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Abstract—A simplified method of analysis and design based
on the Bhattacharyya parameter (BP) in conjunction with the
union bound and weight enumeration is presented for relay
channels using coded cooperation. This method is particularly
suitable for low-complexity relay systems employing demodulate-
and-forward, focusing on the problems of relay selection and
outage analysis. These applications are chosen to illustrate the use
of the BP in scenarios where analytical solutions are otherwise
unattainable. In terms of relay selection, it is shown that BP-
based relay selection has essentially the same performance as
density evolution, though with much lower complexity. It is
further shown that BP-based relay selection can be applied to
fractional cooperation, where each relay only forwards a fraction
of the source codeword. In terms of analysis, it is shown that
weight enumeration with BP can be used to provide a close
approximate to the upper bound on the outage probability of
fractional cooperation, again with much lower computational
complexity than density evolution.

Index Terms—Communication systems, channel coding, relays,
cooperative systems.

I. INTRODUCTION

IN wireless systems, relays can be used to combat the
detrimental effects of fading channels. A typical three-

node relay channel consists of a source node (which generates
data), a destination node (which receives the data), and a
relay node (which assists the source in communicating its
message to the destination). Relay channels were studied in
depth in [1], where the upper bound on the capacity of the
relay channel was found, and achievable rates of decode-and-
forward (DF) and compress-and-forward (CF) relaying were
presented. Recently there has been a renewed interest in relay
channels due to the technological advances over the years,
potentially allowing for the use of relays in mesh and sensor
networks. There are published papers analyzing the achievable
rates of DF, CF and/or amplify-and-forward (AF) in both
the small three-node networks and large multi-node networks,
where the channels can be full-duplex or half-duplex, such as
[2]–[4]. The diversity-multiplexing tradeoff of DF and AF for
orthogonal and non-orthogonal channels were presented in [5]
and [6] respectively. There are also studies on coding strategies

Submitted to IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
January 17, 2008. Material in this paper was presented in part at the IEEE
International Conference on Communications, Beijing, China, May 2008.

Josephine P. K. Chu and Raviraj S. Adve are with The Edward S.
Rogers Sr. Department of Electrical and Computer Engineering, University
of Toronto, 10 King’s College Road, Toronto, Ontario, Canada M5S 3G4.
Emails: {chuj,rsadve}@comm.utoronto.ca

Andrew W. Eckford is with the Department of Computer Science and
Engineering, York University, 4700 Keele Street, Toronto, Ontario, Canada
M3J 1P3. Email: aeckford@yorku.ca

realizing DF in relay channels (see, e.g., [7], [8] and the
references therein). Innovative coding schemes that combine
the benefits of DF and AF are also available. Examples include
[9], [10], where the soft information from decoding the source
signal is used to form soft signal at the relay, which is then
transmitted to the destination node.

In this paper, we are motivated by distributed wireless net-
works with complexity-constrained hardware, such as sensor
networks, for which demodulate-and-forward (DemF) [11],
[12] may be the appropriate relaying strategy. In DemF, instead
of decoding the received signal, the relay demodulates it, and
transmits the demodulated bits (or parity bits formed from
the demodulated bits) to the destination. This concept was
implemented in conjunction with coded cooperation in [15]
using low-density generator matrix (LDGM) [13] and repeat-
accumulate (RA) [14] codes. The work in [15] showed that full
diversity is obtained with these coding schemes, even though
only simple operations are performed at the relay. Meanwhile,
fractional cooperation, where each relay only forwards a
fraction of the source codeword, was introduced in [15], [16].
Fractional cooperation is a flexible scheme, as it allows the
burden of relaying to be distributed among several nodes in
the network. It was shown that with fractional cooperation, as
long as the number of relays used is greater than a threshold
value, rc, each additional relay increases the diversity order
by one [15].

In analyzing and/or designing networks based on coop-
eration via error control coding (as opposed to, say, AF)
a serious drawback is that closed-form analysis of coded
cooperation is generally unavailable. The published work is
based largely on time-consuming simulations or analysis via
density evolution (DE) [17]. However, DE is an asymptotic
concept based on the assumption of large blocklengths. Thus,
DE does not always account for the peculiarities of the finite-
length code being used. In this paper we propose the use of the
Bhattacharyya parameter (BP) [18], in conjunction with the
weight enumerator (WE) of the source’s codeword, as a system
analysis and design tool. The BP provides a measure of the
quality of the effective channel, and is coupled with a WE that
incorporates the specifics of the code. Using the two together
(called BP or the BP approach here for convenience) provides
a bound on the frame error rate (FER); one can therefore use
the BP for analysis, e.g., to determine a performance measure
such as outage probability.

In this paper we use the BP approach to address two specific
problems found to be particularly intractable in previous
work [15], [16], [19]: relay selection in large-scale networks,
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and determination of the outage probability of fractional
cooperation. However, we emphasize that the applications of
the BP go beyond just the DemF applications explored here.
Some examples include the design of finite-length codes in
various scenarios, and the analysis of a hybrid DemF/DF
scheme, wherein a relay may attempt some partial decoding
to get a better estimate of the source’s message.

Relay selection is motivated by the fact that, when multiple
potential relays are available, it is impractical, and possibly
undesirable, for all relays to try to help the source. This is
because increasing the number of relays leads to an increase
in total transmission power overhead, in addition to a decrease
in transmission rate if orthogonal channels are used. Relay
selection, where a single best relay is selected out of the
pool of available relays, achieves full diversity order without
the sacrifices in transmission rate and energy overhead. Relay
selection also has the distinct advantage over distributed space-
time codes of not requiring synchronization. Relay selection
for DF [20], [21] and AF [22] have well-established selection
criteria. For systems where coded cooperation is used (includ-
ing as an implementation of DF), DE can be used to decide
which relay provides the best error performance. However,
even though DE is more efficient than simulations, and can be
performed off-line with the data stored in a lookup table, the
FER must be stored for every possible realization of all the
channels. In [19], a simple heuristic using mutual information
was introduced to find the optimal relay, but in that case the
state of every channel in the relay network must be known.
Under this scheme, the source-destination (S-D) channel must
be communicated to all the relays, significantly increasing the
communication overhead.

