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Abstruct- The Hilbert transform relates the real and the 
imaginary parts of the transfer function of a causal system. The 
objective of this paper is to illustrate how the Hilbert transform 
relationship can be utilized to interpolate/extrapolate measured 
frequency domain responses of devices. Sample numerical exam- 
ples are presented to illustrate the efficacy of this method. 

I. INTRODUCTION 
YSTEM measurements in the time domain are easier S to perform since the waveforms of interest are all real. 

However, one disadvantage of performing measurements in 
the time domain is limited dynamic range. Frequency domain 
measurement equipment benefits from large dynamic range. 
Furthermore, frequency domain measurements may be carried 
out either over an entire range of frequencies or selectively 
over a band of frequencies. Theoretically, it is possible to 
extract a time domain response from these measurements by an 
inverse Fourier transform. But, if the measurements are made 
in a noisy environment, or over a selected band of frequencies, 
it is difficult to recover the entire time domain response. 

The time domain response of a physical system is always 
causal, since the signal is nonzero only after a certain interval 
of time. However, since band-limited complex frequency 
domain data does not guarantee causality in the time domain, 
nor a real time domain response, measurements carried out 
in the frequency domain do not truly represent the transient 
response of the system. Even so, we establish that it is 
possible to extract a causal response by interpolating the 
complex frequency domain data under the premise that the 
time domain signal must be causal. We use the principle of 
causality to extrapolatehnterpolate frequency domain response 
[I]. 

In general, the real and the imaginary parts of the com- 
plex frequency domain data are independent of each other. 
However, the causality of the time domain signal, denoted as 
h( t ) ,  assures us that the real and imaginary components of the 
frequency domain are related through the Hilbert transform. 
If we denote Na( jw)  as the real part and H s ( j w )  as the 
imaginary part of the transfer function, H ( j w ) ,  obtained from 
the Fourier transform of h( t ) ,  then, from causality, they 
have to be related by the Hilbert transform [I]-191. The 

Manuscript received January 13, 1995; revised June 14, 1996. 
S. M. Narayana, G. Rao, R. Adve, and T. K. Sarkar are with the Department 

of Electrical and Computer Engineering, Syracuse University, Syracuse, NY 
13244-1240 USA. 

V. C. Vannicola, M. C. Wicks, and S. A. Scott are with the U.S. Air Force 
Rome Laboratory, Rome, NY 13441-4514 USA. 

Publisher Item Identifier S 001 8-9480(96)06896-2. 

physical principal of causality imposed some constraints on1 
the real and the imaginary parts of the transfer functions. Tlhe 
relationship was originally developed by Kramers and Kronig 
[2]-[4]. James and Andrasic [5] have used this approach to 
minimize the effects of noise on experimental data. Arabi e! 
al. [6] has used the Hilbert transform technique to generate 
causal time domain responses of multiconductor transmission 
lines by enforcing the Kramers-Kronig relationship between 
the dielectric constant and the loss tangent of any dielectric 
material. Tesche has used this technique [7] and [8] to generate 
a causal time domain response from bandlimited frequency 
domain data. The property that the real and the imaginary parts 
of the frequency domain data correspond to the even and odd 
parts of h(t)  is exploited in extracting a causal response from 
complex band-limited frequency domain data. 

Since we process discrete frequency domain data, we handle 
frequency and time domain signals in the form of sequerrces. 
Numerical results are presented to demonstrate the utility of 
this technique. 

11. INTERPOLATIONEXTRAPOLATION 
OF FREQUENCY DOMAIN DATA 

A technique to extrapolatehnterpolate data in the frequency 
domain utilizing the Fourier Transform to implement h e  
Hilbert transform is described. Before the algorithm is de- 
scribed, it is useful to know something about the availialble 
frequency domain data. Assume that we have a complex fre- 
quency domain data between frequencies fi and f 4 .  Consider 
a missing band between f i  and f3. The frequency domain data 
is sampled at ( T Q - R ~ )  frequency points between f i  and f l ,  and 
at (724-713)  points between f 4  and f 3 .  This is expressed as a 
vector 

It is now our objective to interpolate this missing data between 
nz and ~ 3 .  As a first step: 

1) The available bandlimited frequency domain data 
is padded with zeros to ensure a length of n 
points where n is given by N / 2  + 1, and N is 
[2, 4, 8 ,  . . . , 1024, 2048. . . .], providing a sequence of 
even length. The complex data is now given by 

0018-9480/96$05,00 0 1996 IEEE 



I622 lEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 10, OCTOBER 1996 

CRIGINAL DATA 
O B  I 

DRICINAL DATA unn HISSIPX: witm 

0 50 100 150 200 
-0.8' 

250 300 350 400 4 5  

(c) 

0 50 100 150 200 250 300 350 400 450 

( e )  
Fig. 1.  These are plots of the frequency domain data of a microstrip band-pass filter [Interpolation results:l. (a) Plot of  the real and imaginary parts of the 
original data. (b) Plot of the real and imaginary parts of' the original data showing the missing band. (c) Plot of reconstructed real part of the original real part. 
(d) Plot of reconstructed imaginary part of the original imaginary part. (e) Plot of log-magnitude of both the original and the reconstructed data. 

