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Abstract 

This paper presents a knowledge based hybrid algorithm us-
ing Sigma-Delta STAP which is practical and powerful in 
non-homogeneous environments. In the hybrid algorithm, 
statistical and non-statistical direct data domain (D3) algo-
rithms are combined to obtain the advantages of both ap-
proaches. In this paper a new revised D3 algorithm which uses 
a maximum SINR strategy is presented. The residual interfer-
ence after the D3 process is further suppressed by the efficient 
Σ∆ STAP algorithm. The performance of the hybrid algo-
rithm using D3 – Σ∆ STAP is tested in SIRV clutter environ-
ment and compared to that of the method which employees 
JDL as a statistical algorithm. 

1 Introduction 

It is now well accepted that several fundamental issues make 
it impossible to implement the fully optimum space-time 
adaptive processing (STAP) algorithm in practical radar sys-
tems. The most obvious is the very high required computation 
load. However the fundamental limitation is one of limited 
available training. The Reed-Mallet-Brennan rule states that a 
reasonably accurate estimate of the interference covariance 
matrix requires twice the degrees of freedom (DoF). In fully 
adaptive STAP, the available DoF is usually too large and an 
adequate amount of training data is not available. Importantly, 
this training data is required to be statistically homogeneous, 
a requirement that is almost impossible to satisfy in practice. 
Several recent works have dealt with the issue of non-
homogeneous data [2, 6-9,11]. In this regard an interesting 
proposal has been the development of a non-statistical direct 
data domain algorithm (D3) that does not require training [12]. 
In [2], a hybrid algorithm was proposed, combining a D3 al-
gorithm with traditional, statistical, joint-domain localized 
(JDL) processing to achieve the benefits of both. The impact 
of such processing with measured data is illustrated in [11]. 
 

This paper addresses two issues raised by the two-stage hy-
brid algorithm as currently available in [2]. The first D3 stage 
is based on a maximizing the difference between the gain on 

target and an interference term. Maximizing this difference 
leads to unstable solutions requiring a good choice of an em-
phasis parameter weighing one term versus the other. Here 
the D3 algorithm is reformulated to maximize the signal to 
interference plus noise ratio (SINR) instead. While a simple 
extension of the available algorithm, the reformulation stabi-
lizes the D3 solution.  
 

The other issue with the original hybrid algorithm is that of 
computation load. In the JDL stage with ηa angle bins and ηd 

Doppler bins in the localized processing region (LPR), the D3 
algorithm must be executed ηaηd times for each angle-
Doppler bin within the LPR. The required computation load is 
therefore very high. In [11] this problem is addressed in a 
knowledge based approach by using a JDL-based non-
homogeneity detector (NHD) and using the hybrid algorithm 
only within those range bins declared non-homogeneous. 
 

The main contribution of this paper is a hybrid Σ∆ algorithm 
using the extremely computationally efficient statistical Σ∆ 
algorithm of [3]. The overall approach is therefore stable and 
efficient.  
 

This paper is organized as follows. In Section 2 we describe 
the use of a NHD, the revised D3 algorithm and the extension 
to the hybrid Σ∆ algorithm. Section 3 presents numerical re-
sults illustrating the efficacy of the proposed hybrid Σ∆ ap-
proach. The numerical simulations are based on the spheri-
cally invariant random variable/process (SIRV/SIRP) model 
of [7]. Finally, Section 4 presents some conclusions and sug-
gestions for future directions.  

2   Knowledge Based Hybrid algorithm 

Typically most common environments in which STAP oper-
ates are non-homogeneous because of many complicated fac-
tors. The traditional statistical algorithms which use covari-
ance matrix to determine the adaptive weights are not appli-
cable in these environments.  
 

Non-homogeneity occurs in two forms. One, variation of in-
terference statistics results in inappropriate secondary data 
support and an inability to obtain an accurate estimate of the 
interference in the cell under test. To overcome the resulting 
performance degradation, a NHD is used to identify non-



homogeneous range cells. Once identified these non-
homogeneous range cells can be removed from the secondary 
data used to estimate interference statistics. The other form is 
discrete interferers, such as coherent repeat jammers or other 
local interference sources, which exist in the primary range 
cell.  Since the secondary data has no information about these 
interferences, traditional statistical algorithms are not able to 
suppress discrete non-homogeneities. The D3 algorithm spe-
cifically targets this form of interference. 