This paper considers relay selection using the BP when error
performance is used as the selection criterion. In conjunction
with the weight enumeration of the codewords, the use of
the BP provides a significantly simpler approach to relay
selection. Only the source-relay (S-R) and relay-destination
(R-D) channel state information is required, allowing cal-
culation to be performed at each relay (without knowledge
of the S-D channel strength). This, in turn, minimizes the
transmissions needed to communicate the channel coefficients.
As the results of simulations will show, the error performance
of relay selection via the BP is essentially indistinguishable
from exhaustive search. Relay selection can also be applied
to fractional cooperation, where the rb best relays are chosen
out of a pool of ra available relays. Let r̃c(ra) be the number
of relays required to achieve diversity order of 2, given the
relaying fraction, relaying scheme, and encoding and decoding
schemes. We will show that with ra relays available to assist
the source, as long as rb ≥ r̃c(ra), the diversity order of the
system is equal to ra − r̃c(ra) + 2.

In addition to relay selection, the BP approach can also be
used as an efficient method to obtain a close approximation
to the upper bound on the outage probability of fractional
cooperation. A Gaussian distribution is used to approximate
the effective channel signal after decoding “turbo-like” error
correcting codes [23], which allows quick analysis and design
of those codes. Using the BP to study outage probability is ex-
tremely flexible, as the effects of changing the average channel

conditions, the fraction of source codeword relayed by each
relay, and the number of relays can be obtained easily. Finally,
we use the BP to illustrate the effects of limited decoding [24]
at a relay. Limited decoding allows either a limited number of
iterations of the sum-product algorithm (SPA) [25], or simpler
decoding algorithm, such as the Gallager A algorithm [26], to
be used at the relay. In this case, the effective S-R channel is
improved. Clearly, determining how each iteration improves
the overall system performance is analytically complicated;
but fairly straightforward using the BP. Note that the limited
decoding used in this paper is different than that suggested in
[9], [10]; in our implementation, the information regarding the
S-R channel is not embedded in the transmitted data, and the
decoded data is quantized before being transmitted.

This paper is organized as follows: In Section II we present
background information, including the system model, infor-
mation on DemF cooperative coding, fractional cooperation,
and the use of the BP. In Section III we illustrate how the
BP approach can be used for relay selection and for analysis
of the outage probability of relay channels. Simulation results
for the various applications of the BP approach are presented
in Section IV. Finally, some concluding remarks are drawn in
Section V.

II. SYSTEM MODEL AND BACKGROUND

This section presents the system model under consideration
and a brief background on the concepts used extensively in this
paper: DemF and fractional cooperation. A brief overview of
the union bound and the BP is also presented.

A. System Model

The relay channel consists of a source (S) node, a desti-
nation (D) node and a total of r relays (R). A quasi-static
Rayleigh fading channel model is used to describe the links
between the nodes. It is assumed that all receivers have
accurate channel state information, and the S-R channel signal-
to-noise ratio (SNR) are known at the destination as well.
Also, it is assumed that the channels between the nodes are
half-duplex, and due to the fact that symbol synchronization
is not available, orthogonal channels are used to facilitate
transmissions between various nodes. These assumptions are
frequently invoked for low-complexity wireless hardware [27],
[28].

Transmission is separated into two phases. In the first phase,
the source node forms a codeword dS ∈ {0, 1}nS of rate
RS . Let ξ : {0, 1}nS → {+1,−1}nS represent a modulation
function, mapping 0 to +1 and 1 to −1, respectively (with
ξ−1(·) as the inverse operation). Assuming that binary phase-
shift keying (BPSK) is used, the codeword dS is mapped to
cS ∈ {+1,−1}nS using the function ξ(·). The source node
then broadcasts the binary codeword cS , and the discrete-time
received signals at relay i and D are

ySR,i = hSR,icS + nR,i, i ∈ {1, . . . , r} (1)
ySD = hSDcS + nSD, (2)

where hSR,i and hSD are the channel coefficients between S
and relay i and between S and D respectively, and nR,i and



CHU et al.: USING THE BHATTACHARYYA PARAMETER FOR DESIGN AND ANALYSIS OF COOPERATIVE WIRELESS SYSTEMS 3

nSD are independent additive white Gaussian noise (AWGN)
with variance N0,R,i and N0,D respectively. After the first
transmission phase, relay i processes the received signal ySR,i,
as described in the next section. It forms a new codeword dR,i

based on the received signal and generates cR,i = ξ(dR,i). In
the second phase, each relay transmits the codeword, and the
discrete time received signal at D is

yRD,i = hRD,icR,i + nRD,i, (3)

where hRD,i is channel coefficient from relay i to D and nRD,i

is the AWGN with variance N0,D. The average received SNR
of the channel between S and relay i is

γ̄SR,i = E[γSR,i] = E[|hSR,i|2]/N0,R,i, (4)

where E[·] is the statistical expectation function and γSR,i is
the instantaneous SNR of the channel between the source and
relay i. The average received SNR of the channels between S
and D, and that between the relay i and D, γ̄SD and γ̄RD,i,
can be obtained similarly.

B. Coded Cooperative DemF

This section briefly reviews coded cooperation as proposed
for DemF based on punctured systematic repeat-accumulate
(PSRA) codes [15], which is the basis for all further analysis
in this paper. This channel code is used at both the source
and relays because it only requires a simple encoder; in
addition, these codes provide excellent performance in AWGN
channels and the code rates can be changed easily. However,
the method described below is valid for almost all systematic
code families.
Encoding: The encoding procedure for PSRA codes can be
found

in [15], [29], and is briefly reiterated here. Given an
information bit string w, which could consist of source bits
(at the source) or demodulated bits (at the relay), we have the
following procedure:

1) Repeat the information bits q times and randomly inter-
leave;

2) Feed the permuted string into a truncated rate-1 recursive
convolutional encoder with transfer function 1/(1 + D)
(i.e., accumulate, mod 2);

3) Concatenate the accumulated string with the original
information sequence, so as to make the code systematic;
and

4) Randomly puncture the non-systematic part of the code-
word so as to achieve the desired code rate.

