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Abstruct- This research presents two new Space- 
Time Adaptive Processing (STAP) algorithms; a two- 
dimensional non-statistical method and a hybridiza- 
tion of this approach with statistically based methods. 
The non-statistical algorithm developed here allows 
filtering of uncorrelated interference, such as discrete 
interferers, within the range cell of interest. However, 
performance of these algorithms in homogeneous cor- 
related interference scenarios is inherently inferior to 
traditional statistical STAP algorithms. 

The proposed hybrid algorithm alleviates this draw- 
back by implementing a second stage of statistical 
adaptive processing. This paper illustrates the ad- 
vantages of using a two stage adaptive process to com- 
bine the direct data domain and statistical algorithms. 
The work presented in this paper brings together two 
different aspects of STAP research: statistical and di- 
rect data domain processing. In doing so, this research 
fulfills an important need in the context of practical 
STAP processing. 

INTRODUCTION 

Space-Time Adaptive Processing (STAP) tech- 
niques promise to be the best means to suppress se- 
vere, dynamic, interference. Classical statistical algo- 
rithms achieve interference suppression through the 
use of the interference covariance matrix. This matrix 
is typically estimated using secondary data obtained 
from range cells close to the range cell under test. 
Statistical algorithms fail when the secondary data 
does not reflect the statistics of the interference in 
the range cell of interest, i.e. non-homogeneous data. 
Non-homogeneous data occurs in many practical sit- 
uations such as airborne surveillance over land-sea in- 
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terfaces, dense target environments, etc. 

To minimize the loss in performance due to non- 
homogeneous sample support, a Non-Homogeneity 
Detector (NHD) can be used to identify secondary 
data cells that do not reflect the statistical proper- 
ties of the primary data [2,3]. These data samples 
are then eliminated from the estimate of the covari- 
ance matrix. However, NHDs do not specify how to 
detect targets within the range cells identified to be 
non-homogenous. The surrounding range cells do not 
possess information about the non-homogeneity and 
hence a statistical algorithm cannot suppress a dis- 
crete interferer in the primary range cell under test. 

In this paper, we present a new adaptive algo- 
rithm to counter the case of a discrete interferer in 
the primary range cell. This research is a contribu- 
tion to STAP and the broader field of Knowledge 
Based Adaptive Processing (KB-STAP). KB-STAP 
chooses the best of many possible STAP algorithms 
for detection with knowledge based control of algo- 
rithm parameters and selection of secondary data us- 
ing NHDs [4]. Currently, KB-STAP architectures 
incorporate statistical STAP algorithms only and a 
NHD is used to eliminate non-homogeneous range 
bins from the secondary data support. The problem 
of target detection in a non-homogeneous range cell 
is only now being addressed. This research addresses 
this hitherto unsolved problem, and therefore signifi- 
cantly enhances the practical relevance of KB-STAP, 
especially in dense target environments. 

A NEW NON-STATISTICAL ALGORITHM 

The inability of statistical STAP algorithms to 
counter non-homogeneities in the range cell of inter- 
est motivates research of non-statistical or direct data 
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Fig. 1. A linear array of point sensors 

domain algorithms. These algorithms use data from 
the range cell of interest only, eliminating the sam- 
ple support problems associated with statistical ap- 
proaches. This field of research emerged in the last 
few years with a focus on one-dimensional spatial 
adaptivity [5,6]. This paper introduces a new two- 
dimensional direct data domain algorithm that refor- 
mulates earlier non-statistical attempts at adaptive 
processing. 

Consider the linear array of equispaced, isotropic 
point sensors shown in Fig. 1. Each of the N ele- 
ments receives returns corresponding to the M pulses 
transmitted per Coherent Processing Interval (CPI). 
This space-time data is used to decide between the 
presence and absence of a target at the azimuth look 
direction 4 = 4t and normalized Doppler frequency 
3 = W t  . The received data can be written as a N x M 
matrix X , where X,, represents the returns at the 
n -th element due to the m -th pulse. The data ma- 
trix X is a sum of signal, external interference, and 
thermal noise components. Using the desired look di- 
rection and velocity (q5t, i j t  ), the signal matrix S can 
be written, in the same matrix form of X , as 

S = &a@.', 

where & is the signal amplitude and d is the distance 
between two adjacent elements. The vectors a and 
b form the spatial and temporal steering vectors re- 
spectively. It is important to note that target returns 
from an azimuth angle and/or velocity other than the 
look azimuth/velocity are, effectively, discrete inter- 
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ferers. A target detection should be declared only if 
it matches the look direction and velocity. 

