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Simultaneous Extrapolation in Time and
Frequency Domains Using Hermite Expansions
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Abstract—The time-domain response of a three-dimensional and frequency-domain responses are of finite support for all
(3-D) conducting object is modeled as an associate hermite (AH) practical purposes. The energy content of the response is

series expansion. Using the isomorphism of the AH function and m st entirely concentrated in a finite portion of the time
its Fourier transform, the frequency-domain response can be
and frequency axes.

expressed as acaledversion of the time-domain expansion. Using . ) . .
early-time and low-frequency data, we demonstrate simultaneous ~ FOr these responses, an optimal choice of basis functions
expansion in both domains. This approach is attractive because would, therefore, be one that provides compact support. The

expansions with only 10-20 terms give good extrapolation in associate hermite (AH) series is well suited for signals with
both time and frequency domains. The computation involved is  compact support [2]. The isomorphism between the AH func-
minimal with this method. . . . .
tion and its Fourier transform allows us to work simultaneously
Index Terms—Frequency-domain analysis, time-domain anal- with time- and frequency-domain data.
ysIS. In the next section, we introduce the AH functions and
set up the matrix equation of the problem. In Section Il we
I. INTRODUCTION discuss some numerical results. Finally, some conclusions are

. L " resented in Section IV.
N electromagnetic analysis, field quantities are usually as-

sumed to be time harmonic. This suggests that the solution
lies in the frequency domain. The method of moments (MoM), [l. FORMULATION
which uses an integral equation formulation, can be used toConsider the set of functions [2]
perform the frequency-domain analysis. However, for broad-

band analysis, this approach can get computationally very Hn(§) (;Zz—tzz

intensive; as the MoM program needs to be executed for each hn(t, 1) = Vol \/7_rl’ nz0 (1)
frequency of interest and for high frequencies, the size of the '

matrix can be very large. where H,,(¢) is the hermite polynomial of order, with [ as

The time-domain approach is prefered for broad-band analscaling factor ana! represents factorial of.
ysis. Other advantages of a time-domain formulation include The hermite polynomials can be computed recursively by
easier modeling of nonlinear and time-varying media and use

of gating to eliminate unwanted reflections. For a time-domain Ho(t) =1
integral equation formulation, the method of marching on in Hi@t)y=2t
time (MoT) is usually employed. A serious drawback of this H,(t) = 2tH,_1(t) — 2(n — 1)H,_5(t). )

algorithm is the occurance of late-time instabilities in the form
of high-frequency oscillations [1].

_ In this paper, we present a technique to overcome the lateThe set of functiong., (¢, 1) constitute a set of orthonormal
time oscillations. Using early-time and low-frequency datgyasis functions referred to as AH functions [2]. They can be

we obtain stable late-time and broad-band information. Themputed recursively using (1) and (2). The recursion relation
MoM approach can efficiently generate low frequency datg, s optained is

while the MoT algorithm can be used to obtain stable early-

time data quickly. The overall analysis is thus computationally,, (¢) = L[\/éthn—l(t) — V= Tha_a(2)], n>2.
very efficient. n
The time- and frequency-domain responses of three- 3)

dimensional (3-D) conducting objects are considered in
this paper. It is assumed that the conducting structures are . _
excited by band-limited functions such that both the time® signal z(¢) can be expanded into an AH series as
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aboutt = t, rather than at = 0; wheret, is roughly around
half the time support of(¢). This is because the AH functions
provide equal support on either side of the center of expansion.
So centering the expansion abégitvould require lesser terms

in the expansion. Therefore, we now work with the transform
pair x(t + to) « 2™ X(f).

The choice of the scaling factdr; is crucial because it
also affectsl, and1; and 1, decide the amount of support
given by the AH functions to the time- and frequency-domain

: _ : : : responses, respectively. given about 50-60% of initial time-
0.8l —t — L - L . domain data and an equal amount of low-frequency data with
a proper choice ofV (the order of the expansion) angd (the
Fig. 1. Associate hermite functions of order zero to four. scaling factor) it is possible to extrapolate in both domain.
In all the examples, a choice @f is made such that the
where axis andf axis are roughly scaled t6-6, 6). The order of
expansion(N) varies between 10-20 for different examples.
h(t/1) = Vihn(t, D). (5)  The value of N can be decided by choosing a cutoff for the
magnitude of the coefficients, i.e., discarding the ones which
die out. Choosing an unnecessarily large will introduce
g%cillations in the extrapolation region. The coefficients are
obtained by solving a least-squares problem, using singular-
Yﬁél']e decomposition (SVD) [7]. Even though the matrix is
Il conditioned, this is not a real problem as one is doing an
approximation of the function.

