure 4(A)-(D) shows the adapted patterns resulting from the proposed D3 algorithm. The beam pattern pre-
sented are the mean over 200 trials. The angle plot in Fig. 4(A) clearly shows distinct nulls in the directions of 
discrete interferer 1 at -33 o and the jammer at 20 o , while maintaining the array gain to the 0 o look direction.  
Figure 4(B) plots the temporal beam pattern which has nulls near the 0 Hz Doppler of the main beam clutter and 
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-100 Hz Doppler of interferer 2. Figure 4(C) shows the spatial beam patterns associated with the sum/difference 
beams used to form the LPR in angle-Doppler domain for ΣΔ-based hybrid algorithms. To form sum/difference 
beams, left and right beams with angle interval 2 /(12 )del Nφ π=  are used. Both beam patterns have nulls in the 

directions of discrete interferer 1 at -33 o and the jammer at 20 o, which illustrate the benefits of using the D3 
weights for the first stage. Similar to the Figure 4(C), Figure 4(D) illustrates the temporal beam patterns for 
sum/difference beams which have nulls in the Dopplers of main clutter and interferer 2. To form the ΣΔ Doppler 
beams, PRF/(12 )delf M=  is used to derive the left and right weight vectors. These weights suppress discrete 

interference, transforming the data to the angle-Doppler domain at the same time.  
 

Table 3: Signal parameters for D3 algorithm 

Parameter Clutter Jammer Discrete interferer1 Discrete interferer 2
Power (dB) 30 37 30 35 

 Angle (degree) - 20 -33 0 
Doppler frequency (Hz) - - 100 -100 
 
4.2 Performance of D3 algorithm under calibration error 
 
Figure 4(E) illustrates the receiver operating characteristic (ROC) curves of the D3 method when the complex 
gains of receiver chains are not exactly known. Each antenna is assumed to have a phase error drawn from a 
uniform distribution in the [ / 8, /8]π π− interval, and an amplitude error drawn from a uniform distribution in 

the [0,2]  interval. For the projection method, eight leading eigenvectors are used to form the signal subspace. 

As shown in Table 4, one target and one interferer are injected in jammer-free clutter environment. We can see 
from Figure 4(E) that the target signal cancellation caused by calibration error degrades the detection perform-
ance while the projection method gives meaningful performance improvement. 
 

Table 4: Signal parameters for D3 under calibration error 

Parameter Clutter Target Discrete interferer 
Power (dB) 30 25 20 

 Angle (degree) - 0 -13 
Doppler frequency (Hz) - 100 100 

 
4.3 Performance of the hybrid algorithms 
 
To verify the performance of the hybrid algorithms in non-homogeneous environment, strong artificial target-
like signals, which are neither at the look angle nor at the look Doppler, are introduced in clutter of 20dB aver-
age power. Three different cases are tested at different range cells. In the first case, a strong target-like interferer 
is injected in the 30th range cell where no target is presented. This case will test the capability to suppress the 
discrete interferer. In the second case, a strong target is added in the 50th range cell where an artificial interferer 
is also present. This case will illustrate the ability to detect a strong target even in the presence of a strong dis-
crete interferer. In the last case, a weak target is injected in the 80th range cell to test the detection performance. 
Clutter only environment in Table 5 is assumed, and the system parameters are as given in Table 2. 
 

Figure 5(A) depicts the results of the ΣΔ-DDL based algorithms. Here, two angle bins (ηa = 2) and three Dop-
pler bins (ηd = 3) are used to form the LPR, and 24 secondary data vectors to estimate the 6×6 interference co-
variance matrix. In Figure 5(A), we compare the MSMI output of the ΣΔ-DDL STAP with that of the ΣΔ-DDL 
based hybrid algorithm. In the 30th range cell, the hybrid algorithm suppresses the non-homogeneity in the first 
D3 stage while the ordinary ΣΔ-DDL algorithm detects the interferer as a strong target. The 50th range bin 
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represents the second case where a strong target is also present. Note that the hybrid algorithm detects the target 
not affected by the D3 stage that suppresses the interferer in the same cell. The last case of the 80th range cell 
shows that the weak target can be detected by both hybrid and ordinary ΣΔ-DDL algorithm. 
 

Table 5: Signal parameters for hybrid algorithms  

Parameter Clutter Discrete interferer 1 Discrete interferer 2 Strong target Weak target
Power (dB) 20 20 25 10 0 

 Angle (degree) - 0 -33 0  0 
Doppler frequency (Hz) - 120 100 100 100 

Range cell - 30 50 50 80 
 
As shown in Figure 5(B), the ΣΔ-ΣΔ based hybrid algorithm produces similar results to ΣΔ-DDL based hybrid  
case with smaller DOF and fewer secondary data vectors. We use two angle bins (ηa = 2) and two Doppler bins 
(ηd = 2) for LPR and 16 secondary range cells to estimate the interference covariance matrix. The corresponding 
figure illustrates the ability of the simple ΣΔ based algorithms to provide effective interference suppression and 
target detection. Note that the ΣΔ based schemes require fewer secondary range cells than with the JDL based 
hybrid approach in [11]. 
 