2.1 D3 algorithm 

Consider an N-element uniformly spaced array with M pulses 
in a coherent processing interval (CPI). For a look direction 
of φs, the signal advances from one element to the next by the 
same phase factor zs=[exp(j2πsin(φt)]. Defining as xnm the 
signal received at the n-th element and m-th pulse within the 
range cell under test, the term (xnm – zs

-1x(n+1)m) is free of the 
target and contains only interference terms. The D3 algorithm 
minimizes the power in such interference terms while main-
taining gain in the direction of the target.   
 

To best present the D3 algorithm, the data from the N ele-
ments due to the M pulses in a CPI is written as a N×M matrix 
X whose mth column corresponds to the N returns from the mth 
pulse. The data matrix is a sum of target and interference 
terms 

( ) ., NCSX ++= tts fφα                 (1) 

where αs is the target amplitude and S(φt, ft) is the space-time 
steering matrix corresponding to a look direction of φt and 
look Doppler of ft. Define the matrix  
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and define the length N-1 spatial steering vector a(0:N-2) and 
length N-1 spatial weight vector ws. Both vectors are length 
N-1 due to the one DoF lost to the subtraction operation in the 
elements of the matrix A. The original D3 algorithm maxi-
mizes the difference between gain on target and the interfer-
ence: 
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where κ represents a parameter to emphasize one or the other 
term. The performance of the algorithm is very sensitive to 
the choice of this parameter, though no rigorous approach was 
made available. 
 

In this paper we reformulate the D3 algorithm using the sim-
ple and well known concept of SINR maximization [4]. 

wsI in Equation (3) can be considered as interference power 

after spatial filtering. The target signal power can be defined 
as 
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When we use these two powers, the effective SINR can be 
defined as Equation (5) 
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The spatial weight vector sw  that maximizes this SINR is 

the optimal weight vector in this algorithm.  
 

 In the D3 algorithm, assuming *AAT  is non-singular then 

weight vector can be obtained as aAA 1* )( −T . If this matrix is 
singular then the optimal weight vector is the solution to a 
generalized eigenvalue problem. The overall algorithm is, 
therefore, very simple and the emphasis parameter κ  is not 
required.  
 

The temporal weights wt can be determined in a similar man-
ner using the matrix B and b(0:M-2), the temporal steering 
vector and the matrix B be defined as 
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Once we obtain the length N-1 spatial weight vector ws and 
the length M-1 temporal weight vector wt the length-MN 
space time adaptive weight vector is given by  
 

                       ⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=

00
),( st

tt f
ww

w φ                (7) 

2.2 Hybrid Algorithm using Σ∆ STAP 

In this section two stage hybrid algorithm will be described 
which uses Σ∆ STAP as statistical algorithm in second stage. 
Two stage hybrid algorithms have advantages of both non-
statistical algorithm and statistical algorithm. The first stage 
of the hybrid algorithm uses D3 algorithm to suppress discrete 
interferers in the cell under test. In this stage, the D3 weights 
also transforms the space-time domain signal to the an-
gle/Doppler domain which will be used in second stage [2,11]. 
By using the Σ∆ STAP as a second stage statistical algorithm, 
most processes are same as in the original hybrid-JDL algo-
rithm. However the transformed LPR must be fitted to Σ∆ 
STAP. To illustrate this process, first of all, the sum and dif-
ference beamforming vectors to be used in the Σ∆ algorithm 
must be defined. In the original Σ∆ algorithm, the sum and 
difference beamforming vectors can be defined as 
 

                      
)}()({)u(

)}()({)u(

RLC

RLC

uu

uu

aad

aas

−=
+=

             (8) 



where )2/(1 Nuu cL −= , )2/(1 Nuu cR +=  and 

)(ua is the spatial steering vector for direction u. 
As described in the above equations, the sum and difference 
beams can be formed using left and right beams. When we 
know the process to form sum and difference beams, the 
transformation matrix in two stage hybrid algorithm can be 
defined easily.  
 

In this paper the corresponding beams are formed using D3 

weight vectors for Lu , Ru  and the corresponding Doppler 

frequency 1−f , 0f , 1f  in LPR (if we use 3 Doppler bins). 