Normalised Amplitude

Equation (5) is for notational convenience.

AH functions of order zero to four are plotted in Fig. 1
These functions provide finite support for all practical purpos
and by varying the scaling factdr the support provided by
the expansion can be increased or decreased. The odd o
functions are odd and the even order functions are even.

A signal with compact time support can be expanded as

N . .
o(t) = Za\/—?—hn(t/h)- ©6) A. Matrix Formulation -
n=0 V'l Let M; and M, be the number of time- and frequency-
Using [3, p. 53, egs. (14), (15)] domain samp!es that are given. Then the matrix representation
of time-domain data from (6) would be
2 2 [ 2
—t?2/2 —(_1ym, [~ -y /2
¢ " Hom(t) = (—1) \/;/0 e ¥ /2Hym(y) cos(ty) dy ho(ti /1) ha(ti/l) - hy_i(ti/L)

ho(tg/ll) hl(tg/ll) hN_l(tQ/ll)

—12/2
c / H27n+1

(1 : S .
[e9) ho(t 1 [ hi(t 1 [ oo haoq(t L l N
= (—1)’"\/2/0 C_y2/2H2m+1(y) sin (ty) dy  (7) olta /) ha(tarn /1) N1(tan /1) My XN

ag z(t1)
ai z(t2)
. . o =i | . )
it can be shown that the Fourier transformudgt) is given by :
N/2 aN—-11 nx1 z(tar, ) M x1
X(f)=Y (-1
n=0 The real part ofX(f) from (8) can be represented by the
Gon ;s d2n41 even order AH functions as (10), shown on the next page.
——hon(f/l2) — j—Fhoy, l ) X
% [\/E 2n(f/12) = N/ +1(1/l2) The imaginary part ofX(f) from (8) can be represented by
N a the odd order AH functions as (11), shown on the next page.
= Z(—j)"—"l’hn(f/b) (8) Combining the three matrix equations we get (12), as shown at
n=0 Vi the bottom of the next page. The coefficients of the expansion

are obtained by solving this matrix equation.
wherel, = ﬁ (Here NV is assumed to be even). Note that
the real part of the transfort¥ (/) denoted byX r(f) is even
and the imaginary part oK (f) denoted byX;(f) is odd, as
expected for reak(¢). Therefore,Xr(f) can be represented In this section, five examples are presented to validate the
by the even order AH functions and;(f) can be representedabove technique. A program to evaluate the currents on an
by the odd order AH functions. It is important to note thaarbitrarily shaped closed or open body using the electric field
the Hermite polynomials are the eigenfunctions of the Fourigritegral equation (EFIE) and triangular patching is used [5].
transform operator. The rationale for doing this is that we are going to use the
To expand a causal signal(t) (i.e., z(¢) = 0 for ), using EFIE both in time [6] and in frequency domain [5]. We
the AH functions as a basis, we prefer to center the expansigtilize the same surface patching scheme for both domains,

I1l. NUMERICAL EXAMPLES
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hence, eliminating some of the effects of discretization from Although the program can be used with an arbitrary excita-
this study. The triangular patching approximates the surfatien, we used a linearly polarized plane wave with a Gaussian
of the scatterer with a set of adjacent triangles. The currepofile in time. The excitation has the form
perpendicular to each nonboundary edge is an unknown to be
solved for. The frequency-domain data was generated using

the program described in [5].

- ‘\/2
EY =wFEpe 7

(13)

ho(fi/l2)  —ha(f1/12)
ho(fo/l2)  —ha(f2/l2)

’10(f1\.42/l2) —’12(f.1\42/l2)

—h1(f1/12)
—hi(f2/l2)

ha(f1/12)
ha(f2/l12)

Ch(fan 1) ha(fa, fla)

[ ho(t1/l1) hi(ti/l1)
ho(tﬁ1 /1) hl(tl\.h /l)
ho(f1/12) 0
holfanfla) 0
0 —hi(f1/l2)
] —h1(far, /12)

(—D)N2"hy 1 (fi/l)
(=D hy_y(f2/12)