Hn3. ' ' ' . Hn4, 0. 0, . . . , 01. (2) 

2)  This complex sequence is altered to obtain a complex 

complex conjugate of the sequence to the original data 

H [ 1  : N ]  = [H[1  : N / 2  + 1 ] ; H [ N / 2  : 211. (3) 

3) The complex sequence is now split into its real and 

4) An inverse discrete Fourier transform of H B  results in 
an even sequencle 1iC< [n] 

consequence of length N .  This is done by appending the he (1 : N )  = Real [IFFT(HR)] (6)  

h,[n] = he[-n,]. (7)  

and 

This is in fact the even part of the time domain 
sequence. The numerical implementation and the prop- 
erties of the Hilbert transform may be found elsewhere 
[ I l l .  

5) Before proceeding further, it is important to know that 
(4) there are sharp discontinuities in the frequency domain 
( 5 )  signal. In order to deal with this situation, we will 

imaginary parts 

H n  = Real [ H ]  
H I  = Imag [HI. 
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Fig. 2. These are plots of the frequency domain data of a microstrip band-pass filter. [Extrapolation results]. (a) Plot of the real and imaginary parts 
of the original data showing the missing band. (b) Plot of real and imaginary parts of the reconstructed data. (c) Plot of log-magnitude of both the 
original and the reconstructed data. 
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Fig. 3. These are plots of the frequency domain data of another microstrip filter [Interpolation of a considerably large number of missing points]. (a) Plot 
of the real and imaginary parts of the original data. (b) Plot of reconstructed real part and the original real part showing the missing points. (c) Plot of 
reconstructed imaginary part of the original imaginary part showing the missing points. 
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Fig. 5. These are plots of the frequency domain data for a microstrip notch filter. (a) Plot of the real and imaginary parts of the original data. (h) Plot 
of reconstructed real part and the original real part showing the missing points. (c) Plot of reconstructed imaginary part and the original imaginary part 
showing the missing points. (d) Plot of log-magnitude of both the original and the reconstructed data. 
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have to multiply the time domain sequence with a 
window. 

A Hanning window of length N is multiplied with the 
time domain sequence. The resulting frequency domain 
sequence will now be filtered or "smoothed" [lo]. 

The Hanning window is given by 

0.5 cos (27rn) 
N 

otherwise 

Hence 

h,(l : N) = he( l  : N) * W ( l  : N )  (9) 

where the * denotes the convolution. 
The odd sequence is obtained from the even sequence 
by making use of the relationships available in [1 11. 

We have 

h,(l : N )  = [O h"(2 : N / 2 )  0 -h,(N/2 + 2 : N ) ]  
(10) 

h,[n] = -/Lo[-n]. (11) 
and 

The discrete Fourier transform of this odd sequence 
will give the imaginary part of the spectrum as stated 
earlier 

(12) 

A substitution for the missing points is made in the imag- 
inary part of the original sequence using the sequence 
obtained in Step 7) 

H,""" = Imag [FFT( h,)]. 

H p  = [HF""(l : 711 - l), 

HI(.nl : n2), 

HI"'"(n2 + 1 : n3 - 1), 

HI(n3 : R4),  

H;"""(nq + 1 : N / 2  + l)] .  (13) 

This sequence is copied to obtain a sequence of length N 
which is an improved version of the original sequence 
H I  

H f u b  = [ H s U b [ l  : N / 2  + I ] ,  - H f U b [ N / 2  : 211. (14) 

10) The inverse discrete Fourier transform of this sequence 
will give us the odd sequence again 

,Few = IFFT[jHfUb"] (15) 

h[n] = he[n] + h,[n]. 

,Few = [h,(l), h',"""(2 : ../a), he(N/2  + 1), 

since 

(16) 

11) We get the modified version of h,, from 

-h;""(N/2 + 2 : N ) ] .  (17) 

12) The discrete Fourier transform of this sequence ob- 
tained in the previous step will give us the real part of 

the spectrum as stated earlier 

H y W  = Real [FFT( h;"")]. (18) 

A substitution for the missing points is made in the 
Real part of the original sequence using the sequence 
obtained in Step 12), as 

H?b[H;le"(l : n1 - 1), 

HR(n1 : %), 
Hg"(n2 + 1 : n3 - l), 

HR(n3 n4), 

H?"(nq + 1 : N / 2  + l)]. (1'3) 

This sequence is copied to obtain a sequence of leng1.h 
N 

HPb5 = [H?b[l : N / 2  + 11, 
H?b[N/2 : 211 (20) 

which is an improved version of the original sequence 
H R  . 
The resulting sequence is subject to an inverse discrete 
Fourier transform to obtain the even sequence 

he( 1 : N) = Real [IFFT ( H p b s ) ] .  (2 1) 

As in Step 5), this time domain sequence is multipllicd 
with the Hanning window. 
Subsequent signal processing are iterations of Steps 

above procedure will interpolate the missing band 
6)-16). 

of frequencies. The reconstructed sequence will now be the 
complex sequence given by 

HR""[l : n4] = H p [ l  : nq] + jHp*s[l  : 7241 (2%) 

and by comparing with (1) we have 

H R e c  [I : nq] = 
Rec Rw 

[&I, . . ' , Hn2. ' . . , Hn2+1, . ' ' , Hn3-1, Hn3. ' . ' 5 Hn4j. 

