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Abstract- This paper presents two transform do- 
main non-homogeneity detectors that account for the 
non-ideal array and the non-homogeneous interference 
environment. Each of these effects has been accounted 
for separately before [1,2]. However, this paper is the 
first attempt to incorporate both effects into a single 
STAP algorithm. 

The formulation developed for the JDL algorithm is 
tested on measured data from the MCARM database. 
The example illustrates the effects in detection perfor- 
mance by considering both the non-ideal system and 
non-homogeneous interference scenario, individually 
and in combination. The results show that if only 
the non-homogeneous data is accounted for, the NHD 
might actually worsen the situation. Both system and 
interference scenario imperfections must therefore be 
accounted for. 

INTRODUCTION 

Space-Time Adaptive Processing (STAP) tech- 
niques promise to be the best means to suppress se- 
vere, dynamic, interference. Classical STAP algo- 
rithms achieve interference suppression through the 
use of the interference covariance matrix [3]. This co- 
variance matrix is typically estimated using secondary 
data obtained from range cells close to the range cell 
under test , a technique termed symmetric windowing. 

Statistical algorithms suffer when the secondary 
data does not reflect the statistics of the interference 
in the range cell of interest, a violation of the i.i.d. re- 
quirement. Such data is termed non-homogeneous. 
To quote [2], “A data set is  termed wide sense homo- 
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geneous if the system performance loss can be ignored 
or  is  acceptable fo r  a given STAP algorithm. A data 
set is  said to  be wide sense non-homogeneous i f  it is  
no t  wide sense homogeneous”. ‘ 

Non-homogeneous data occurs in many practical 
situations such as airborne surveillance over land-sea 
interfaces, urban terrain, clutter discretes, etc. How- 
ever, perhaps the most common non-homogeneity is 
the case of multiple targets at different ranges. Each 
target serves as a non-homogeneity resulting in a cor- 
rupted covariance matrix estimate and degraded de- 
tection performance. 

To minimize the loss in performance due to non- 
homogeneous sample support , a Non-Homogeneity 
Detector (NHD) can be used to identify secondary 
data cells that do not reflect the statistical proper- 
ties of the primary data [2,4,5]. These data samples 
are then excised from the covariance matrix estimate. 
Furthermore, the NHD can be used to rank order the 
secondary data cells in order of homogeneity. The 
samples deemed to be the most homogeneous are then 
used to form the covariance matrix estimate. 

This paper focuses on NHDs used to improve the 
performance of the Joint Domain Localized (JDL) 
STAP algorithm [6]. The goal is to apply a NHD 
to improve the performance of the JDL algorithm. 
In this case, the measured data is obtained from 
the Multi-Channel Airborne Radar Measurements 
(MCARM) program [7]. The JDL algorithm is a post- 
Doppler beamspace approach that adaptively pro- 
cesses the radar data in the angle-Doppler domain. 
This paper uses the appropriate transform from the 
space domain to the angle domain based on measured 
steering vectors. The resultant spread in target infor- 

285 



mation in the angle domain is accounted for by the 
formulation of [l] . 

The Generalized Inner Product (GIP) and JDL- 
MSMI (Modified Sample Matrix Inversion) tests are 
then used in the transform domain to detect non- 
homogeneities. While these two tests have been used 
to detect non-homogeneities in measured data [2], this 
approach has not been applied in conjunction with the 
formulation of [l]. The work of [2] therefore reflects 
the non-ideal scenario, but does not account for the 
non-ideal receiving system. This paper accounts for 
both realistic interference scenarios and realistic an- 
tenna arrays. The resulting improvement in STAP 
processing and target detection is significant. 

T H E  JDL ALGORITHM USING MEASURED 
STEERING VECTORS 

This effort focuses on the JDL algorithm [6] as ex- 
tended to real antenna systems by Adve and Wicks 113. 
This paper follows the formulation of [l], summarized 
here for completeness. 

