Practical joint domain localised adaptive
processing in homogeneous and
nonhomogeneous environments.
Part 2: Nonhomogeneous environments
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Abstract: The second part of this two-part paper deals with spacce—time adaptive processing
(STAP) in nonhomogencous environments. This paper introduces a new (wo-dimensional non-
stalistical, direct data domain (D) STAP glgorithm and a hybridisation of this I)* approach with
the joint domain localised (JDL) algorithm. The D algorithm replaces the non-adaptive transform
used in Part | thereby suppressing discrete interference, A second stage of statistical processing in
the angle—Doppler domain suppresses residual correlated interference, This new two-stage hybrid
STAP technique allows for the application of the JDL algorithm wilkin range cells determined to
he nonhomogeneous. The development here draws heavily on the lormulation presented in Part 1
of this paper. The work presented brings together iwo difforenl aspects of STAP rescarch:
statistical and [>* processing. In doing so, this rescarch Tulfils an impariant need in the context of
practical STAT, particularly knowledge-based algorithms. The envisioned system uses multi-pass
processing to determine key information regarding the interference scenario. Depending on the
homogengity of the interference, the algorithm in Part 1 or that in Part 2 of the paper may be uscd.

1 Introduction

Classical space-time adaptive processing (STAPY algo-
rithms achicve interference suppression using the interfer-
ence  covariance  matrix, typically estimated using
secondary data from range cells close to the primary
range cell under test. The assumpiion is (hat the sccondary
data samples are independent and identically distribuicd
(i.i.d.) with respect to the interfercnce in the range cell
under test, i.c. the data is homogeneous. The performance
of statistical algorithms suffers significantly when the data
is nonhomogeneous, that is when the secondary data does
not reflect the statistics of the interforence in the primary
range cell.

In practice, the assumption of homogencous data is
routinely violated. For example, urban arcas and land-sca
interfaces present the probiem of large variations in {errain
over relatively short distances. The corresponding {luctna-
tion in clutter statistics undermines the accuracy of the
covariance malirix cstimate and, in turn, the detection
performance. Statistical algorithms may be applied in
these cases, however the probability of detection falls
and the probability of false alarm increases. These algo-
rithms reach their performance potential only within those
regions where the interference is hemogencous.
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It is impossibic Lo know & priori which range cells
within the data cube are homogencous and which arc
not. Therefore practical adaplive processing requires a
multi-pass scheme. The first pass uses a nonhemogeneity
detector (NIID) o scparate target detection into two
categories: detection within homogencous range cells and
within nonhomogeneous range cclls,

Performance degradation of STAP algorithms due to
nonhemogencous dala occurs in two forms. In one form
the sceondary data is not i.i.d., lcading to an inaccurate
cstimafe of the covariance matrix. For cxample, the clutter
stalistics m urban environments fluctuatc rapidly with
distance, i.e. range eells. To minimisc the loss in perfor-
mance due to nonhomogencous sample support, a NHD
may be used to identify secondary data cells that do not
refleet the statistical propertics of the primary data. These
data samples are then eliminated from the estimate of the
covariance matrix. A discussion of NHDs is provided
elsewhere [1-4] and is not repeated here. In pacticular,
Chang [1] presents both the generalised inner preduct
(GTP) and modified sample matrix  nverse  (MSMY)
NIIDs and is a good introduction to this rescarch
tapic.

The second form of performance loss is due to a discrete
nonhomogeneity within the primary range cell. For exam-
ple, alarge target within the test range cell but al a dificrent
angle and/or Doppler appears as a false alarm at the look
angle-Doppler domain, Other examples include a strong
discrete nonhomogeneily, such as a corner reflector, in the
primary range cell. These false alarms appear through the
sidelobes of the adapted beam pattcrn. The secondary data
cells do not carry information about the discrete nonho-
mogeneity and hence a  statistical algorithm  cannot
suppress discrele (uncorrelated) interference within the
range cell under Lest.
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The inability of statistical STAP algorithms to counter
nonhemogeneities in the primary dala motivates rescarch
in the area of non-statistical or D' algorithms. These
algorithrms use data from the range cell of interest only,
eliminating the sample support problems associated with
statistical approaches. This approach has recently foeused
on one-dimensional spatial adaptivity [5-7]. This paper
infroduces a new two-dimensional space—time D algo-
rithm based on the one-dimensional algorithm of Sarkar ef
al 7).