The set of six weight vectors form the columns of the trans-
formation matrix for the hybrid Σ∆ STAP. For instance when 
we get D3 weight vectors for left and right direction corre-

sponding to 1−f  
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we can define sum and difference beam weights as 
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Then the transform matrix T for Σ∆ STAP defined as: 
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The space time domain data is transformed to the LPR in the 
angle Doppler domain which is appropriate to Σ∆ STAP us-
ing this transformation matrix T. After domain transformation, 
this statistical algorithm is applied to the data, then we can 
complete the hybrid Σ∆ algorithm. 

3 Simulation Results   

The first simulation illustrates the performance of the D3 al-
gorithm which uses a SINR maximization strategy. Table 1 
lists the parameters used in this simulation. The angle plot of 
Figure 1 represents that this D3 algorithm also places a null in 
the direction of discrete interferer and jammer. The temporal 
beam pattern shows a null in the direction of the mainbeam 
clutter. 
 

Parameter Value Parameter Value 
Element(N) 18 Pulse(M) 18 

Element spacing 2/λ  PRF 
300H

z 
Array transmit 

Azimuth 
Uniform 

Main beam 
Look Direction 

0deg 

Jammer angle -20 deg JNR 40dB 

Target Doppler 
frequency 

100Hz SNR(target) 0dB 

Interferer Dop-
pler frequency 100Hz Interferer power 10dB 

Interferer angle -51deg 
β  (clutter 

slope) 
1 

 
Table 1: Parameters for simulation  
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Figure 1: D3 algorithm using SINR maximization 
(A) Angle pattern (B) Doppler pattern. 
 
The next simulation verifies the performance of the hybrid 
algorithm to detect targets in the non-homogeneous environ-
ment. In this simulation, two targets are injected to range bin 
50 and 56, the power of targets are 0dB and 8dB respectively. 
Since two target signals are present in range bins which are 
close to each other, the interference estimation was strongly 
affected by other signal. 
The clutter environment is assumed to be non-homogeneous 
and the strong discrete interferer is injected at range bin 100. 
This non-homogeneous environment is based on the SIRV 
clutter model [7-9]. 
 In this example we use  ηa = 3 and ηd = 3 for the JDL algo-
rithm and ηd = 3 for the Σ∆ algorithm. 36 range cells are used 
to estimate the covariance matrix in the JDL case while only 
24 are used to estimate the covariance matrix in the case of 
the hybrid Σ∆ algorithm.  



Figure 2 represents the performance of the JDL hybrid algo-
rithm while Figure 3 represents the performance of the hybrid 
Σ∆ algorithm. The performance of the Σ∆ Hybrid algorithm is 
similar to that of the original hybrid-JDL, however at signifi-
cantly lower computation cost (6 instead of 9 D3 solutions are 
required). 
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Figure 2: Hybrid JDL for target detection 
(A) JDL only  (B) Two stage Hybrid algorithm using JDL. 

 
As shown in Figure 2(A) and 3(A), when we use statistical 
algorithm only, the weak target is obscured because of the 
strong target effect. Since the strong target data is the one of 
the secondary data, the weight computation is affected by that 
signal. The obtained weights have a null in the direction of 
weak target. If the NHD is used, the strong target range bin is 
identified as non-homogeneous cell and removed from secon-
dary data then the weak target can be detected. However 
NHD could not be enough to deal with the discrete interferer. 
When we use the hybrid algorithm for this environment we 
can detect both two targets (strong and weak) and handle the 
discrete interferer well. This result is illustrated in Figure 2(B) 
and 3(B). 

4 Conclusions 

This paper has presented a revision of the available hybrid 
JDL algorithm designed for non-homogeneous clutter. The 
hybrid algorithm using the revised D3 algorithm as the under-
lying non-statistical algorithm and Σ∆ STAP as second stage 
statistical algorithm is developed here and shown to be very 
effective. The revised D3 algorithm is significantly more sta-

ble since it does not require an emphasis parameter. The hy-
brid Σ∆ algorithm has significantly lower computation load, 
addressing one of the key drawbacks of the original hybrid 
algorithm.  
 

In this paper, the non-homogeneous clutter environment was 
modelled as SIRV and JDL or Σ∆ STAP was used as NHD. 
There are several NHD schemes for SIRV clutter model 
which has good performance result. Then these kinds of NHD 
can be applied to implemented hybrid algorithms. Another 
non-statistical algorithm which replaces D3 will be studied 
and used to hybrid algorithm. 
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Figure 3: Hybrid Σ∆ STAP for target detection 
(A) Σ∆ STAP only  (B) Two stage Hybrid algorithm. 
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