(=N 2y (fan /12) Mo xN/2

N/2x1
(—1)]\:/2’11\’—2(f1/12)
(=D)N2hy_o(f2/12)
(=D 2hn—o(far, 12) 4 ppy s
ai Xl(fl)
a:g _/h X1§f2)
aN—11 ny2x1 Xr(far) My x1

hn_a2(t1/l1) hy-1(t1/la) |
hN_Q(t.]wl/l1) hN—l(t.J\ll/ll)
0 (=N hy 1 (f1 /1)
0 (~D)N 2 hyy (fary /o)
(=1)N2hy_a(f1/l2) 0
(—DN2hy _a(fas, /12) 0 J (420 <N
r Va(ty)
. \/Ex.(t/w])
. VI XR(f1)
a9 _ .
- \/EX};’.(sz)
N=1dnxa VX (/1)
WVEXT(frn) d (vyron)

(12)



RAO et al: SIMULTANEOUS EXTRAPOLATION IN TIME AND FREQUENCY DOMAINS USING HERMITE EXPANSIONS 1111

e N Orgnasgl

.... Extrapolated signal

x(t)

e
s S U GO S S B
0 05 1 15 2 25 3 35 4
time (seconds) x10°
Fig. 2. Triangle patching of a disk. Fig. 3. Time-domain response of the plate.

where In these examples, causality is enforced only numerically by

(t —to — r.K) centering the approximation by the AH functionstat 1y,

Y= (14) somewnhere in the middle of the time-domain data.

7 Example 1—Square Platedn this example, we have a

w; is the unit vector that defines the polarization of thggyare plate of zero thickness and side 1m centered at the

incoming plane wave: origin and in thezy plane. Eight divisions are made in
1) E, is the amplitude of the incoming wave; the z direction and nine in the; direction. By joining the
2) o controls the width of the pulse; diagonals of each resulting rectangle, 144 triangular patches
3) to is a delay and is used so the pulse rises smootiljth 199 unknowns are obtained. The excitation arrives from
from zero for time¢ < 0 to its value at time; the directiond = 0, ¢ = 0; i.e., along the negative direction.
4) r is the position of an arbitrary point in space; u, is along thex axis. The time step used in the MoT program
5) kis the unit wave vector defining the direction of arrivajg 92.5%s. In this exampleg = 2ns and# = 10ns.
of the incident pulse. Using the MoT algorithm, time-domain data is obtained

To find the frequency response to the above Gaussian plérgn ¢+ = 0 to ¢ = 36.94ns (400 data points) and frequency-
wave, the frequency response of the system is multiplied Bgmain data is obtained from dc b= 298 MHz (150 data
the spectrum of the Gaussian plane wave. The spectrunpisints). Assume that only the first 200 time-data points (up to
given by t = 18.43ns) and the first 60 frequency-data points (up to 118
. lwo)2 /9t MHz) are available. Solving for the matrix equation (12) using
F(jw) = Varoerllerl /arienl, w=2rf. the available data, the time-domain response is extrapolated to
The bodies chosen are a plate, a disk, a sphere, a cuff0 points (up tot = 36.94ns) and the frequency-domain
and a cone-hemisphere combination. All bodies are assunig@Ponse is extrapolated to 150 points (upfte- 298 MHz).
to be perfectly conducting. Fig. 2 shows an example of tffaiven a time-bandwidth product of 2.175, we extrapolate to a
triangulation scheme used. The figure shows a disk beifi@e bandwidth product of 11.
approximated by 128 triangles and 208 edges. In all our The order of expansio(lV) was chosen to be 20 and the
computationsEy is chosen to be 377 V/m. The time stfyt) time-domain signal was centered about its first zero-crossing
is dictated by the discretization used in modeling the geometr§., to = 11.11ns (denoted by *” in the plots). A choice of
of each example. The frequency stef) is 2 MHz. In all (> was made such that the frequency range of available data
examples, the extrapolated time-domain response is compai@gsuming around 50% is available), was mapped-@ ( 3).
to the output of the marching-on-in-time (MoT) program [6]This ensures that the time (with the time shift) and the
And the extrapolated frequency-domain response is compafegfiuency axes are roughly mapped in the rangé, (6).
to the frequency response obtained from the MoM program [5]. From Fig. 3, it can be seen that the time-domain reconstruc-
In all the plots,extrapolated signatefers to the extrapolatedtion is almost indistinguishable from thectual (MoT) data.
response using AH expansions whddginal signal refers to The reconstruction in the frequency domain is also very good,
the data obtained from the MoT or MoM program. as can be seen from Figs. 4 and 5.
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Fig. 4. Frequency response of the plate; real part.
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Fig. 6. Time-domain response of the disk.

imag(X(f)
8

— e~ Original signal

... Extrapolated signal
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frequency (Hz)

real(X(f))

Fig. 5. Frequency response of the plate; imaginary part.