(23) 

It is worthwhile to note that by making use of the Hanniirrg 
window, although we have overcome the difficulties due to 
discontinuities at the ends of the missing band, we might suffer 
a loss of resolution. This is not a serious problem and its effects 
can be minimized as shown in the numerical examples. 

111. NUMERICAL RESULTS 
As a first example consider the frequency domain data of 

a microstrip filter measured using the HP 8510B Network 
Analyzer. The device is a band-pass filter and its characteristics 
are measured at 415 points from 4.2069-8.5 GHz as shown in 
Fig. l(a). Since in this example, the final result of interest is 
extrapolatiodinterpolation of the data in the frequency domain, 
translating the frequency axis by equating 4.2069 to 0 GHz 
does not really affect the results. In this example, we throw 
away the data points from 161-219 which corresponds, to 
the frequency points of 5.4875-6.2375 GHz, as shown in 
Fig. I(b). The missing data points are replaced by zeros, and 
the data is padded by zeros from 416-1025 sample points. The 
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objective is to interpolate the missing data values by utilizing 
the principles of Section 11. 

Fig. 1 (c) describes the interpolated data points utilizing 
the iterative principles described in Section IV to interpolate 
samples 161-219. In Fig. l(c) and (d), the reconstructed data 
is compared to that of the original data, both in the real and 
in the imaginary parts, respectively. Fig. l(e) plots the log- 
magnitude plot of the bandpass filter with both the real data 
and the reconstructed data superimposed. So for this example, 
the objective has been to interpolate part of the pass band 
response from stop band data. 

For the second example, we try to extrapolate the stop band 
data from the pass band response. Again Fig. l(a) displays 
the 415 point band-pass filter data. Out of the 415 points, data 
from 1-80 and 3 1 0 4 1 5  points are discarded. These are the 3 
dB points of the filter. This is equivalent to discarding the data 
from 3.54.9875 GHz and 6.5875-8.5 GHz. This is shown in 
Fig. 2(a). The extrapolated data is generated by utilizing the 
Hilbert transform iteration, described in the previous section. 
The extrapolated data matched well with the original data as 
illustrated by Fig. 2(b) and (c). It was difficult to match the 
out of band response below 30 dB, because the 50 [I matched 
loads used in our experiments had a S11 value, which did not 
go below 30 dB. 

For the third example consider the measured data of a 
microstrip filter measured between 4.2069-8.001 3 GHz using 
468 points. The data is shown in Fig. 3(a). We now remove a 
large number of data points in the pass band from 201-270. 
The Hilbert transform technique was used to fill in the missing 
data points producing interpolated responses for the real and 
imaginary parts of the data as shown in Fig. 3(b) and (c). The 
interpolated data agrees well with the original data shown in 
Fig. 3(a). 

For the fourth example consider the interpolation of input 
impedance of a dipole antenna. The antenna is considered to 
be 2 m (= L )  long and of radius 0.1 mm (-R). The input 
impedance of the center fed dipole was computed at every 
1 MHz interval up to 800 MHz and 801 data samples are 
considered. The data measured was generated utilizing the 
commercially available code AWAS 1121. The original data is 
shown in Fig. 4(a). Next we excise data from 4 0 1 4 7 0  MHz 
which is equivalent to removing a peak in the real part and a 
fraction of the peak in the input reactance of the imaginary 
part. Next the Hilbert transform relationship is utilized to 
interpolate the input impedance of the dipole antenna in the 
missing band. The interpolated data are shown in Fig. 4(b) 
and (c). Even though the peak is positioned correctly, the 
amplitudes are underestimated. It has been observed that for 
thick dipole antennas (where the L / R  ratio is small) the 
peak is reproduced more accurately than for the thin dipole 
antennas. The interpolated results more accurately match the 
actual data, since for an antenna with small LIR, the peaks in 
the impedances are wider and the FFT becomes much more 
well behaved. 

As the final example, let us consider the measured data of a 
microstrip notch filter between the frequencies 2.0-6.0 GHz. 
Fig. 5(a) shows the original data with real and imaginary parts. 
In this case, most of the first peak is removed, i.e., data points 
from 3 5 4 1 .  Fig. 5(b) and (c) shows the reconstructed real and 

imaginary parts respectively, while Fig. 5(d) shows the plot of 
the log-magnitude. The reconstructed data generated from the 
methodology described in Section I1 closely matches with the 
original data. 

IV. CONCLUSION 
Currently work is underway to find out the regions of va- 

lidity of this approach and when it breaks down. Finally, what 
is the minimum number of effective bits required in the data 
to successfully perform such data interpolation/extrapolation. 
Solution of these important problems will further enhance the 
potential of this method. 
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