The first operation of the JDL algorithm transforms 
the raw space-time data to the angle-Doppler domain. 
The spatial steering vector associated with angle 6 is 
the vector of voltages at the array due to a calibrated 
source at  that angle. The appropriate transform from 
the space domain to the angle q5 in the angle domain 
is an inner product of the spatial data with the cor- 
responding conjugated steering vector. Similarly, the 
temporal steering vector associated with normalized 
Doppler ij is the response of a single element due to 
a calibrated source offset from the carrier frequency 
by the corresponding Doppler frequency. The appro- 
priate transform from the time domain to the point 
in the Doppler domain is again an inner product with 
the corresponding conjugated steering vector. 

In the case of an ideal linear array of equispaced, 
isotropic, point sensors, the spatial steering vector 
a(@) and the temporal steering vector b ( G )  can be 
written as 

i.e. the spatial and temporal steering vectors form 
Fourier coefficients. Given an appropriate angle set, 
the conjugated spatial steering vectors become the 
columns of an N point DFT-matrix. Si:milarly, given 
an appropriate set of Doppler frequencies allows for 
the use of a M point DFT to transform the time 
domain data to the Doppler domain. The space- 
time data can therefore be transformed to the angle- 
Doppler domain using the two dimensional DFT 

(3) 

where X is the N x M data matrix with the N spatial 
returns for the mth pulse in the mth column. W, and 
WD are N point and M point DFT matrices respec- 
tively. X is the N x M angle-Doppler data for N angle 
and M Doppler frequencies. 

The space-time steering vector is also transformed 
to the angle-Doppler domain using the transform 
given by Eqn. (3), i.e. 

s == WifSWD, (4) 
S = bt @a:, (5) 

where at and bt are the spatial and temporal steering 
vectors given by Eqns. (1) and (2) corresponding to 
the look angle q5t and look Doppler L;jt. If the look an- 

gle and Doppler are chosen such that the conjugated 
spatial and temporal steering vectors form one of the 
columns of W, and WD respectively, then the matrix 
S has only one non-zero entry, i.e. the target informa- 
tion is localized to a single bin in angle-Doppler space. 
This results from the fact that the columns of a DFT 
matrix form an orthogonal set. 

It is important to recognize that the DFT is the 
appropriate transform only for a very specific case. 
A 2-D DFT is valid only for an ideal linear array of 
equispaced isotropic sensors and if the angle-Doppler 
points are chosen to correspond to the DFT points. 
In any other case, the matrices W, and WD must be 
replaced with the matrices T, and TD whose columns 
are the conjugated steering vectors corresponding to 
the angles and Dopplers chosen, i.e. 

X = T:XT~. 
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Fig. 1. LPR in JDL processing for an ideal array. 
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In the case of a real antenna such as the MCARM 
array, the columns of T, are the measured conjugated 
spatial steering vectors. 

For a real array, the columns of T, are not orthog- 
onal and hence the target information/steering vector 
is not confined to a single angle-Doppler bin. The 
spread of target information in angle-Doppler can be 
accounted for by also replacing W, in Eqn. (4) with 
T,, i.e. the space-time steering vector should be trans- 
formed to the angle-Doppler domain using the same 
transformation as is used f o r  the space-tame data. In 
prior work, researchers have transformed the data us- 
ing Eqn. (6) and the steering vector using Eqn. (4) 
thereby neglecting the spread of the target in the an- 
gle domain [8]. The improvement in processing by 
accounting for target spread in the angle domain is 
illustrated in [l]. 

The transformation from space-time data to the 
angle-Doppler domain localizes the signal and the in- 
terference to a small region in the angle-Doppler do- 
main. Adaptive processing is performed in a Localized 
Processing Region (LPR) centered around the signal 
as shown in Fig. 1. The size of the chosen LPR de- 
termines the adaptive DOF. The JDL algorithm is 
represented by the block diagram shown in Fig. 2. 