4.4 Effect of the non homogeneous detector (NHD)  
 
To test the performance of the hybrid algorithms combined with the NHD in Section 3.4 in a non-homogeneous 
environment, the non-Gaussian SIRV clutter model [5-7] is used. Since jammers can be suppressed prior to the 
signal processing a clutter-only environment with 20dB average CNR is assumed. See Table 6.  
 

Table 6: Signal parameters for the combined algorithms 

Parameter Clutter Discrete interferer 1 Discrete interferer 2 Strong target Weak target
Power (dB) 20 35 30 12 0 

 Angle (degree) - -33 0 0  0 
Doppler frequency (Hz) - 100 120 100 100 

Range cell - 20 80 50 44 
 
To make the environment even more heterogeneous, artificial target-like interferers are introduced. Discrete 
interferer 1 is in the 20th range cell, with 35dB power at –33o angle. Discrete interferer 2 is in the 80th range 
cell with 30dB power and 120 Hz Doppler. A target is injected in the 50th range cell with 12 dB SNR and an-
other in the 44th range cells with 0 dB SNR. Since the two targets are located close, one will be included in the 
other’s secondary data set when the interference statistics is estimated. 
 

Figure 6 presents the performance of the combined-STAP that uses ΣΔ-DDL based hybrid algorithm while Fig-
ure 7 represents that of the combined-STAP using ΣΔ-ΣΔ based hybrid algorithm. Figure 6(A) shows the MSMI 
statistics of (17) for the ordinary ΣΔ-DDL algorithm, which erroneously declares the discrete interferers in the 
20th and 80th ranges cells as strong targets. This result clearly calls for the hybrid algorithm that identifies and 
eliminates non-homogeneities in the secondary data. Also note that the weak target in the 44th range cell is ob-
scured because of the strong target in the secondary data.  
 

Figure 6(B) illustrates benefits of the NHD in non-homogeneous environments. Here the ΣΔ-DDL based NHD 
first identifies the range cells with strong response as non-homogeneous cells, and removes them from secon-
dary data. Those removed cells may contain a strong target or a strong discrete interferer, and this removal al-
lows the weak target in the 44th cell to be detected. However, the ΣΔ-DDL only algorithm which cannot be in-
formed about discrete non-homogeneity within the primary range cell is not able to suppress discrete interferers 
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in the 20th and 80th range cells despite the use of NHD. On the other hand, the combined-STAP algorithm of 
Figure 3 that employs the hybrid algorithm for non-homogeneous range cells can detect both strong and weak 
targets while suppressing discrete interferers. The result is illustrated in Figure 6(C).  
 

The performance of the combined-STAP using the ΣΔ-ΣΔ based hybrid algorithm is comparable to that of the 
ΣΔ-DDL based hybrid, however, at significantly lower computation cost of 4 instead of 6 D3 solutions. Figure 7 
illustrates the results of this efficient algorithm. 
  
4.5 Receiver operating characteristic (ROC) curves 
 
Figure 8(A) presents the ROC curves of the ΣΔ-DDL based algorithms in non-homogeneous clutter environ-
ment while Figure 8(B) represents those of ΣΔ-ΣΔ based approaches. The resultant curves are obtained using 
5000 Monte Carlo simulations. In this simulation, four approaches are compared, the ordinary statistical algo-
rithm, the ordinary statistical algorithm with selected homogeneous trainings by NHD, the D3 method and the 
combined-hybrid algorithm. 
 

For the case of the ΣΔ-DDL based algorithm, an artificial interferer which has 25dB power and 20Hz offset 
from the look Doppler and a target with 10dB SNR are introduced to the test cell in the 20dB CNR clutter envi-
ronment. These parameters are summarized in Table 7. 
 

Table 7: Signal parameters for ΣΔ-DDL based algorithms 

Parameter Clutter Target Discrete interferer 
Power (dB) 20 10 25 

 Angle (degree) - 0 0 
Doppler frequency (Hz) - 100 120 

 
The result of two statistical algorithms illustrates the benefits of the NHD. Secondary sample support of the 
purely statistical approach is not as homogenous as that of the method using NHD. Inaccurate covariance matrix 
estimation by inappropriate trainings contributes to a higher false alarm rate or a lower target detection probabil-
ity. However, the ΣΔ-DDL algorithm which cannot be informed about discrete non-homogeneity within the 
primary range cell is not able to deal with the discrete non-homogeneity. Therefore, in the severe non homoge-
neous environment, the D3 algorithm achieves a better performance than the ordinary statistical algorithm re-
gardless of the NHD presence. Finally, the combined-hybrid STAP that employs the ΣΔ-DDL based hybrid al-
gorithm for non-homogeneous cells and ΣΔ-DDL method for homogeneous cells shows the best curve. This 
result gives the justification of each part of the final combined algorithm which makes it practical in the real 
world.  
 