The main contribution of this paper is the introduction of
a lwo-stage hybrid STAP algorithim combining the benelits
of both nen-statistical and stalisticat methods, The hybrid
approach uses the non-statistical algorithm ag a first-stage
filter te suppress discrete interlerers present in the range
cell of interest. This first stage serves as an adapiive
transform from the space time domain to the angle—
Doppler domain and so replaces the steering  vector
based non-adaptive transform used in Part | ol (his paper
[8]. Modificd jeint domain Localised (JDL)} statistical
processing in the angle -Doppler domain is the sccond
stage designed to filter oul the residual correlated inter-
ference.,

This research is a contribution to STAP and the broader
ficld of knowledpe-based STAP (KB-STAP). KB-STAP [9]
chooses the best of many possible STAD algorithms for
detection with knowledge-based control ol algorithm para-
meters and sclection of secondary data using NI1Ds,
Currently KB-STAD archifectures incorporate statistical
algorithms only and a NHIY is used to climinate non-
homogencous range bins from the secondary data support.
The problem of target detection within a nonhomogencous
range hin has not been addressed. This paper addresses this
hitherto unsolved problem and therefore significantly
enhances the practical relevance of KB-STAPR, cspecially
in dense target environments,

2 Two-dimensional direct data domain
algorithm

Direct data demain algorithms use data from the range cell
of interest only, climinating the sample support problems
associated with statistical approaches, This Scetion devel-
ops the new 13* algorithm for the ideal case of a lincar
array of equispaced, isotropic, point scnsors. Section 4.2
extends the formulation to account for mutual coupling and
other non-ideal clfects in real arrays,

Consider a NM-clement lincoar array, with interclement
spacing «. The array is assumed to operatc al a conter
frequency  corresponding to wavelength A, The array
receives target, clutler and other interference returns corre-
sponding to the M pulses per coherent pulse interval (CPID.
These pulses are transmitled at a pulse repetition [requency
Fiv- The D* algorithm maximises the gain in the direction of
the look azimuth angle ¢, and Doppler frequency /. while
simultancously minimising the residual intericrence power.
This paper assumes the data has been pre-processed,
including pulse compression.

To best present the D} algorithm, the data fram N
clements due to the M pulses in & CPT can be writlen as
4 & x M matrix X whose mih column corresponds to the N
returns from the mth pulse, represented by x(m}. This
malrix is a reshaping of the length WMAf-veclor used in
Part 1. The data mawix 18 a sum of lthe ilarget and
interference returns

X=V+OC+N (1
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where £ is the tacget amplitude, € is the matrix of external
interference sources and N represents thermal noise. The
space—time steering matrix ¥ corresponds to the look angle
¢, and Doppler £, given in lerms of the spatial steering
veetor @ and the temporal steering veetor 6 ([10], pp. [2—
17).

The space lime steering matrix V' is given by

z, = (,f_;'zmpt) SitL iy (2)
7, A &)
. R
al,) = [ Iz, 2. 2 I]] (4)
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where z, represents the spatial phase progression from one
element to the next and z, represents the lemporal phase
progressinn {rom one pulse to the next. As in Part 1 a(i,)
and A(f) represent the spatial and (cmporal steering
veetors, respectively. Again, the steering veclor only sets
the look direction ¢, and look Doppler £ In case & target is
really present, there is a beam mismateh between target and
steeting vector,

Eqn. 7 indicates that, row by row, the signal component
advances [rom one element to the next by a constant spatial
multiplicative factor z, for each pulse. Similatly, at cach
clement the signal component advances from one pulse to
ile next by a constant temporal multiplicative factor z,,
indicated column to eolumn. Therefore, the signal compo-
nent is climinated from terms such as (X, - - ZS'WX[”,H},”)
and (X, — z,‘l)(”(m_l_n), leaving only residual interference
terms, 1* methods use this fact to obtain adaptive weights
that minimise the residual interference power [5, 7] within
the primarcy range cell. Defing the matrix B to be

Xop -7 Xg Xo—z ' Xeo
Xio—z'X), X —z ' X

- - 1
/\w—])n o IX{N-—]]] X(N—])I — % X(N--l)?,
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&

-ty
X(N*l'J(M—Z) = /\(.-\"—l)[ﬂrf—-l)

Theoretically the entrics of the ¥ x (M — 1) matrix # carcy
interference (cems only, but due 1o beam mismatch, therc is
some residval target informaiion in the entrics of B.
owever, unless the target is significantly off the look
direction/Doppler, the target signal is effectively nulled. In
the case where the target is significantly ofl the look
direction, it must be treated as inietlerence, in a surveil-
lance radar, targets must be declared only iT they arc in the
ook direction. In fact, sidelobe (argets are an example of
the diserele interlerence that drives this rescarch.
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Consider the following scalar functions of a set of
temporal weights w,