Throughout this paper, we set q = 3, hence allowing the
code rate to range from 1/4 to 1.
Relay processing: As mentioned above, the ith relay forms a
new codeword dR,i based on the signal it observes, given by
ySR,i. We admit two possible methods for forming dR,i:

1) For hardware that only admits operations with very low
complexity, the observed sequence ySR,i is merely de-
modulated. Since the modulation was BPSK, this is done
by obtaining ξ−1(sign(ySR,i)). This sequence is then
re-encoded with another error-correcting code. Given
the above encoding procedure for PSRA codes, coded

vi,s vi,s vi,s
vi,r vi,r vi,r vi,r

vp,s vp,s vp,s
vp,r vp,r

q

Fig. 1. Factor graph of DemF with the use of RA code.

DemF involves only simple operations at the relay, and
no decoding is involved. This would be appropriate
for relay networks comprising nodes with only simple
hardware and limited battery power.

2) For hardware that admits operations with higher com-
plexity, the relay can perform limited decoding, for ex-
ample, via limited iterations of SPA [25], or the Gallager
A algorithm [26]. The partially decoded sequence, which
may still contain errors, is re-encoded with another
error-correcting code and retransmitted. The decoding
operations at the relay are as specified in [25], [26].

In either case, we admit the possibility that only a fraction of
the demodulated or decoded sequence is retransmitted; that is,
the demodulated or partially decoded sequence is punctured
prior to re-encoding; this is discussed further in the next
section. Clearly, limited decoding is a generalized technique
that admits pure DemF and pure DF as extreme points.

If limited decoding is available, the effective S-R channel
is improved, as compared to the case of pure DemF. The
relationship between the original S-R channel bit error rate
(BER) and the effective S-R channel BER after decoding can
be obtained using DE. As shown in [17], [24], the BER
is a non-increasing function of the number of iterations.
Hence, limited decoding does not increase the effective bit-
flip probability over the S-R channel. As we will see, the BP
can account for the impact of this limited decoding (via the
effective S-R channel).

A factor graph [25] of DemF with use of a RA code is
shown in Fig. 1. In the figure, circles and squares represent
variable and check nodes respectively, where shaded variable
nodes represent punctured parity bits. The labels vi,s, vp,s,
vi,r and vp,r represent source information and parity bits, and
relay information and parity bits respectively, and Π is the
random interleaver. The relay parity bits only influence the
decisions on the value of the source codeword through the
relay information bits, and this is illustrated by the fact that
none of the vp,r nodes are connected to any of the vi,s and
vp,s nodes in the figure.
Decoding at the destination. We assume that the destination
has knowledge of the channel statistics at each node. To
simplify the analysis, we implement serial decoding, in which
the destination first decodes the PSRA codes generated by each
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relay, and uses the results to decode the codeword transmitted
by the source.

From (3), the destination observes each relay codeword
cR,i through independent Gaussian noise. Assuming serial
decoding, each of these codewords is decoded individually.
The decoding at the destination is performed using SPA [25],
chosen because it is the usual algorithm for decoding “turbo-
like” codes, such as the PSRA code. Furthermore, using
the SPA, it is straightforward to explicitly account for the
relationship between symbols transmitted by the source, and
symbols transmitted by the relay.

For each relayed symbol, the sequence is equivalent to
a symbol from cS , observed through a binary symmetric
channel. For the ith relay, let pi represent the crossover
probability of the equivalent relay channel. The value of pi

can be found as the SNR between S and all the relays are
known at D. This error probability is explicitly accounted for
by calculating a special message in the SPA. After the final
iteration in the process of decoding the relay codeword, the
messages from all the check nodes to each variable node are
summed. If the jth bit of dS is relayed by relay i, let li,j
represent the summed message at the variable node in dR,i

corresponding to jth bit of dS ; if the jth bit of dS is not
relayed by relay i, then li,j is set to 0. After obtaining li,j
from decoding the codeword from relay i, the SPA message
of the jth source bit from corresponding bit transmitted by the
ith relay can be found using

log
pi + (1− pi)eli,j

pieli,j + (1− pi)
.

If li,j = 0, which means that bit j is not relayed by relay i,
then the term vanishes. Also, if the S-R channel is unreliable,
i.e., pi → 0.5, the above term approaches 0. This allows us
to take into account the reliability of the S-R channel, and
the effects of error propagation that are often seen with DF
is eliminated. The channel message for bit j of dS , which is
used for decoding, is then given by

φj =
4|hSD|ySD,j

N0,D
+

r∑

i=1

log
pi + (1− pi)eli,j

pieli,j + (1− pi)
, (5)

where ySD,j is the jth bit of ySD. Note that (5) represents
channel observations of the same symbol through parallel
independent channels, where the first term represents the direct
channel, and the sum over all relays represents the equivalent
relay channels.

The decoding process described above requires the knowl-
edge of the S-R channel SNR (equivalently pi) for all the re-
laying nodes. This can be facilitated by the relay estimating the
S-R channel SNR, and transmitting the value to the destination
node together with the relayed data. Performance degradation
can be introduced by inaccurate channel estimation, and on D
not recovering the estimated value from the relay. However,
these effects are outside the scope of this paper. The decoding
procedure at the destination node is discussed extensively in
[15], and the reader is directed to that reference for additional
details.

C. Fractional Cooperation

Most existing cooperation schemes assume “all or nothing”
cooperation, i.e., either the relay devotes all its resources to
the source or none at all. As we suggested in the previous
section, a relay may use only a fraction of its data block to
help a source. In a variation of this theme, multiple relays
are recruited to assist the source node. Each relay transmits a
random fraction of the complete codeword. The responsibility
of relaying is then spread over multiple relays, thus reducing
the risk of draining the battery of some of the nodes more
quickly than others.

We introduce a new parameter, εi, to represent the fraction
of the source codeword that relay i is relaying. As shown in
[15], as long as the number of relays used, r, is greater than
a required threshold rc, then each additional relay increases
the diversity order by 1. The value of rc depends on the
value of εi, the channel code used and the associated decoding
scheme, as well as the method used by the relay to process
the received source signal. Note that fractional cooperation
is extremely flexible, as each relay chooses the source bits
to relay at random and no coordination between the relaying
nodes is required. We introduce some additional parameters
to help describe the transmission scheme: in the case where
a distinction is made between the relayed source information
and parity bits, εinfo,i and εpar,i describe the fraction of source
information and parity bits that are relayed by relay i.