Figure 8(B) illustrates the comparable results of the more efficient ΣΔ-ΣΔ based algorithms. In this case, an 
interferer with 20dB power and 20Hz offset from the look Doppler and a target with 12dB SNR is injected to 
the test cell in the 10dB CNR environment as shown in Table 8. 
 

Table 8: Signal parameters for ΣΔ- ΣΔ based algorithms 

Parameter Clutter Target Discrete interferer 
Power (dB) 10 12 20 

 Angle (degree) - 0 0 
Doppler frequency (Hz) - 100 120 
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5 Conclusions 

In this paper, we present various improvements of the available JDL based hybrid algorithm designed for non-
homogeneous clutter. We first formulate a stable version of the D3 STAP algorithm of [11, 13]. The modified D3 
algorithm is reliable since it does not require an emphasis parameter. Furthermore, the new D3 algorithm is 
made to be more stable by employing the forward smoothing technique in [26]. However, a major contribution 
would be the development of a lower complexity hybrid algorithm based on the efficient ΣΔ algorithm in [8]. 
The hybrid algorithm uses the new modified D3 algorithm as an underlying adaptive transformer to the angle-
Doppler domain. Here we present two versions of hybrid processing based on the ΣΔ-DDL STAP and the ΣΔ- 
ΣΔ STAP. The ΣΔ based hybrid algorithm has significantly lower computation load, alleviating one of the key 
drawbacks of the original hybrid algorithm. Finally, the ΣΔ based hybrid STAP is placed here within the 
framework of knowledge-based STAP processing. The combined-STAP formulation uses a NHD to identify 
non-homogeneous range cells. It should be noted that there are several NHD schemes for the SIRV clutter 
model with good performance leaving open the possibility of even better performance in non-homogeneous en-
vironments. 
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Figure 1: Block diagram of the two-stage JDL-based hybrid algorithm 
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Figure 2: Block diagram of the ordinary ΣΔ-DDL STAP 
 

 
 
 
 
 
 
 



 18

 
 
 
 
 
 

 
 

Figure 3: Block diagram of the combined space-time adaptive processing (combined-STAP) 
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Figure 4: Performance of the modified D3 algorithm using the SINR maximization 
(A) Adapted spatial pattern for the 0 o look direction with nulls in the directions of the discrete interferer at -33 o  
and of the jammer at 20 o. (B) Adapted Doppler pattern for the 100Hz look doppler with nulls near the 0 Hz 
Doppler of main beam clutter and at the -100 Hz interferer. (C) Sum/difference D3 spatial patterns for the 0 o 
look direction with nulls at the -33 o discrete interferer and at the 20 o jammer. (D) Sum/difference D3 temporal 
patterns for the 100Hz look Doppler with nulls near the 0 Hz Doppler of the main beam clutter and at the -100 
Hz interferer. (E) ROC curves under calibration errors. 
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Figure 5: Performance of hybrid algorithms in countering non-homogeneities. The 30th range cell contains a 
strong interferer, the 50th range cell has a strong interferer and a strong target, and the 80th range cell has a 
weak target.  
(A) ΣΔ-DDL based algorithms. (B) ΣΔ- ΣΔ based algorithms 
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Figure 6: Performance of the ΣΔ-DDL based hybrid algorithm for target detection in non-homogeneous envi-
ronment. The 20th and 80th range cells contain strong interferers, the 44th range cell contains a weak target, and 
the 50th range cell contains a strong target. 
 (A) ΣΔ-DDL only (B) ΣΔ-DDL with NHD (C) Combined-STAP using ΣΔ-DDL based hybrid algorithm. 
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Figure 7: Performance of the ΣΔ-ΣΔ based hybrid algorithm for target detection in non-homogeneous environ-
ment. The 20th and 80th range cells contain strong interferers, the 44th range cell has a weak target, and the 
50th range cell contains a strong target. 
(A) ΣΔ- ΣΔ only (B) ΣΔ- ΣΔ with NHD (C) Combined-STAP using ΣΔ-ΣΔ -hybrid algorithm. 
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Figure 8: Performance of the proposed algorithms for target detection in non-homogeneous environment 
(A) ΣΔ-DDL based algorithms (B) ΣΔ-ΣΔ based algorithms 
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