. 2

Gy = |bg{.-w—2)“’r| = “’:”br_ozrw—-zybgt{t,-u My (9
Ly, = ||Jl’f’3‘lv,||2 = w‘,":BE"J.?"‘wI {10)
Rwl = Gw, - IwI (l 1)

where  represents the conjugate transpose, * the complex
conjugate, ||+||> the two-norm of a vecior and by gy the
[irst {A -- 1) entrics of the temporal stecring veetor defined
by eqn. 5. Tn egn. 10, B%w, is used to remain consisient
with the term g, o s, in that the weights multiply the
conjugale of the data,

The term G, in eqn. 9 represents the gain of the weight
vector w, at the look Doppler frequency f; while the term
I in cqn. 1O represents the residual interference power
afler the data is filtered by the same weights. ITence, R, in
eqn. 11 represents the difference between the gain of the
antenna at the lock Doppler and the residual interference
power. The new D?* algorithm finds the weights that
maximise this difference. Mathemalically

”]rvn”z:ElR,,,I = max [(, -1, ]
2=

T lp=1

= max W' [Bas bl — 8 8w (12)
2=

where the constrainl ||#,]l; == 1 is chosen to obtain a finite
solution. Using the method of Lagrange muitipliers, it can
be shown that the desired temperal weight veetor is the
eigenvector corresponding to the maximum eigenvalue of
the (M — 1) x (M — 1) matvix [Beg_gbiha 2 — B
This fermulation yields a temporal weight vector of length
(M — 1), representing the degree of {rcedom used to
climinate the target signal in eqn. (8).

Analogous to the temporal adaplive weights, the spatial
weight vectar w, is the eigenvector corrcsponding to the
largest cigenvalue of the (N — 1) x (&N — 1} malrix
(o5 —2yt{hyy 3y — ATA¥], where ag.y_jy is the vector of
the first (& — 1} enttics of the spatial steering vector
defined by eqn 4 and A is the M x (¥ — 1) matrix
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.
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Overall, the fength MM spacc--time aduptive weight veetor,
for look angle ¢, and laok Dappler f; is then given by

w, w,
wn-[Je[2] o

The zeros appended to the spatial and temporal weight
vectors represent the lost degree of freedom in space and
time, This D? algorithm differs from other non-statistical
algorithms by maximising the mainbeam gain in the look
direction as opposed to maintaining the gain at some
chosen level.
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2.1 Trade-off between mainbeam gain and
interference suppression

In Section 2, the remporal adaptive weights arc chosen
from the eigenvectors ol the matrix # so as to maximise the
difference between the mainbeam gain of the anlenna Gy,
and the residual interference pawer /, . It is possible to em-
phagisc one or the other term by introducing a new
parameter k. Consider the scalar expression

max R, (€)= max [G, —x%i,]
0, =1 ‘ [ =1 ! !

= o, W] (B ayBifess—) — 1B B |,
(15)

Choosing « =0 climinates the inferference term leaving
the largest eigenvaluc cqual o gy l3 = (M — 1) with
the corresponding cigenveelor w; = bgr_ o/ 17— 2yl
Therefore, as x — 0 the D* weight vector approaches the
non-adaptive steering vector used in Parl | of this paper.

On the other hand if » is chosen to be large, the role of
the term G, is negligible and the weight veetor is
dependent an' the interference terms only. This leads 1o
emphasis on the suppression of inferference af the expense
of mainheam gain. In this case, the look direction plays a
limited rele through the torm z, in eqn. 8 and the weight
vector may vary significantly by range cell.

3 Two-stage hybrid algorithm

The main thrust of this paper is the presentalion of 3 new
hybrid approach o STAP combining the benefits of both
¥ and statistical methods. The application of interest is
the suppression of discrete nonhomogeneities within the
range cell under test. This problem is particularly signifi-
cant because statistical methods cannot suppress such
nenhomogencitics, which then appear as false alarms
through the sidelobes of the adapted beam pattern. For
example, a large target within the test range cell, bul at a
different angle and/or Doppler, muy be incorrectly detected
at the look angle/Doppler. Other examples include a corner
reflector within the range cell of interest.

Consider the general framework of any STADP algorithm.
The algorithm processes received data to obtain a complex
weight vector for each range bin and each look angle/
Doppler, The weight vector then multiplics the primary
data vector Lo yield a complex number. The process of
obtaining a veal scalar from this number for threshold
comparison is part of the post-processing and noet inherent
in the algorithm itself. The adaptive process therefore
cstimates the signal component i the look direction and
hence the adaptive weights can be viewed in a role similar
10 the non-adaptive stecring vectors, used in Pact | of this
paper to transform ihe space—time data te the angle—
Doppler domain.