Example 2—Disk:A disk of radius 3 m of zero thickness |
lies in the zy plane and is centered at the origin. The . : .
triangulation uses 128 triangles resulting in 208 edges. Thirty- ° ! ? frequency (Ha) < 10°
two of the edges are boundary edges, yielding 176 unknowns. _

The excitation arrives fron® = 0, ¢ = 0, i.e., along the "9 7+ Frequency response of the disk; real part.
negativez direction.u; is along ther axis. Heres = 1ns and
to = 10ns. The time step used is 47 76 From Fig. 6, it can be seen that the time-domain recon-

In this example, the MoT algorithm is used to obtain timestruction is almost identical to thactual (MoT) data. The
domain response from = 0 to ¢ = 23.83ns (500 data reconstruction in the frequency domain agrees closely with
points). And the frequency-domain response is obtained usiagtual MoM data, as can be seen from Figs. 7 and 8.
the MoM program from dc tof = 598 MHz (300 data  Example 3—SphereA sphere of radius 0.5m centered at
points). Assume that only the first 290 time-data points (uthe origin is considered next. The top half of the sphére-
to ¢ = 13.80ns) and the first 120 frequency-data points (up to 6 = 7) has six divisions in thé direction. The firstring
J = 238 MHz) are available. Using this data, the time-domaiextends fromé = 0 to ¢ = {;. The other five rings are
response is extrapolated to 500 points (up t023.83ns) and  equispaced il from ¢ = - to 6 = 7. Each ring starting from
the frequency-domain response is extrapolated to 300 poittte top has 6, 16, 20, 24, 28, and 32 triangular patches. The
(up to f = 598 MHz). Given a time-bandwidth product of sphere is symmetric with respect to thg plane. This scheme
3.28, we extrapolate to a time-bandwidth product of 14.25.is chosen so all triangles are as close to equilateral as possible.

The order of expansiofV) was chosen to be 16 and thdf the ¢ direction were also divided uniformly, the triangles
time-domain signal was centered about its first zero crossimgould be skewed. Also, this scheme allows us to evaluate the
i.e., to = 10.60ns. A choice ofl, such that the frequency current at the point€0.5, 0.0, 0.0). The excitation arrives
range of available data was mapped +B( 3). This ensures along# = 7, ¢ = =, i.e., along ther direction. u; is along
that the shifted t-axis and the f-axis are scaled in the rantfee > axis. In this exampley = 3ns andty = 22ns. The time
(-6, 6). step used in the MoT program is 0.19943
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Fig. 8. Frequency response of the disk; imaginary part. Fig. 10. Frequency response of the sphere; real part.
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. frequency (Hz) x 10°
... Extrapolated signal . . .
Fig. 11. Frequency response of the sphere; imaginary part.
-1.5F -
can be seen that theal andimag parts also have reasonably
good reconstruction using the AH expansions.
: ; Example 4—Cubein this example, a cube of side 1 m
2 ; > 3 : . 5 ; centered at the origin with its faces lined up along the three
time (seconds) «10®  coordinate axis is considered. The facesrat= 0.5m and
x = —0.5m have five divisions in the and > direction. All

Fig. 9. Time-domain response of the sphere. L . . . . .
9 P P other faces have four divisions in one direction and five in

the other. This allows us to find the current at the center of
The time-domain response is obtained using the MoT ahe top face. The excitation arrives from the directébe: 0,
gorithm from¢ = 0 to ¢ = 69.60ns (350 data points) and o — ¢, j.e., along the—z direction. u; is along thez axis.
the frequency-domain response is obtained using the MaM this examples = 2.357ns andt, = 20ns. The time step
program from dc tof = 198 MHz (100 data points). Using chosen for the MoT program is 0.157/4.8
the first 180 data points (up tbo= 35.7ns) and the first 50  The time-domain response of the cube, is calculated using
f-data points (up tgf = 98 MHz), the time-domain responsethe MoT algorithm fromt = 0 to ¢ = 46.98ns (300 data
is extrapolated to 350 points (up to= 69.6ns) and the points). And the frequency-domain response is calculated with
frequency-domain response is extrapolated to 300 points (e MoM program fromde to f = 298 MHz (150 data
to f = 198 MHz). In this example, given a time bandwidthpoints). Assuming that only the first 188data points (up
product of 3.45, we extrapolate to a time bandwidth produgi + = 28.93ns) and the first 60f-data points (up tgf = 118
of 13.78. MHz), the time-domain response was extrapolated to 300
The order of the expansidriV) was chosen to be 15 and thedata points (up t¢ = 46.98ns) and the frequency-domain
time-domain signal is centered aboult its first zero-crossing i.eesponse is extrapolated to 150 points (upfte: 298 MHz).
to = 24.13ns. Iy is chosen such that the frequency range @iven a time-bandwidth product of 3.41, we extrapolate to a
the available data is mapped teg, 3). This ensures that thetime-bandwidth of ten.
shifted¢ axis and thef axis are mapped in the range§, 6). N was chosen to be 15 and again thdomain response
The time-domain response reconstruction is agreeable to th&s centered about its first zero-crossing, g+~ 21.68ns.
actual MoT data, as seen in Fig. 9. From Figs. 10 and 11 # is such that the frequency range of the available data is
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Fig. 14. Frequency response of the cube; imaginary part.
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Fig. 13. Frequency response of the cube; real part. Fig. 15. Time-domain response of the cone.
. . . 2 5 2 2
mapped to £3, 3). This ensures that the shiftedaxis and t0 6 = 3, 6 = 5 to 6 = 5F, andf = 5 to § = 3. Each
the f axis are mapped in the range§, 6). ring starting from the bottom has 13, 28, and 32 triangular