D. Error Rates and the BP

The BP approach provides a convenient upper bound on
the maximum likelihood (ML) FER [30]. For a codebook C,
suppose the codewords are numbered 0, 1, 2, . . . , |C|−1, and
let di ∈ C represent the ith codeword. Assume that codeword
d0 = 0 is transmitted over the channel, and y is the received
signal. Let f(y|d) be the likelihood function of y given d is
transmitted. Then Yj = {y : f(y|d0) ≤ f(y|dj)} represents
the set of received signals that would lead us to decode dj

as the correct codeword under ML decoding given d0 is sent.
A frame error occurs whenever the received signal belongs to
any of the set Yj for j = 1, . . . |C| − 1, and the FER (Pf ) is
upper-bounded

Pf ≤
|C|−1∑

j=1

Pr(y ∈ Yj).

Recall that y is the received signal given that d0 is transmitted.
Hence it can be shown

Pr(y ∈ Yj) =
∑

y∈Yj

f(y|d0) ≤
∑

y∈Yj

√
f(y|d0)f(y|dj).

Let d0 and dj differ in hj positions. Assuming discrete
memoryless channels, after some manipulation we have [18]

Pr(y ∈ Yj) ≤
hj∏

i=1

∑

y∈Y

√
f(y|0)f(y|1). (6)

where Y is the alphabet of the output, and p(y|0) and p(y|1)
are the probability of y given 0 and 1 is sent respectively. The
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BP associated with a channel is defined as

β ,
∑

y∈Y

√
f(y|0)f(y|1). (7)

For the binary symmetric channel (BSC) with bit-flip proba-
bility p, β = 2

√
p(1− p), and for the AWGN channel with

received SNR γ, β = e−γ . The BP therefore characterizes the
channel between the transmitted symbol and the data used for
processing, y.

Let k be the length of the of the encoder input, and n be
the encoder output. By averaging over all possible codebooks,
we obtain the union bounds for the Pf using the BP

Pf ≤
n∑

h=1

Ahβh =
n∑

h=1

(
k∑

w=1

Aw,h

)
βh (8)

where Aw,h represents the number of codewords with input
weight w and output weight h, and Ah, also known as the
weight enumerator (WE), is the number of codewords with
weight h. If the channel code is systematic, Aw,h represents
the number of codewords with w as the weight of the informa-
tion bits, and h as the weight of the codeword. The derivation
of WE for “turbo-like” codes, such as RA codes, can be found
in [14].

Importantly, for our application with relay channels, these
bounds on the FER can be extended to scenarios where
the codeword is sent through parallel channels, each with
different BP [31]. Let the number of parallel channels be J .
Assuming the codeword has n bits, and each bit is transmitted
through channel j with probability αj , where

∑
j αj = 1. By

averaging over all possible bit assignment to all the channels,
the authors in [31] derived the union bound for the parallel
channels

Pf ≤
n∑

h=1

Ahβ̄h (9)

where

β̄ =
J∑

j=1

αjβj (10)

and βj is the BP associated with the jth channel. This concept
has also been extended to analyze incremental redundancy (IR)
in [32], a cooperative scheme used in relay channels. With
IR, the source codeword is divided into mutually-exclusive
subsets, where each subset is assigned to one relay. After
receiving the broadcast from S, each relay attempts to decode
the source codeword. If decoding is successful, R repeats the
subset of bits assigned; otherwise, R remains silent and S
transmits the subset of bits assigned to that particular relay.
This approach is different from that suggested in this paper, as
the system under study can use DemF, and we do not assume
that the subsets are mutually-exclusive. Note that this section
only provides a brief overview of the union bound and BP. A
more detailed description of the derivation of the union bound
can be found in [18], [30], [33], [34].

III. APPLICATIONS OF THE BP IN RELAY CHANNELS

This section presents the core contributions of this paper:
the application of the BP to relay selection and fractional

cooperation in the context of DemF. These topics were the
background to our investigation of the BP. However, it is
our belief that the approach presented here can be used in
several other analysis and design scenarios. Because we use a
Gaussian distribution to approximate the density of the SPA
messages passed when decoding the PSRA code, our bound
is itself an approximation. Nonetheless, analogously to the
density approximation for LDPC codes, the bound can be
calculated quickly and efficiently, making it most appropriate
for simplified performance analysis and system design.

A. Selecting a Single Relay

Error performance is used as the figure of merit in this paper,
and we wish to select the relay that results in the smallest
FER. For simplicity, the subscript i that is used to identify
the different relays is omitted in this section as only one relay
is chosen to assist the source. Without loss of generality, the
cooperative RA code in Sec. II-B is used to explain the use of
BP in relay selection. Let kS be the number of information bits
in the source codeword, and recall that nS is the blocklength
of the source codeword. In addition we assume that a rate-
1/4 systematic RA code is used by the relay and that serial
decoding is performed.

Recall that for a systematic code, Aw,h is the number of
codewords with weight w for the information bits, and weight
h−w for the parity bits. In the application of (9) to the 3-node
relay channel, we have

Pf ≤
k∑

w=1

n∑

h=1

Aw,hβh
SD×

(1− εinfo(1− βR))w(1− εpar(1− βR))h−w (11)

where βSD is the BP associated with the S-D channel and βR

is the BP associated with the relay used for forwarding the
source signal. From the source codeword viewpoint, it is first
transmitted through the S-D channel, with the associated BP
βSD = e−γSD . Then, for the bits that are relayed, they are
transmitted through the compound S-R-D channel, with the
associated BP βR.

As shown in (11), for a fixed code and a fixed relaying
scheme, Aw,h, εinfo and εpar remain constant, and the bound
on the FER decreases as the BP decreases. When choosing the
optimal relay, the BP βSD is fixed (as the S-D channel is the
same for all relays); the only value that is distinct for different
relays is βR. Hence, as βR decreases, the upper bounds on the
FER go down. Although it cannot be shown that choosing the
relay with a link that gives the minimum βR will provide the
smallest FER as well, we expect that using the chosen relay
will provide us with good error performance.