T'he JDI. processing algorithm beging with a transforma-
tion of the data from the space—time domain to the angle—
Doppler domain. This is followed by statistical adaptive
procesging within a localised processing region (LPR) in
the angle: -Doppicr domain. Part | of this paper represents
the transformation process as a multiplication with a
general tronsformation matvix 77 The hybrid approach
uges the D* weights, replacing the non-adaptive steering
vectors used earlier. By choosing the set of look angles and
Dopplers lo be points in the LIPR, the 1 weights perform a
function analogous to the non-adaptive transform,

The D? algovithm serves as an adaptive transformation
from the space—time damain o the angle-Doppler domain.
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Fig. 1 Yivostage fybricd algorithm block divgram

IDL statistical processing in the angle—Doppler damain
forms the sccond stage of adaptive processing (o filter the
tesidual correlaed interference. The block diagram of the
proposed (wo-stage hybrid algorithin is shown m Tig, 1.
The DY algorithm is used repeatedly with the g, look
angles and 1,4 look Deppler lrequeneies to form the LPR.
The space—time data is transformed to the LPR in the
angle Doppler domain using Lthese adaptive weights, Using
the D' weights from eqn. 14, the transformation matrix
presented in Part T for the LPR covering three angle bins
(h .1, o 1z om,=3) and three Toppler bins {f 1, fo. /1
s =3) is now given by

T = wid ., f_) wiehy. S ) }u((f’)l!.f;l)
wih_i, Jo} wlcko. Ju) wlepy. /o)
w(dh_y, [0 wba, /i) wiepy i)l (16)

The crucial difference between the hybrid algorithm and,
the JDL algorithm detailed in Part 1 of this paper is that
such an adaptive wansformation is noninvertible, resulling
in some information loss, Tlowever, this information loss
may be beneficial, The hybrid algorithm takes advantage of
this loss to suppress discrete interferers within the range
cell of interest. The {ramewark presented in Pact 1 of the
paper also accounis Tor the spread in target information
into all angle-Doppler hins in the LI'R. The advantages
associated with the JDL algorithim, such as in reduetion in
the required sceondary data support, carry over to the
hybrid algorithm.

The same transformation matrix T is used to transform
the primary and sccondary data ta (he angle—Doppler
domain. Unlike the JDL algorithm this transformation
mateix changes from range cell to range cell, The hybrid
aigorithm Torms, the adaplive transformation matrix as
given by equ. 16 for cach range cell and then transforms
this primary and asvociated sccondary data to the angle-
Doppler domain. This process is repeated lor each range
cell.

4 Numerical examples

This Section presents threc examples 1o test the hybrid
algorithm presented in Seclion 3. As in Part 1, the
examples include simulated data {rom an ideal arcay of
isolropic point scnsors and also measured data from the
MOCARM program.

4.1 Simuiated daia

The hybrid algorithm may be applied {o hemegencous
dala, though this is not the application of intercst. The
algorithm is specifically designed to suppress (he effects of
discrete nonhomogeneities within (he primary range cell.
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Therclfove the approach taken here is not to present the
probability of detection for a chosen probability of false
alarm. A more fruitful tost is to compare the adapted heam
patterns associated with the threc algorithms discussed in
this paper: the JDI. algarithm of Part 1, the new 1»?* algo-
rithim and the hybrid algorithm. The beam patterns ilustrate
the performance ol the hybrid algerithm in suppressing
discrete nonhomaogeneitics and correlated interferenee.

In Part 1, the angle: Doppler weights arc obtained wsing
w= R W, based on an estimated angle-Poppler covar-
iance matrix B and angle Doppler steering vector #. The
cquivalent space-time adaptive weights are given by

w=Tiv (17

These equivalent space time weights may be used to
abtain adaptled heam pattern plots.

As in Part 1, the simulated data is generated using the
physical model developed by Taller e¢f @f. [11] and Ward
[10]. The model gencraies homogencous data and 2
discrete nonhomogencily is later added to the homoge-
neous data as a strong return from an angle and/or Doppler
different from the look angle/Doppler.

The simulation includes the effects of cluiter, white
noisc, two barrage nofse jammers and a discrete interforer.
Table 1 lists the parameters used in the example. The
Jammer and interferer powers are referenced to the noise
level. The elutter power iy fixed by the transmit power snd
the assumed land refectivity. The jammers and the elutter
represent carrelated interference because these two sources
of interference are hemogencous across all range cells.
Nole that the discrete interferer is within the target range

Table 1: Parameters for example using simulated data

Parametor Value
Elements (M) 18
Element spacing 0.51
Array transmit pattern uniform
Mainbeam transmit azimuth 0 deg
Land reflectivity --3.0dB
Transmit power 400 kW
Backlobe attenuation a0
Jammer azimuth anglas [-20" 457
Target narmalised Doppler (/) 143
Dappler of intarferer 113
Interterer power 40dB
Number of Doppler bins in LPR 3
{ch2)Asin ¢ 1IN/
Pulses (M) 18
Pulse repetition frequency 300 Hz
Uncompressed pulse widih 400 js
fi {Clutter slope) i
Number of clutter patches 361
Jammet powers [40dB 40¢dB]
Tharmal ncise power unity
Jammer elevation angles [a™ 07
Target azimuth () s
Angls of interferer —51"
Emphasis paramoeter x MM
Number of angle bins in LPR 3