Equation (3) indicates the signal progresses by a 
constant phase z ,  from one element to the next for 
each pulse. Therefore, the signal component cancels 
out of the term X,, - Z ; ~ X ( , + ~ ) ~  leaving only inter- 
ference components. The entries in the iM x ( N  - 1) 
matrix C , defined to be 

xoo - Z,lXlO XI0 - z,l:x20 

Xo1- z,%1 XI1 - z,-l:x21 

XO(M-1) - zSlXl(M-1) XO(M-1) - zS1X2(M-1) 

. . .  X(N-2)O - zS1X(N-1jl 

. . .  X(N-2)2 - zS1X(N-l)2 1 ,  (6) 

. . . X(N-2)(M-1) - zSlX(N-l)(M-l) 

I :  
are composed of interference terms only. Consider the 
scalar expressions 

(7) 

Iws = W;CTC*W,, (8) 

H H Gw, = W, a ~ - i a ~ - i ~ s ,  

where aN-1 is the vector comprising of the first N - 1 
entries of the steering vector a. The term Gw8 in 
Eqn. (7) represents the power gain in the look direc- 

tion due to weights w,. Iw, in Eqn. (8) represents 
the residual interference power. The new direct data 
domain algorithm obtains the set of weights that max- 
imizes the difference between the two terms, i.e. 

(9) 
mqW&=1 P W B  - IW.1 = 

maxllw,l12=l w r  [w-lag-, - CTC*] w,. 

The constraint I I w , J ( ~  = 1 guarantees a finite solution. 
Using the Lagrange multiplier method, the weight 
vector that maximizes the term in Eqn. (9) is the 
eigenvector corresponding to the largest eigenvalue of 
the matrix [aN-la$-l - CTC*] . This .weight vector 
forms the spatial adaptive weights. It is important to  
note this weight vector is of length (N-1:) representing 
a loss of one degree of freedom in the spatial domain. 
This compares favorably with other non-statistical al- 
gorithms where close to half the degrees of freedom 
are lost [5 ] .  
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In the temporal domain, the signal progresses by 
the same phase zt from one pulse to the next at each 
element and therefore the signal component cancels 
out in terms such as X,, - Z ; ' X , ~ ~ + ~ ~ .  A similar 
formulation to Eqns. (6)-(9) can therefore be used to 
obtain a (M - 1) length temporal weight vector wt . 
The length N x M space-time adaptive weight vector 
is then given by 

The zeros appended to the spatial and temporal 
weight vectors represent the lost degree of freedom 
in space and time. Using this adaptive weight vector, 
the statistic to be used for comparison to a threshold 
for detection at angle +t and normalized Doppler Wt is 
given by 

where vet(.) stacks the columns of X into a length 
N M  x 1 vector. 

The above formulation effectively side-steps the 
high sidelobe problems associated with previous di- 

rect data domain algorithms [7]. The resulting signal 
estimates are free of the effects of non-homogeneities. 
However, direct data domain algorithms in general 
fail to suppress correlated interference to the degree 
possible with statistical STAP algorithms. 

A HYBRID ALGORITHM 

The main thrust of the paper is the presentation 
of an approach to STAP combining the benefits of 

both direct data domain and statistical methods. Our 
hybrid approach uses the non-statistical algorithm as 
a pre-filter to suppress discrete interferers present in 
the range cell of interest as shown in Fig. 2. The 
algorithm serves as the adaptive transformation from 
the space-time domain to the angle-Doppler domain. 

Any STAP algorithm estimates the signal compo- 
nent at the look direction in angle and Doppler. STAP 
algorithms can therefore be viewed as an adaptive 
transform to this particular angle and Doppler. Creat- 
ing a set of look angles and Doppler frequencies allows 
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Fig. 2. Two-stage hybrid algorithm block dia- 
gram. 

the STAP algorithm to perform a function similar to 
the Fast Fourier Transform. It must be emphasized 
that this transformation is non-invertible resulting in 
some information loss. However, this information loss 
may be beneficial. We take advantage of this loss to 
suppress discrete interferers within the range cell of 
interest through the use of our new direct data do- 
main algorithm. 

The hybrid algorithm presented here adaptively 
processes space-time data in two stages. The first 
stage is the direct data domain adaptive transform 
mentioned above. The output of the first stage lends 
itself to the application of a post-Doppler, beamspace 
statistical algorithm forming the second stage of adap- 
tive processing. An enhanced version of the joint do- 
main localized (JDL) algorithm [8,9] is used as the 
second stage. JDL suppresses interference in a Local- 
ized Processing Region (LPR) of the angle-Doppler 
domain. Figure 2 shows the block diagram of the 
two-stage hybrid algorithm. 

Mathematically, the transformation to a predeter- 
mined LPR is accomplished through a matrix oper- 
ator T. The angle-Doppler data is given by ji: = 

THvec (X). The steering vector is transformed in the 
same manner. An example of T for a 3 x 3 LPR is 

T = [ w (+-1 ,Q-d w (4-1,G) w (&-l,Q+l) 

w ( 4 t ,  w-1) w (4% wt)  w (+t, W + l )  

w ( 4 + 1 4 - 1 )  w ( 4 + 1 , 4  w (++1, W + l )  I . 
(12) 

Because the JDL algorithm only operates within a 
localized region of the angle-Doppler domain, few de- 
grees of freedom are used and secondary data support 
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requirements are correspondingly reduced 181. These 
advantages are carried over to the hybrid algorithm. 