The adaptive weight vector used within the LPR is 
given by 

Fig. 2. Block diagram of the JDL algorithm. 

where the angle-Doppler steering vector V is obtained 
by arranging the entries of S corresponding to  the 
LPR in a vector. RLPR is the covariance matrix esti- 
mate corresponding to the LPR. This estimate is ob- 
tained using the secondary data after transformation 
to angle-Doppler space. The weight vector of Eqn. (7) 
is then applied to the primary data ZLpR for the range 
cell of interest using the MSMI statistic [6] to obtain 
the output test statistic 

TRANSFORM DOMAIN NON-HOMOGENEITY 
.DETECTION 

This paper applies two forms of non-homogeneity 
detection in conjunction with the JDL algorithm. The 
NHDs are the GIP [9,10] and MSMI based detec- 
tion [4,5]. While other forms of NHDs are possible [2], 
these two NHDs have been most widely applied to 
measured data. 

The GIP, also of the form of the Hotteling T 2  test, 
is based on using all available data, i.e. all K range 
cells to estimate a covariance matrix. The range cells 
are ranked according to the GIP statistic defined as 

vGIP = zHkklX, (9) 

where k~ is the covariance matrix estimated using 
all available data vectors from the K range cells in (7) 



X I 

S I  
7 - -__*  

Fig. 3. Block diagram of the JDL-NHD method. 
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the LPR of the angle-Doppler domain. The outlying 
range cells (range cells with low or high GIP statistic) 
are deemed non-homogeneous and excised from the 
secondary data support. The GIP statistic in Eqn. (9) 
is the angle-Doppler counterpart to the space-time 
GIP statistic defined by Chen [9,10]. Note that ap- 
plying the GIP within the LPR results in a significant 
reduction in sample support required for the matrix 
inversion of 7 ? ~ .  The dimension of k~ is determined 
by the size of the LPR, whereas in the space-time do- 
main it is of dimension N M .  

Chen [9, 101 has shown that GIP based non- 
homogeneity detection has many desirable properties. 
However, this formulation does not account for the 
STAP algorithm under consideration or the statis- 
tic being used for threshold comparison. For exam- 
ple, the GIP is independent of the steering vector 
and therefore look angle and Doppler. Hence, non- 
homogeneities with no significant impact on STAP 
processing for a particular look direction may be dis- 
carded. This is not judicious use of the limited sec- 
ondary data supply. 

The more efficient approach is to use the detection 
statistic as the NHD. With known covariance, i.e. the 
Matched Filter (MF) case, the detection statistic only 
contains thermal noise residue after STAP. Any sig- 
nificant deviations from the mean are caused by 10- 
calized non-homogeneities such as discretes and tar- 
gets. When the covariance is unknown and must be 
estimated, the range bins corresponding to these non- 
homogeneities contribute to covariance matrix estima- 
tion error. 

JDL 
(dB) 
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Target 
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for 

Target 
Spread 6.4 

Spread 4.6 

JDL w/GIP JDL w/JDL 
NHD (dB) NHD (dB) 
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9.8 9.1 

For these reasons, this work implements a first 
stage of JDL processing identical to the block diagram 
shown in Fig. 2, for the NHD. The JDL-MSMI output 
statistic for each range cell is then ranked according to 
magnitude and the data deemed most homogeneous is 
used to form a covariance matrix for the second stage 
of JDL processing. Figure 3 illustrates the proposed 
architecture. 

NUMERICAL EXAMPLE 

In this section, we present an example to illustrate 
the effects in detection performance by considering 
both the non-ideal system and non-homogeneous in- 
terference scenario. The example uses data from the 
MCARM database, a vast collection of clutter and 
signal measurements collected by an airborne radar 
over many flights with multiple acquisitions on each 
flight [7]. Included with the database is a set of mea- 
sured steering vectors. These steering vectors are used 
in [8] and also here to transform spatial data to  the an- 
gle domain. However, this paper uses the formulation 
of [l] to account for the spread of target information 
in the angle domain. A DFT is the valid transform 
to obtain Doppler domain information from the time 
domain data. The CPI uses 22 subarrays (N=22) 
to form a 2 x 11 rectangular array and 128 pulses 
(M=128). 