Af Time

[l



cell anly, with an offsct in angle but not Doppler. Matching
the nonhomaogeneity w the target in one domain makes it
more difficult for the algorithm to suppress the nonhomao-
gencity, The Table also lists the parameters used by the
hybrid algorithm incloding the emiphasis parameter w. The
final ling in the Table refers to the spacing between the
angle and Doppler hins in the LPR which comprises three
angles and three Dopplor (requencies centred around the
look direction. The number of sccondary data vectors used
to estimalc the covariance matrix in the second stage JTDL
processing is set to 2(DOF) = 14,

The adapted beam pattern plots presented in this paper
are the mean patterns over 200 independent realisations.
Vertical bars represent the standard deviation over thesc
200 trials. This method was required beeause the B3
algarithm is non-statistical and based solely on a single
data set/realisation. Operating with the known covariance
matrix to obtain an ideal pattern, as possible in statistical
algorithms, is not an option.

Vigs. 2 and 3 illustrate the antenna patterns along (he
target azimuth and Doppler for the JDI. algorithm
described in Part 1 of this-paper. Note the high sidelobe
in the direction of the discrele interferer, The discrete
interferer is within the primary range cell and so docs
not confribute to the covariance matrix estimate and is
therefore not nulled by & purcly statistical algorithm such
as IDL. ITowever, as Fig. 2 shows, the JDL algorithm does
place deep nulls in the direction ol the jammers at --20°
and 45°. Fig. 3 shows the deep null placed at zero Doppler
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Fig. 2 DL afgorithm anenny pattern ar the targer Poppler
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Fig. 3 JDL atgorithm antenna pattern at the tarset azimuth

70

frequency cotresponding to mainheam clutter. These two
Figures illustrate the effectiveness ol the JDL algorithm in
suppressing correlated interference such as barrage noise
jamming and clutler.

Figs. 4 and 5 plot the antenna patterns tesulting from the
implementation of the two-dimensional D* algorithm, g,
4 shows that the D* algorithm places a null in the direction
of the discretc interferer. The algorithin is clfeclive in
countering a discrete interferer within the range cell of
interest, 'The adapted spatial beam paticrn shows a distinet
nall 0 the direction of the discrete interferer at —51°.
However, Figs. 4 and 5 also illustrate the limitations of the
1% algorithm. The nulls in the dircction of the jammers are
not as deep as in the case of IDL in Fig. 2, Fig. 5 shows ihe
null at ex=0 in the Doppler spectrum and is alse nol as
deep as in Fig. 35, iLe. the mainbceam cluiter is not
suppressed as elfeclively as by the JDL algorithm.,

Figs, 6 and 7 plot the antenna beam patterns resulting
from the use of the hybrid algorithm. Vig. 6 shows that the
hybrid algorithm combines the advantages of both statis-
tical and non-statistical adaplive processing, The adapted
azimuth pattern shows deep nulls at —51%, —20° and 45°,
the dircctions of the discrete interferer and the lwe
Jammers. Vg, 7 shows that the adapted pattern has a
deep null at w= 0 resulting in effective nulling of the
mainbgam  clutter. The hybrid  algorithm  therefore
suppresses correlated interference such as clutter and
jamming and also uncorrelated interfercnce such as the
strong interferer in the primary range cell.
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4.2 Measured data

This Section presents two examples of the application of
the hybrid algorithm to measnred data, The examples use
data from the multi channe! sirborne radar measurements
(MCARM) [12] database as described in Part 1. The
examples use the same lwo acquisitions (acquisitions 575
and 152 on flight 3) to illustrate the suppression ol discrete
interference in measured data. Descriptions ol these two
acquisitions are available in Part 1.

4.2.1 Application of the hybrid method to
measured data: The D? method was developed in
Section 2 tor an equispaced, lincar array ol point sensors,
This allowed for the assumption of no mutal coupling
between the elements and the simplified spatial stecring
vector given by eqn. 4. This in turn allowed the crucial
assumption that for each pulse the signal component
advances from one clement to the next by a constant
spatial multiplicative factor z,.