NUMERICAL EXAMPLE 

The hybrid algorithm is tested on data generated 
using the physical model presented by Jaffer [lo] 
and Ward [ll], and implemented by Roman and 
Davis 1121. Comparison of adapted beam patterns as- 
sociated with JDL, the new direct data domain, and 
the hybrid algorithms illustrate the motivation for, 
and improved performance due to, the hybrid algo- 
rithm. 

The adapted antenna pattern plots presented in this 
paper are the mean pattern over 200 independent re- 
alizations. Vertical bars represent the standard de- 
viation over these 200 trials. This method was ne- 
cessitated because the direct data domain algorithm 
is non-statistical and is based solely on a single data 
set/realization. Operating with known covariance to 
obtain an ideal pattern as in JDL or other statistical 
algorithms is not an option. 

The simulation includes the effects of clutter, white 
noise, two barrage noise jammers, and a discrete in- 
terferer. The simulated antenna array is linear with 
N = 18 elements and a coherent processing interval 
(CPI) of M = 18 pulses. Two 40 dB jammers are 
located at 45" and -20" . The discrete interferer is 
simulated by an injected 40 dB target at the same 
normalized Doppler as the look Doppler but a differ- 
ent azimuth angle of 4 = -51" . The look direction 
is set to an azimuth angle of q,5i = 0" and normalized 
Doppler Wt = 1/3 . The JDL algorithm uses 3 angles 
and 3 Doppler frequencies centered around the look 
direction for a total of NDOF = 9 . The number of sec- 
ondary data vectors used to estimate the covariance 
matrix is set to ~ N D O F  = 18 . 

Figures 3 and 6 illustrate the antenna patterns for 
the standard JDL algorithm [8] along target azimuth 
and Doppler. Figure 3 shows the algorithm has placed 
distinct nulls in the two jammer locations. The dis- 
crete interferer, i.e. off azimuth target, does not con- 
tribute to the covariance matrix estimate and there- 
fore is not nulled by the algorithm. Figure 6 shows 

a null at 3 = 0 to suppress mainlobe clutter. The 
mainlobe is formed at the Doppler look direction of 
Wt = 1/3 . 

The antenna patterns resulting from the implemen- 
tation of the two-dimensional direct data domain al- 
gorithm are presented in Figs. 4 and 7. It bears re- 
peating that a direct data domain algorithm uses only 
data from the range cell of interest and hence does 
not require any secondary data. Figure 4 shows the 
direct data domain algorithm is effective in counter- 
ing a discrete interferer in the range cell of interest. 
The adapted angle pattern shows a distinct null in the 
direction of the discrete at -51" . However, Figs. 4 
and 7 also illustrate the limitations of the direct data 
domain algorithm. The nulls in the direction of the 
jammers are not as deep as in the case of Fig. 3. The 
null at ij = 0 in the clutter spectrum is also not as 
deep, i.e. the mainbeam clutter is not suppressed as 
effectively as by the JDL algorithm. 

The results of Figs. 3-7 provide the motivation for 
the development of the hybrid algorithm. The direct 
data domain algorithm is used as the first stage to 
screen out discrete interferers. A statistical algorithm, 
such as JDL, is then used to  suppress correlated in- 
terference. Figures 5 and 8 show the antenna beam 
patterns resulting from the use of the hybrid algo- 
rithm. Figure 5 shows the hybrid algorithm combines 
the advantages of both statistical and non-statistical 
adaptive processing. The adapted azimuth pattern 
shows deep nulls at -51" , -20" and 45" ; the direc- 
tions of the discrete interferer and the two jammers. 
Figure 8 shows the adapted pattern has a deep null at 
W = 0 resulting in effective nulling of the mainbeam 

clutter. 
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Fig. 3. The JDL algorithm antenna pattern 

at the target Doppler. 
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Fig. 6. The JDL algorithm antenna pattern 
at the target azimuth. 
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Fig. 7. The direct data domain algorithm an- 
tenna pattern at the target azimuth. 
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Fig. 5.  The hybrid algorithm antenna pattern 

at the target DODDkr. 
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Fig. 8. The hybrid algorithm antenna pattern 
" I *  at the target azimuth. 

283 



CONCLUSIONS 

In this paper, we have developed two new algo- 
rithms; a two-dimensional non-statistical approach to 
STAP and a hybridization of this approach with sta- 
tistically based methods. The non-statistical algo- 
rithm developed here allows filtering of discrete in- 
terferers within the range cell of interest. However, 
performance of direct data domain algorithms in ho- 
mogeneous correlated interference scenarios is inferior 
to traditional statistical STAP algorithms. 

The proposed hybrid algorithm alleviates this draw- 
back by implementing a second stage of statistical 
adaptive processing. Figures 3 through 8 illustrate 
the advantages of using a two stage adaptive process 
to combine the direct data domain and statistical al- 
gorithms. The direct data domain method is partic- 
ularly effective at  countering non-homogeneous clut- 
ter. The statistical STAP algorithm then improves 
suppression of the correlated interference. 

The work presented in this paper brings together 
two different aspects of STAP research: statistical 
and direct data domain processing. In doing so, this 
research fulfills an important need in the context of 
practical STAP processing. 
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