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Abstract—Relay systems have large and complex parameter
spaces, which makes it difficult to determine the parameter region
where the system achieves a given performance criterion, such
as probability of frame error. In this paper, we show that the
union bound (UB) and the Bhattacharyya parameter (BP) can be
used for fast analysis of the parameter space when error-control
coding is used. This is applicable when amplify-and-forward (AF)
or demodulate-and-forward (DemF) are used. For a given code
ensemble, the associated UB threshold is found and can be used
to define the signal-to-noise region where a given frame error rate
can be achieved. Using asymptotic results, the UB threshold can
be used to specify the signal-to-noise ratio region where successful
decoding can be achieved for large blocklength. In addition, the
UB with BP can be used when fractional cooperation is used,
where each relay only relays a fraction of the source codeword.
This makes the UB with BP a valuable tool in the system design
of relay networks.

I. INTRODUCTION

In a relay channel, the transmission of a message from a
source to a destination is aided by one or more intermediary
nodes, known as relays [1]. The use of relays is known to im-
prove performance in wireless fading channels, as it is improb-
able that all of the relays will simultaneously experience a deep
fade. Some strategies for employing relays include amplify-
and-forward (AF) [2], [3], in which the relay only performs
analog amplification on the source’s signal; demodulate-and-
forward (DemF) [4], [5], in which the source’s transmission is
demodulated by a relay prior to retransmission; and decode-
and-forward (DF) [2], [6], in which the relay decodes the
source’s codeword and re-encodes the information sequence.

The analysis of relay channels is complicated by their
large parameter spaces. For instance, each additional relay
adds at least two parameters: the signal-to-noise ratio (SNR)
on the source-to-relay link, and the SNR on the relay-to-
destination link (additional parameters may be introduced by
the type of relaying in use). Thus, including the direct link
from source to destination, an m-relay system has at least
a (2m + 1)-dimensional parameter space. Given a particular
setting of all the parameters, it is not immediately clear
whether a given performance criterion, such as frame error
rate, would be satisfied by that setting. Furthermore, the large
parameter space makes it difficult to characterize the entire
space by simulation, density evolution, or any other method
that examines the space at individual points.

Previous work has been done to characterize parame-
ter spaces in related scenarios. In [7], the Union Bound-

Bhattacharyya parameter (UB-BP) method was used to char-
acterize the parameter space of parallel channels, where a
different segment of the same codeword was transmitted on
each channel (such a scenario may be found in a block fading
channel). In [8], the BP was used for relay selection and outage
probability analysis in relay channels employing DemF. In [9],
the authors use the UB-BP method to find the SNR threshold
for incremental redundancy (IR) where the decoding error
becomes very small. It was also used to derive the diversity
order of IR in fading channels.

The contribution in this present paper may be understood
as an extension of these works, where with the use of the
UB-BP method, a parameter space characterization of relay
channels which employ AF and DemF is provided. Further, the
formulation here provides a tool that can be used to compare
AF and DemF. We show in Section IV that the use of the
BP gives rise to an easily calculated figure of merit to verify
whether a particular relay system satisfies a given performance
criterion, here being the frame error rate (FER). We also give
asymptotic results which can be used as a guide for more
detailed density evolution analysis. Hence, the UB can be used
by system designers to tweak the parameters of the relaying
system, and hence determine the amount of relaying that is
required to achieve given system criteria.

This paper is organized as follows. In Sec. II, we introduce
the system model used throughout this paper and briefly
describe the relaying schemes AF and DemF. Some back-
ground information on the union bound and the Bhattacharyya
parameter is given in Sec. III. The application of UB and BP
in relay channels is illustrated in Sec. IV. Simulation results
are shown in Sec. V, and conclusions drawn in Sec. VI.

II. SYSTEM MODEL

In this paper the m-relay network is used for the analysis,
which includes the source (S), destination (D) and m relay
(Rk) nodes. It is assumed that each relay can only transmit or
receive at a time and that symbol synchronization is not avail-
able. Orthogonal channels are used to facilitate transmissions
from different nodes. A quasi-static Rayleigh fading channel
model is used to describe the links between the nodes. It is
assumed that all receivers have channel state information, and
the instantaneous SNR between S and all the relays are known
at the destination as well.