The MCARM antenna is an awray of 22 elements
arranged in a reetangular 2 % 11 grid [12]. lar a rectan-
gular array, eqn, 4 is invalid. Furthermore, the clements of
all real arrays sample and re-radiate the incident ficlds,
leading to mutual coupling belween the elements. Tn this
case, the spatial steering veclor must be measured ot
evaluated using a numerical clecromagunetic analysis,
Provided with the MCARM databasc is a set of measured
spatial stweering vectors for some chosen azimuth and
clevation angles,
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Tgnoring mutual coupling degrades the performance of
any STAP algorithm [13-15]. As illustrated in Part 1
through the implementation of measured steering vectors,
accounting for mufual coupling signilicantly enhances
statistical algorithm performance. D* algorithms arc
based entirely on the assumption of a linear array of
point sensors, allowing mutval coupling to severcly aficet
porforimance [13, 14]. The authors in [14] vse a method of
momnents (MOM) numerical clectromagnetic analysis of
the array to cvalvate the mutual coupling matrix and
compensate for these effects. Unlorlunately a MOM analy-
gis of the MCARM untenna is not available and the
compensation procedure ol [14] cannot be used.

[nstead of a compensalion method based on numerical
clectromagnetic analysis, this paper applies the D* algo-
rithm to the MCARM data using an wd Ao procedure.
Equs. 2 and 4 indicate that the spatial steeting vector at
broadside (¢ =0) is given by alp =W =[1 L---1 1]7. n
the absence of mutual coupling, this steering vector al
broadside is valid lor arrays in any configuration. The
approach then is 1o artilicially rotate all the data, using the
measuted spatial stecring vector, so as to force the look
direction 1o broadside. This compensates for the rectangu-
lar array confipuration and also the mutual coupling
assaciated with the look dircetion, The rotation is achieved
by an entry-by-entry division of the received voltages at
the array level with the measured spatial sieering vector
corresponding  to  the look direction. Using pseudo-
MATLARY notation, this operation can be represented by

i(m) = x(m}’/am(q[)r) (18)

where x(m) represents the V returns from the mth pulse ina
CPL and a4, () represents the measured steering vecior
corresponding to the look direction ¢, This operation is
repeated for all pulses in all range bins,

The division operation of eqn. 18 [orces the effective
gpatial steering wvector for any look direction to be
alep,)=[1 1.-- L 1]%, cquivalent to breadside in an ideal
array. The hybrid method as developed in Scetion 3 is
therefore applicd to the *rotated’ data X with broadside as
the look direction.

4.2.2 Example 1. Injected target: I'he lirst example
uses the same scenario as in example | of Part L. In this
example, a discrete nonhomogeneily is introduced into the
data by adding a strong fictitious target at a single range
bin, but not al the look angle—Doppler. Two cascs are
considered within this example; no injected target and an
injected weak target. The first case itlustrates the suppres-
sion of the diserete nonhomogeneity, In the second case, a
weak target s injected at the same range bin as the
nonhomogencity, but at a different angle and Doppler.
This case illusirates the abilily of the Lhybrid algorithm lo
detect weak targets in the presence of strong discrete
nonhomogeneities, Tn this case, only 22 of the 128 pulses
in the CPT are used, i.e. ¥=22, M =22, The valuc of the
emphasis parameter is chosen to be x = (MM

The details of the nonhomogencily and the weak target
are shown in Table 2,

The hybrid algorithm is applicd to (he data from the
range bin with the nonhomogeneity and surrounding range
bins. The output MSMI statistic from the second stage ol
the hybrid algorithm is plotied s a lunclion of range. In
this example, five Doppler bins and five angle bins form
the LPR for both the JIJI. algorithm and the second stage
of the hybrid algorithm. The number of secondary data
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Table 2: Parameters for example using MCARM data

Parameter Nonhomogsneity Target
Amplituds 0.0241 0.080241
Angle bin 35 65 (broadside)
Boppler bin -3 -2

Range bin 280 290

vectors used to form an estimate of the covariance matrix is
set at HDOT) == 100.

Tor the case without an injected target, Fig. 8 compares
the oulput from the JDI. algorithm developed in Part, |
with the output of the hybrid algorithm. As can be seen, the
JDL slgorithm indicates the presence of a large target in
the look direction. Thig is beecause the large nenhomogene-
ily at angle bin 35 and Doppler bin —3 is not suppressed
by the statistical algorithin, leading to false alarms at the
look direction. On the other hand, the hybrid algorithm
shows no target at broadside. The nonhomogeneity is
suppressed in the first DY stage and residual echutter is
suppressed in the second JDL stage,

A fictitious target injected at the look direction and
Doppler illustrates the sensitivily of the hybrid algorithm
to weak targets. The parameters of the weak farget arc
Hsted in Table 2. Fig. 9 compares the output of the two
algorithms in the case of an injected weak target, The JDL
algorithm again shows the presence of a strong target in the
look direction. However from Fig. &, the sirength of the
statistic is cansed by the nenhomogenoity, The output of
the hybrid method shows the statistic at the target range bin
15 6.9dB above the next highest falsc alarm algorithm.