As serial decoding is used at the destination node, the
calculation of βR can be separated into two steps. In the first
step, we need to obtain the distribution of the output signal
after decoding the relay codeword. Let the likelihood function
for the R-D channel before decoding be modeled as

f(y|dR = 0) = g(y; 1, σ2
R,in)

f(y|dR = 1) = g(y;−1, σ2
R,in) (12)
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Fig. 2. Plot of equivalent channel noise variance before and after decoding
for the rate-1/4 systematic RA code.

where g(t;µ, σ2) is the distribution of the Gaussian random
variable t with mean µ and variance σ2. In our case, because
no puncturing is used at the relay codeword, the distribution of
the output signal after decoding can also be (fairly accurately)
approximated by the Gaussian distribution with associated
parameters found using the technique from [23]. Let the output
distribution for the R-D channel after decoding be modeled as

f(y|dR = 0) = g(y; 1, σ2
R,out)

f(y|dR = 1) = g(y;−1, σ2
R,out). (13)

The relationship between the variance of the channel distri-
bution before and after decoding the rate-1/4 RA code is
plotted in Fig. 2, where σ2

R,in = |hRD|2
N0,D

is the variance for
the distribution in (12) over the R-D channel before decoding,
and σ2

R,out is the equivalent variance after decoding. This data
is stored at the relay node, where the equivalent channel noise
variance σ2

R,out can be found through a lookup table given
the R-D channel coefficient. Note that this look up table has
to be created just once for a particular code, i.e., DE in real
time is not required. Furthermore, the required lookup table is
one-dimensional, and the storage of such data can be easily
implemented.

In the second step, we use the information obtained from the
first step, σ2

R,out, together with the S-R channel condition, to
calculate βR. Recall that the relay can process the received
signal in one of two ways: either it merely demodulates
the received signal, or it performs limited decoding on the
received signal. If only demodulation is performed at the
relay, the S-R channel can be modeled as a BSC with bit-flip
probability pSR,in, where pSR,in = 1

2erfc
√

γSR, and erfc(·)
is the complementary error function. If limited decoding is
performed at the relay, then the bit flip probability after relay
processing is not equal to pSR,in; let pSR,out represent this
new bit flip probability after decoding, which can be obtained
using DE.

As an example, the relationship between the raw bit-
flip probability pSR,in and the equivalent bit-flip probability
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Fig. 3. Relationship between pSR,in and pSR,out, the equivalent bit-
flip probability after a given number of decoding iterations for the rate-1/2
punctured systematic RA code.

pSR,out after a given number decoding iterations for a rate-1/2
punctured systematic RA code is illustrated in Fig. 3. In the
figure, each curve represents a different number of decoding
iterations; the results for 1 to 10, 15, 20, 30, 40 and 50
iterations are shown. As the number of iterations increases,
pSR,out decreases for the same pSR,in. The result for no
iterations, where only demodulation is performed at the relay
and pSR,out = pSR,in, is shown in the plot for comparison
(represented by the dash-dot line). As illustrated in the plot,
even a small number of iterations can improve the bit error
rate over the S-R channel significantly. These values can be
obtained at the relay either from a function approximating the
relationship, or, similar to σ2

R,out, from a lookup table.

After the equivalent channel noise variance σ2
R,out and

equivalent bit-flip probability pSR,out are obtained, the likeli-
hood function for the equivalent S-R-D channel after decoding
the relay codeword is given by

f(y|dS) =





g(y; 1, σ2
R,out)p̄SR,out

+ g(y;−1, σ2
R,out)pSR,out if dS = 0,

g(y; 1, σ2
R,out)pSR,out

+ g(y;−1, σ2
R,out)p̄SR,out if dS = 1.

(14)

where p̄SR,out = 1− pSR,out. The relay then calculates βR by
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substituting (14) into (7)

βR =
∫ ∞

−∞

√
f(y|dS = 0)f(y|dS = 1)dy (15a)

=
∫ ∞

−∞
{[g(y; 1, σ2

R,out)p̄SR,out

+ g(y;−1, σ2
R,out)pSR,out]

× [g(y;−1, σ2
R,out)p̄SR,out

+ g(y; 1, σ2
R,out)pSR,out]}1/2dy (15b)

=
1√

2πσ2
R,out

∫ ∞

−∞
exp

{
− y2 + 1

2σ2
R,out

}

× [4pSR,outp̄SR,out sinh2(y/σ2
R,out) + 1]1/2dy.

(15c)

Note that as pSR,out becomes very small, and the S-R-D
channel becomes an additive white Gaussian noise channel,
with βR = exp{− 1

2σ2
R,out

}. Similarly, as σ2
R,out becomes

very small, the S-R-D channel becomes a BSC, with βR =
2
√

pSR,outp̄SR,out.
A comparison of the results from DE on the complete factor

graph and from the lookup table with calculation from (15c) is
shown in Fig. 4. The parameters εinfo and εpar are set to be 1
and 0, and the rate of the source codeword is RS = 1/2. It is
assumed that only demodulation is performed at the relay. In
addition, the S-D channel instantaneous SNR γSD is set to −6
dB. In the figure, the markers indicate the values of γSR and
γRD that yield the given BER through the use of DE on the
factor graph, and the lines show the contours outlining values
of γSR and γRD that give the same βR values found using the
lookup table and (15c). As shown in the plot, the calculation
of βR through the lookup table and (15c) does an excellent
job of characterizing the S-R and R-D channel conditions that
would yield a certain BER. This is quite remarkable, as all the
channel conditions that give the same βR also give the same
BER. The plot, therefore, illustrates that the BP can indeed
be used for relay selection; it is shown that as βR decreases,
the value of BER goes down as well. The BP can therefore
be used as a simple and efficient performance measure. We
emphasize that the calculations described above place a very
limited real-time computation burden on the relays.

Because of the use of orthogonal channels, the S-D channel
is not required to perform relay selection. As only knowledge
of the S-R and R-D channel condition is required, the BP
calculation can be performed at each relay. For example, after
S has sent out a request for assistance, each available relay
calculates its associated BP, and sends this information to
either S or D, depending on which node is responsible for
choosing the relay. After collecting all the values of βR from
the relays, S or D then chooses the best relay. There is,
however, the need for the relay to keep track of the R-D
channel condition. We assume that pilot signals are transmitted
from each relay to the destination node periodically to keep
track of the R-D channel coefficient, and as the D is not energy
limited, it can broadcast these channel coefficient estimates to
the relays. The penalty that may be incurred due to inaccurate
channel estimation, however, is outside the scope of this paper.
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Fig. 4. Contours of BER from DE (Markers) and from lookup table and
(15c) (Lines).