The example presents results of the four possi- 
ble cases: assuming ideal system and homogeneous 
data, assuming ideal system and accounting for non- 
homogeneous data, account for the non-ideal system 
and assuming homogeneous data and finally account- 
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Fig. 4. The output of JDL algorithm with and 

without the GIP NHD, without account- 
ing for target spread. 
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Fig. 5. The output of JDL algorithm with 

and without the GIP NHD, accounting for 
target spread. 

ing for both non-ideal system and non-homogeneous 
data. For each case, the GIP and the JDL based NHD 
are considered. 

A synthetic target of fixed amplitude, direction, 
Doppler, and range is injected into the MCARM data 
set. The amplitude and phase variation of the in- 
jected target across the 22 channels is obtained from 
the measured steering vectors. The amplitude of the 
injected target is chosen such that it remains unde- 
tected by non-adaptive digital beamforming/Doppler 
processing. In this example, the data from acquisi- 
tion 575 on flight 5 is used. The parameters of the in- 
jected target are: Amplitude = 0.00005, Angle bin = 

65 (Broadside), Doppler bin = -9 (-139.5Hz), and 

I I 
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Fig. 6. The output of JDL algorithm with and 

without the JDL NHD, without account- 
ing for target spread. 

JDL v/ JDL NHD 

10 

5 
4 
CI cs 0 

-5 

-10 

-15 

250 260 270 280 290 300 310 320 330 

1 
Fig. 7. The output of JDL algorithm with 

and without the JDL NHD, accounting for 
target spread. 

Range bin = 290 . 

JDL processing is performed at the target angle bin 
and for a few range bins surrounding the injected tar- 
get. In this example, the figure of merit used to com- 
pare the two scenarios is the separation between the 
MSMI statistic at  the target range/Doppler bin and 
the next highest statistic at other range or Doppler 
bins (the largest false alarm statistic). A large sep- 
aration implies a large difference between target and 
residual interference, i.e. improving target detection 
while maintaining constant false alarm. 

The results of the four cases considered above are 
presented in Figs. 4 and 5 for the GIP NHD and in 

Figs. 6 and 7 for the JDL NHD. Table I contains a 
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summary. The entries in the table are the separa- 
tion between the peak at the range bin of the target 
and the next highest peak. The entries are hence a 
measure of detection performance. 

The results show that in the case of applying JDL 
to measured data, certain non-homogeneity detectors 
may worsen the detection performance. The separa- 
tion when applying JDL without accounting for tar- 
get spread in angle is 4.6 dB. However, the separation 
decreases to 2.7 dB after using the GIP NHD. This 
situation is alleviated by accounting for the non-ideal 
array, i.e. the steering vector spreading in angle. 

CONCLUSIONS 

This paper presents two transform domain non- 
homogeneity detectors that account for the non-ideal 
array and the non-homogeneous interference environ- 
ment. Each of these effects has been accounted for 
separately before [l, 21. However, this paper is the 
first attempt to incorporate both effects into a single 
STAP algorithm. 

The formulation developed for the JDL algorithm is 
tested on measured data from the MCARM database. 
The data includes clutter and noise. A target is in- 
jected using the measured steering vectors. The ex- 
ample illustrates the effects in detection performance 
by considering both the non-ideal system and non- 
homogeneous interference scenario, individually and 
in combination. 

The results show that if only the non-homogeneous 
data is accounted for, the NHD might actually worsen 
the situation. Both system and interference scenario 
imperfections must be accounted for. The example 
shows significant improvements in STAP processing 
with as much as 5 dB improvement in the separation 
of the target statistic from the nearest false alarm. 
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