This example shows that the hybrid algorithm may be
used fo detect a weak {arget in the presence of a discrete
nonhomogeneity within the range cell of inferest.

4,2.3 Example 2. MTS tones: As explained in Part
1, certain acquisitions within the MCARM database
include signals from a moving target simwlator (MTS) at
known Deppler shills. A brief description of the MTS is
available in Part 1. In acquisition 152 on flight 5, the MT8
tones occur in angle bin 39. In this example, the look
direction is set t¢ angle bin &5 for a mismatch and the JDL
and hybrid algorithms ave applied to the same acquisition,
For this look direction, the MTS tones at angle bin 59 act

magnitude, dB

P N T (S AR DS S
280 280 270 280 280 300 310 32¢ 330
range call
Fig. 8 Data with ranhonogeneit, but withont injected tovget
— hylwid
. JDL

72

magnitude, dB

310 320 330

250 260 270 280 200 300

range cell
Fig. 9 Daia with nonhomogencity and infecied targer

= = lybrid
T/ T

like strong targets at a different angle bin, i.c. discrete
nonhomagencities. As in FExample 1, two cascs are consid-
ered; ne injecled target and a weak injected target. The first
case illustrates the suppression of the MTS tones acting as
discrete, strong nonhemogencitics, The second case
illugirates the sensitivity of the hybrid algorithm to
weak targets. This example uses all 128 pulses in the
CPI, ie. N=22, M=128. The emphasis patameter for
the direct data domain method is set to a large value of
K = (VM)

In acquisition 152 of flight 5, the MTS tones ate in range
bin 449-450 with the strongest tone at a Doppler corre-
sponding 1o bin —33 and angle bin 59. The example
focuses on the suppression of this tone, Fig. 10 plots the
MSMI statistic of the two algorilhms [or the case without
an injected target. Only measured data is used, without any
artificial injected targets. The JDL algorithm detects a large
larget at range bins 449 and 450, This false alarm is due to
the strong MTS tone at angle bin 59 even theugh the look
direction is set at angle bin 85, The hybrid algorithm,
however, suppresses the strong MTS tone, showing no
activily at range bins 449 and 450,

Fig. L1 plots the results of using the two algorithms to
detect a weak targel injected into range bin 430, The
parameters of the weak target are; magnitude: 0.0001,
Doppler bin: —33, angle bin: 85, This weak target is
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casily detected by the hybrid algorithm with the statistic at
the target range bin 9.8 dB above the nearest (alse alarm.

The beam patterns associated with the (wo algorithms
lustrate the improvement in using the DY algorithm as the
first stage of 4 two-stage hybrid method. Fig. 12 plots the
spatialty adapted beam paltern at the leak Doppler
frequency for the JRE and hybrid algorithms. The plot
for the hybrid algorithm shows the deep null in the adapted
pattern of the hybrid algorithm near angle bin 57 while the
JDL pattern does not show such a null, In applying the JOL
algorithm to the MCARM dala acquisilion with MTS
tones, the strong tones leak through the sidelobes of the
adapted pattern, leading to false alarms,

5 Knowledge-hased STAP

This two-part paper details how the two-stage algorithm is
crucial for practical space—time adaptive processing lor
airborne radar applications, accounting for both homoge-
neous and nonhemogeneous inlerference scenarios, Tradi-
tional statistical STAP schemes are effective when the data
cube js homogeneous, i.¢. The statistics of the secondary
data accurately refleet the statistics of the interference

HRE Proe-Radur, Sonor Nevig, Yol 147, Ne. 2, Aprif 2000
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Fig. 13 Mudii-pasy knowledse-based STAP provessing for aivborne
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within the primary range cell. The perfermance of these
statistical schemes suffers significantly when the secondary
data is nonhemogeneous with respect to the primary data.

The envisioned knowledge-based STAP processing is
illustrated in Vig, 13. The first pass through the data cube
identifies rangc cells that arc nonhomogencous with
respect to the data cube. This NTID identifies the statistical
‘outliers’. The figure o merit may be the gencralised inner
product or the putput statistie from a STAP algerithm such
as the MSMI-NITD [1-4]. In cither cose, statistical outlicrs
are declared 10 be nonhomogencous, A knowledge base
may be used (o define the term ‘outlier” [9]. This knowl-
edge basc may possess information regarding the terrain,
interfering discrctes, manmade interfercnce sources, clc.
For example, when flving over 2 hemogeneous area such as
a desert, the knowledge base can set a stringent definition
for an ‘outlier’, Howcver, urban arcas may result in many
range cells being declared nonhomogencous, The knowl--
edge base can be updated in real time,