B. Relay Selection for Fractional Cooperation

In extending the BP approach to fractional cooperation we
must first take a detour into some theoretical results when relay
selection is applied to fractional cooperation. These results
show that, as with DF and AF, relay selection provides “full”
diversity order. As in the earlier section, BP can then be used
to select the relays.

An analysis of fractional cooperation was presented in [15],
and the results are briefly reviewed here. Let rc(γSD) represent
the number of relays such that whenever the number of relays
used, r, is less than rc(γSD), a system outage always occurs
when the instantaneous S-D channel SNR is γSD and for all
S-R and R-D channels. It was shown that rc(γSD) exists for all
γSD and is finite. Let rc = limγSD→0 rc(γSD) be the minimum
number of relays that must be participating in order for the
system to have diversity order greater than 1. It was shown that
if r < rc, then the system has diversity 1. On the other hand,
if r ≥ rc, then a diversity order of r− rc +2 can be achieved
with the use of fractional cooperation. Essentially the theorem
states that if the number of relays is above a threshold, each
additional relay provides an extra order of diversity. The value
of rc is dependent on the value of εi, the coding and decoding
schemes used, as well as the relaying scheme.

These results are extended here to the case of relay selection.
We assume that rb “best” relays are chosen out of a pool of
ra relays, where in this case the relays are chosen based on
their ability to improve the system error performance. Each
chosen relay then selects, at random, a fraction of the source
code bits, form a new codeword based on the chosen bits, and
transmit the codeword to the destination.

Now we provide some definitions for the terms that will
be used. In a wireless system, an outage is declared when
the FER falls above a given threshold. Let rt(γSD) be the
number of available relays, such that if ra < rt(γSD) then a
system outage will occur, for that value of γSD and all S-R
and R-D channels, independently of the value of rb. When
ra ≥ rt(γSD) relays are available to assist, but the number of
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relays chosen, rb, is less than a threshold r̃c(γSD, ra), then an
outage would occur for those values of γSD and ra. In addition,
let rt = limγSD→0 rt(γSD) be the minimum rt without a S-D
channel, and r̃c(ra) = limγSD→0 r̃c(γSD, ra).

Lemma 1: For all γSD, rt(γSD) exists and is finite. Also,
for all γSD and ra > rt(γSD), r̃c(γSD, ra) exists and is less
than or equal to ra.

Proof: See Appendix A.
To study the asymptotic outage probability, Pout, the order

notation Θ(·) is used here. If y = Θ(x), limx→∞ y/x = c,
where c is a constant. For example, for a system with diversity
order d, Pout = Θ(γ̄−d).

Theorem 1: If ra < rt, the diversity order of the system is
1. For ra ≥ rt, if rb < r̃c(ra), then the diversity order is 1 as
well. If ra ≥ rt and rb ≥ r̃c(ra), then the diversity order of
the system is ra − r̃c(ra) + 2.

Proof: See Appendix B.
Similar to the one-relay system, relay selection can be used

to choose the best rb relays out of a pool of ra available
relays to provide full diversity. Using the same technique as
presented earlier, βR values of each relay can be calculated,
and the rb relays with the smallest βR values is chosen to assist
the source. If ra ≥ rt and rb ≥ r̃c(ra), then a diversity order
of ra−r̃c(ra)+2 can be observed. Note that only r̃c(ra) relays
is required to obtain that maximum diversity order for a pool
of ra available relays; any additional relay chosen to assist
only shifts the FER curve and does not provide an increase in
diversity order.

C. Outage Probability Analysis for Fractional Cooperation
Sections III-A and III-B illustrated a system design appli-

cation of the BP. In addition to relay selection, the BP can also
be used for analysis; here, to analyze the outage probability
of fractional cooperation. Simulations and DE can be used to
obtain the outage probability, but they are complex and time-
consuming. As illustrated earlier, the union bound provides an
upper bound on the FER, and is more efficient than simulations
or DE. Assume that r relays are used, and relay i chooses to
relay each of the n bits of the source with probability εi. In
this case, there is no differentiation between the fraction of
information and parity bits relayed, and εinfo,i = εpar,i = εi.

Let R = {1, 2, . . . , r} be the set of relays, and let Rj

denote all possible subsets of R, including the empty set ∅, for
j = 1, . . . , 2r. Then the probability of each bit of the source
codeword relayed only by the relays in set Rj is given by

Pr(Rj) =


 ∏

i∈Rj

εi





 ∏

i/∈Rj

(1− εi)


 (16)

and the associated BP is given by

βRj =
∏

i∈Rj

βR,i (17)

where βR,i is the BP associated with the S-R-D link through
relay i. After some simple manipulation, it can be shown that
β̄ from (10) for fractional cooperation is given by

β̄FC =
r∏

i=1

(1− εi (1− βR,i)) (18)

If outage is declared when the channel gives Pf > Pf,t, where
Pf,t is a predefined FER threshold, then

Pout = Pr(Pf > Pf,t)

≤ Pr




n∑

h=1

Ah

(
βSD

r∏

i=1

(1− εi (1− βR,i))

)h

> Pf,t




(19a)

= Pr
(
βSDβ̄FC > βt

)
(19b)

where Pf,t =
∑

Ahβh
t .

To obtain the upper bound on Pout, random realizations of
the S-D, S-R and R-D channels are first generated according to
their distributions. The values of βSD and the βR,i associated
with the relays are found. The frequency at which βSDβ̄FC

exceeds βt gives the upper bound on the outage probability.
If simulations were used to obtain the outage probability, the
FER of each realization of the channels must be found, and this
is far more time-consuming and complex than the calculations
in (18). DE is more efficient than simulations, but is relatively
time-consuming and complex as well. Hence, using (19b) is
by far one of the most efficient methods to approximate the
performance of a relay channel using fractional cooperation,
indeed any cooperative scheme.