From Fig. 12, the time-domain response can be seen p@iches, respectively. Such a triangulation scheme allows for
closely agree with thactualMoT data. The frequency-domainthe current at the point{0.1, 0.0, 0.0) to be evaluated.
reconstruction is agreeable in comparison to abtial MoM The excitation arrives fron# = %, ¢ = =, i.e., along the
data as can be seen from Figs. 13 and 14. « direction.y; is along thez axis. In this exampley = 6ns

Example 5-Cone-Hemispherén this example, we have aandt, = 25ns. The time step used is 90,82 The frequency
combination of a cone and hemisphere with the hemispheitep used is 2 MHz.
attached to the base of the cone and their center at the originThe time-domain response is calculated using the MoT
The base of the cone and hemisphere have a radius of pragram from¢ = 0 to ¢t = 90.30ns (67 points using
and the height of the cone is 2m. The central axis of tfevery 15th point in the time-domain data). This was done
combination lies in thez direction. so that in the least-squares analysis, both #ti®main and

The triangular patch approximation for the cone has sjkdomain data have the same weightage and the frequency-
divisions in thez direction. The planes defining the “rings” aredomain response is calculated using the MoM algorithm from
atz =20, 2=1.75, =14, =1.05 2 =0.7, . = 0.35 dcto f =98 MHz (50 data points). Using the first 38data
andz = 0. Each ring starting from the top has 7, 16, 20, 24oints (up tot = 40.59ns) and the first 25f-data points (up
28, and 32 triangles, respectively. The hemisphere has thteef = 48 MHz), the time-domain response is extrapolated
divisions in the# direction. The “rings” extend from# = = to 67 points (up ta = 90.30ns) and the frequency-domain
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early-time and low-frequency information. This, coupled with
the fact that expansions of orders less than 20 give good
representation of the signals in both domains ensures that this
method is computationally very efficient.

In this paper, we have applied this technique to the problem
of extrapolating the current on a scatterer being excited by
a uniform plane wave. Five scatterers were considered—a
plate, disk, sphere, cube, and cone. Using early-time and
low-frequency data, we have demonstrated good extrapolation
in both domains. It appears from the limited examples that
one can extrapolate the time-bandwidth product of responses
typically by a factor of three to five. Currently, work is
underway to determine the limiting factors of this methodology
and how far the data can be extrapolated without significant
errors. The minimum time-bandwidth necessary to carry out
extrapolation is also being investigated.
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data to (3, 3). This ensures that the shiftedxis and thef
axis is mapped in the range-6, 6).

From Fig. 15, the extrapolated time-domain response is
agreeable with the MoT data. The frequency-domain respongegan K. Sarkar (S'69-M'76-SM'81-F'92), for a photograph and biogra-
are seen to agree reasonably well with #atual MoM data, phy, see p. 493 of the April 1998 issue of thisANSACTIONS
as can be seen from Figs. 16 and 17.

urli Mohan Rao, photograph and biography not available at the time of
lication.

IV. CONCLUSIONS Tricha Anjali, photograph and biography not available at the time of

This paper deals with the problem of extrapolation usirfy®cation-
both time- and frequency-domain data. We have presented
a new mathematical technique to perform simultaneous ex-

trap()latioln in. both domains_ }Jsing the AH eXpanSiqns- Trﬁ?aviraj S. Adve, for photograph and biography, see p. 493 of the April 1998
computation involved is minimal because we require onlysue of this RansacTioNs