Once the range cells are separated into homogensous
and nonhomogeneous calegories, the second pass through
the data cube applics the statistical algorilhm for the
honiogeneous range cells and the two-slage hybrid algo-
rithm for nonhomogencous range cells. Within the homo-
geneous range cells, the knowledge base informs the
decigion of which statistical STAP algorithm 1o employ.
The factors involved in the decision include required speed
of computation, availability of sccondaty data, cte. For
example, over benign terrain it may be possible to vse the
extended lactored time--space (BF1US) requiring a large
number of secondary data samples. Tlowever, in more
challenging scenarios the JDL algotithm of Part 1 may
be used. This algorithm requires relatively few secondary
data samples. The knowledge base also impacts the deci-
sion as o the choice of the secondary data used in
estimaling the covariance matrix.

In the casc of the range cells declarcd nonhomogengous,
the choice is limited. The two-gtage hybrid algorithm
detailed o this paper is probably the only published
effort regarding detcction of targets in nonhomogeneous
range cells. The second stage of this algorithm uses trans-
form domain localised processing allowing the knowledge
base to determine the secondary data used in estimating the
transform domain covariance malrix.

In summary, a practical approach to STAP might usc
multi-pass processing to account for nonideal, nonhomao-
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geneous interference scenarios. Depending on the scenario
at hand, and with the help of a knowledge basc, the
appropriate STAP algorithm will maximisc the probability
of detecting and identifying weak tarpets,

KB-STAP is, as yet, an open research toplc and neces-
sarily an amorphous concept. In its linal implementation
KB-STAP will include several STAT algorithms, scene
information, information from other sensors and heuristics
to choose between thc available approaches. However,
current implementations of the KB-STAP* concept arc
simplistic and limited, Rescarch is underway Lo conselidate
the related concepts and process the Immense amount of
information in real time,

6 Conclusions

This paper develops two new algorithms; a two-dimen-
sional, non-statistical approach to STAP and a hybridisa-
tien of this approach with statistically based methods. The
non-gtatistical algorithm represents a significant advance
on previously published work in this research area. This
algorithim zllows for the filtering of discrete interforence
within the range ccll of interest. This feature enhances the
truc detection of weak targets in nonhomogeneous inter-
ference scenarios, while minimising false alarms. Statisti-
cal algorithims cannot suppress discrete nonhomogeneities
beceuse the secondary data possesses no information
regarding  such interference. However, performance of
direct data domain algorithms in homogencous intercr-
encc scenarvios is inferior to traditional statistical STAP
algorithms, Lach of these two approaches to STAP has its
own area of applicalion.

The proposcd two-stage hylwid algorithm alleviates this
drawback by implementing a second stage of statistical
processing after using the I? algorithm as an adaptive
transform to the angle—Toppler cdomain, This algorithm
combines the advantages of both the statistical and non-
statistical approaches, The D? method is particularly cllec-
tive at countering nonlwmogenecus interference. The
statistical STAP algerithm then improves on the suppres-
sion of the vesidual correlated interference.

The cxamples presented in Section 4 highlight the
features of the new hybrid algorithm, The Scction presents
exaniples using sinwlated data and also measured data
from the MCARM database. In the case of simulated data,
the adapted beam patterns iltustrate the ability to place
deep pattern nulls in (he dircetion ol both corrclated
interference such as jammers and also discrete interference
such as a large target in the range cell of interest.

Even with ad hoe compensation for mutual coupling, the
hybrid algorithm shows a significant improvement over
statistical methods in suppressing discrete nonhomogene-
ilics. We anticipate a true evaluation of the mutual coupling
would improve the performance of the hybrid algorithm.

In summary, this two-part paper presents a comprehen-
sive approach to STAP and the broader field of knowledge-
based STAP. Part 1 focuses on the well known joint domain
localised processing algorithm, Reformulating the JDL
algorithm significantly improves performance in both the
ideal and real worlds. The usc of a transformation matrix
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removes restrictions placed on the algorithin by the origi-
nal formulation.

Part 2 presents a new direct data domain algorithm and a
hybridisation of the algorithm with J131.. This new hybrid
algorithm gives the capability to perform STAP within
nonhomogencous range cells. This algotithm draws on the
new formulation of JDL presented in Part 1.

The multi-pass approach significantly cnhances the
practicality of knowledge-based STAP for airborne surveil-
lance applications, The envisioned system requires multi-
pass processing (o obfain some important information
aboul the inletfercnce scenario. The first pass is a non-
homogeneily detector followed in the second pass by
appropriatc STAP processing. The STAP stage can cither
draw from traditional algorithms in homogencous chviren-
ments or on the hybrid algerithm in nonhomogencous
environments. The decision to use one or the other
approach will be informed by any available a priosi
information about the interlerence scenario.
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