D. Limitations

This study of design and analysis is done here under two
major assumptions: the relay codeword is not punctured, and
serial decoding is performed at the destination. The first as-
sumption simplifies the required analysis. When the codeword
is not punctured, the log-likelihood ratio output from decoding
the relay codeword can be approximated closely by the Gaus-
sian distribution, allowing us to model the equivalent channel
distribution after decoding with a Gaussian distribution. If
puncturing were used on the relay codeword, the equivalent
channel distribution after decoding resembles a mixture of
Gaussians. The distribution can still be approximated with a
Gaussian distribution [23], but the approximate description
is not as accurate as in the case without puncturing, and
might lead to performance degradation in the case of relay
selection, and possibly inaccurate analysis. The effect of this
approximation, however, is outside the scope of this paper.

Similarly, the second assumption that serial decoding is
performed at the destination simplifies the analysis. Under this
assumption, the BP can then be computed in two steps: first,
find the effect of decoding the relay codeword, and second
find the effect of the imperfect S-R channel. As developed
here, BP cannot be used for relay selection or analysis when
parallel decoding is used at the destination node, where the
source and relay codewords are decoded simultaneously with
the SPA messages are passed between the two encoders after
each iteration. The use of BP under parallel decoding is more
complex, and is left to future work.

Finally, the union bound closely follows the error perfor-
mance only at high SNR, and otherwise it is a fairly loose
bound. Tighter bounds can be used to provide a better ap-
proximation of the performance of various relaying schemes,
and examples of these bounds can be found in [31], [35].
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Fig. 5. FER for our relay selection scheme (solid lines) and exhaustive search
(dash-dot lines).

These better approximations, however, come at a price of more
complex calculations. However, despite these assumptions and
limitations, the BP approach is still an efficient method that
can be used to observe the effect of various parameters without
resorting to simulations or DE, which are comparatively time-
consuming and complex.

IV. SIMULATIONS

This section presents the results of simulations to illustrate
the efficacy of the BP approach. The simulations cover the
applications mentioned here: relay selection, limited decoding,
and outage in fractional cooperation.

First we show that relay selection using the BP approach
provides performance very close to optimal. In this example,
we set εinfo = 1 and εpar = 0, and pure demodulation is
performed at the chosen relay. The rate of the source code
word is RS = 1/2, with nS = 4000, and the rate of the relay
codeword is RR = 1/4, with blocklength nR = 8000. All the
channels have the same average received SNR. The FER for 1
relay and choosing 1 relay out of 2 or 3 available relays using
the lookup table and (15c) is shown in Fig. 5. The figure also
shows simulation results for the case where for a given S-D
channel, 2 or 3 relays are available to assist in the transmission,
and the relay with the least number of bit errors is used.
These results (by exhaustive search) are used as the optimal
case, and provides a lower bound on the FER performance.
Note that, as expected, selection cooperation provides full
diversity order despite the fact that only one relay is used.
As illustrated in the plot, the FER for exhaustive search and
our low complexity relay selection scheme are essentially the
same, showing the relay selection scheme using BP provides
excellent performance in minimizing the FER.

The performance improvement with limited decoding at the
relay is shown in Fig. 6. The SNR of the AWGN channels
are γSD = −6 dB, γSR = −1 dB and γRD = −4 dB. In the
plot, BER obtained using DE and upper bound on the BER
found using the BP approach are illustrated. It is shown that
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Fig. 6. BER and upper bound on BER are shown for various number of
SPA iterations performed at the relay with γSD = −6 dB, γSR = −1 dB
and γRD = −4 dB.

−5 0 5 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

F
E

R

r
a
 = 2, iter = 10

r
a
 = 2, iter = 0

r
a
 = 3, iter = 10

r
a
 = 3, iter = 0

Fig. 7. FER for our relay selection scheme where 10 iterations of SPA are
performed in the decoders at the relays.

by performing small number of decoding iterations, e.g., by
allowing the relay to perform 10 iterations of the SPA before
relaying the source bits, the BER can be reduced by more than
a factor of 100. Also, the union bound follows the BER curve
closely for small BER. The FER improvement with the use of
limited decoding is illustrated in Fig. 7. The settings for the
fading channel simulation is same as for that from Fig. 5, but
here it is assumed that all the relays can perform 10 iterations
of SPA before forming a hard decision on the relayed bits. The
FER curves from Fig. 5 are also shown here for comparison,
and it can be seen that only 10 iterations of SPA can provide
a gain of as much as 3 dB. For the simulation results shown
in Fig. 6 and 7, the effective pSR,out after decoding is found
using DE.

In Fig. 8, simulation results for fractional cooperation with
relay selection are shown. All the channels have the same
average SNR. Here we set εi = 0.2, and ra = 8. Again the
rate of the source code word is RS = 1/2, with nS = 4000,
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Fig. 9. Outage probability from simulation and upper bound on outage
probability, where r = 4, εi = 0.3 and Pf,t = 0.01.

and the rate of the relay codeword is RR = 1/4. From the
plot, it can be seen that if rb < 5, the diversity order at high
SNR is 1, and when rb ≥ 5, the diversity order is 5. Recall
that in Theorem 1, we have shown that if rb < r̃c(ra), then
the diversity order is 1 at high SNR, whereas if rb ≥ r̃c(ra),
the diversity order is ra− r̃c(ra)+2. Hence it can be deduced
from the plot that for ε = 0.2 and ra = 8, r̃c(ra) = 5.

The use of the BP to obtain an upper bound on the outage
probability is shown in Fig. 9. Here RS = 1/2, nS = 1000
and RR = 1/4. Similar to the previous plot, all the channels
have the same average SNR. It is also assumed that r = 4,
εi = 0.3 and Pf,t = 0.01. Both simulation results and the
upper bound obtained using (19b) are shown. In this case, the
upper bound can be used to approximate the performance of
fractional cooperation in fading channels. Note that obtaining
this upper bound via the BP is very efficient when compared
to obtaining the results through simulation.

V. CONCLUSIONS

As illustrated in the simulations above, the BP presents
several advantages in terms of efficient system design and
analysis in relay channels where DemF relaying scheme is
used. First, assuming that the FER is used as a system measure,
it can be used for relay selection. We have shown that the
BP approach can be used in both scenarios where either one
relay is chosen, or multiple relays are chosen while fractional
cooperation is used. In addition to relay selection, the union
bound, together with the BP, can be used to provide an efficient
method to obtain a close approximation to the upper bound
on the outage probability. This is done by generating random
realizations of the various fading channels, and observing the
frequency at which the upper bound on the FER exceeds the
threshold FER. This is more efficient than obtaining the FER
from either simulations or DE as explained earlier. With the
use of the BP approach, the effects of decoding at the relay
can be taken into account in relay selection and analysis. In
summary, this paper has presented the BP as a proxy for
system error performance when DemF is used, allowing for
efficient design and analysis of distributed wireless networks.
Here we have applied this approach to problems that arose in
our previous work. However, we believe that this BP-based
approach has applications beyond those considered here.

APPENDIX A
PROOF OF LEMMA 1

Proof: This proof closely follows the steps used to prove
Lemma 1 in [15]. For simplicity, we assume that the fraction of
the source codeword relayed are the same for all relays, where
εi = ε. We will also assume that γSD = 0. In addition, if γSR,i

or γRD,i falls below the threshold γmin then relay i is not used
for relaying. Let pa = Pr(γSR,i > γmin∩γSR,i > γmin). Given
that the rb best relays are chosen out of a pool of ra relays,
then the probability of a bit not chosen by any of these relays
is

pnr

=
rb∑

k=0

(
ra

k

)
(1− pa)ra−kpk

a(1− ε)k

+ (1− ε)rb

ra∑

k=rb+1

(
ra

k

)
(1− pa)ra−kpk

a (20a)

=
ra∑

k=0

(
ra

k

)
(1− pa)ra−kpk

a(1− ε)k

+
ra∑

k=rb+1

(
ra

k

)
(1− pa)ra−kpk

a

[
(1− ε)rb − (1− ε)k

]

(20b)
= [1− εpa]ra

+
ra∑

k=rb+1

(
ra

k

)
(1− pa)ra−kpk

a

[
(1− ε)rb − (1− ε)k

]
.

(20c)

Since the second term in (20c) is always positive, given a
fixed ra, pnr decreases as rb increases, and the smallest pnr

is reached when rb = ra.
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Using similar arguments as in [15], the FER is upper
bounded by

1− (1− pnr − 2(1− pnr)ζ (1− ζ))n
, (21)

where
ζ =

1
2
erfc (

√
γmin) ,

and where n is the length of the source codeword. Let rb = ra,
and the second term in (20c) vanishes. There exists γmin large
enough so that ζ → 0. Increasing γmin reduces pa, but ra

can be increased such that pnr → 0. So any frame error rate
criterion for outage probability can be satisfied, for some value
of ra (denoted as rt). Now assume that ra ≥ rt, then there
exists a rb ≤ ra large enough such that the FER criterion can
be satisfied, where the value of rb satisfying the criterion is
denoted as r̃c(ra).

Now we will show that the result holds if we relax the
assumptions stated at the beginning of the proof. As illustrated
in the proof in [15], it can be shown that for the cases where
γSD > 0, the results stated above holds. Now consider the case
where the fraction relayed by each relay are not necessarily
the same. First, we let εmin = mini εi. Consider two different
systems, where in System A, relay i relays fraction εi of
the source codeword, and in System B, all relays relay εmin

of the source codeword. For System B, it has been shown
that a corresponding rt(γSD) and r̃c(γSD, ra) can be found.
Note that the pnr associated with System A is smaller by
the pnr associated with System B for the same values of ra

and rb. Hence the rt(γSD) and r̃c(γSD, ra) associated with
System A are upper-bounded by those associated with System
B, which are finite. This shows that the corresponding rt(γSD)
and r̃c(γSD, ra) also exist when the fraction relayed by each
relay are not necessarily identical.

APPENDIX B
PROOF OF THEOREM 1

Proof: This proof, again, follows closely the steps that
were used to prove Theorem 1 in [15]. For simplicity, we
have set the average SNR over all channels to γ̄.

From the definition of rt, if ra < rt, then the system is in
outage if the S-D link is not present. Hence with the S-D link,
the system has diversity order of 1. Also, from the definition
of r̃c(ra), if ra ≥ rt, but rb < r̃c(ra), then the system has
diversity order of 1 as well. For ra ≥ rt and rb ≥ r̃c(ra),
we will show that a diversity order of ra − r̃c(ra) + 2 can
be achieved. Let γSD,0 = max{γSD : r̃c(γSD, ra) = r̃c(ra)}
be the SNR required on the SD channel such that for any
γSD < γSD,0, r̃c(γSD, ra) = r̃c(ra). For each number of relays
rb ≥ r̃c(ra), there exists γsuf,r > 0 such that if γSD < γSD,0

and at least rb − r̃c(ra) + 1 of the rb chosen relays have
γSR,i < γsuf,r or γRD,i < γsuf,r, then an outage occurs. Note
that if at least one of the rb chosen relays are in outage, i.e.,
at least one of the rb chosen relays have γSR,i < γsuf,r or
γRD,i < γsuf,r, that implies that all of the ra − rb relays that
are not chosen must be in outage as well, since the chosen rb

relays are the best out of the ra available relays. Let

po,r := Pr(γSR,i < γsuf,r ∪ γRD,i < γsuf,r). (22)

As shown in [15], Pr(γSD < γSD,0) = Θ(γ̄−1), po,r =
Θ(γ̄−1) and 1−po,r = Θ(1). A lower bound on the probability
of outage Pout is

Pout ≥ Pr(γSD < γSD,0)pra−rb
o,r

×
rb∑

j=rb−r̃c(ra)+1

(
rb

j

)
pj

o,r(1− po,r)rb−j (23a)

= Θ(γ̄−1)Θ(γ̄−(ra−rb))Θ(γ̄−(rb−r̃c(ra)+1)) (23b)

= Θ(γ̄−(ra−r̃c(ra)+2)). (23c)

Similarly, let γnec be the maximum γSR,i or γRD,i for any
relay i, such that if the system in outage, then γSD ≤ γSD,0

and γSR,i < γnec or γRD,i < γnec for at least rb−r̃c(ra)+1 of
the rb chosen relays. The analysis of the necessary condition
is similar to (23a), with ≤ in place of ≥, and γnec in place
of γsuf in (22). This shows that for rb ≥ r̃c(ra), the diversity
order of the system is ra − r̃c(ra) + 2.
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