The source node first forms a codeword d(S) ∈ {0, 1}ls

of rate rs, and assuming binary phase-shift keying (BPSK)
is used, the codeword is mapped to c(S) ∈ {+1,−1}ls . This
mapping is denoted by the function ξ(·). The source node
broadcasts the codeword c(S) and the discrete-time received
signal at relay k and D are given by

y(SR)
k = hSR,kc(S) + n(SR)

k k = 1, . . . , m (1)

y(SD) = hSDc(S) + n(SD), (2)

where hSR,k and hSD are the fading channel coefficients
between S and the kth relay and between S and D respectively,
and n(SR)

k and n(SD) are independent additive white Gaussian
noise with variance NR,k and ND respectively. After receiving
y(SR)

k , relay k processes the received data, and forms a
new symbol vector c(R)

k , which is then transmitted to the
destination node. The length of the new signal formed by
different relays can be different from that of the source. The
discrete time signal transmitted by relay k and received by D
is given by

y(RD)
k = hRD,kc

(R)
k + n(RD)

k , k = 1, . . . , m, (3)

where hRD,k is the channel coefficient between relay k and D,
and n(RD)

k is the additive white Gaussian noise with variance
ND. The average received signal-to-noise ratio (SNR) of the
channel between S and relay k is given by

γ̄SR,k = E[γSR,k] = E[|hSR,k|2]/NR,k, (4)

where E[·] denotes statistical expectation and γSR,k is the
instantaneous SNR of the channel between S and the kth relay.
The average received SNR of the S-D and Rk-D channel, γ̄SD

and γ̄RD,k, can be found in a similar fashion.

A. Amplify-and-Forward
Recall that for AF, each relay Rk amplifies the received

the signal and transmits it to D. The multiplication factor
can be determined by either the amplitude limit imposed by
the transmitting antenna, or the average transmitted power. In
this paper, we will assume that the average transmitted power
constraint is enforced, where the amplification factor is set
such that the SNR over the channel between relay k and D is
constant for each block.

Instead of relaying the complete source codeword, each
relay can also relay only a fraction of the codeword. With
fractional cooperation [10], each relay chooses at random a
fraction of the source codeword to relay, where no centralized
coordination is required. Here we assume that relay k chooses
to relay each bit with probability εk. Let the ith bit of the
source codeword be relayed as the bk,ith bit of the symbol
vector transmitted by the kth relay. Then

c
(R)
k,bk,i

=
y
(SR)
k,i√|hSR,k|2 + NR,k

At the destination node, the received signal from the relays
are combined with the received signal from the source node,
each of them scaled accordingly to reflect channel conditions
and the noise variance.

B. Demodulate-and-Forward

Cooperative DemF schemes are devised with sensor net-
works in mind, where the battery power and hardware com-
plexity of a source or relay node are limited, but the destination
is assumed to possess relatively more complex hardware, and
energy consumption is not an issue. DemF differs from DF
as it only requires symbol-by-symbol hard detection, and
the relay is not required to decode the complete codeword.
In addition, with DF, the signal is only relayed if correct
decoding is achieved, whereas with DemF, the signals are
always forwarded.

If DemF is used, after receiving the signal ySR,k, relay k

makes hard decisions on the received signal to form d(R)
k .

Similar to AF, fractional cooperation can be used so that the
relay can select only part of the received signal to relay. In
this case the new codeword d(R)

k will only contain bits that
are selected. It then generates c(R)

k = ξ(d(R)
k ), which is then

transmitted to D.
The decoding process uses sum-product algorithm (SPA)

[11] to account for the reliability of the S-R channel. More
information regarding the decoding process can be found in
[10].

III. UNION BOUND AND BHATTACHARYYA PARAMETER

The union bound can be used to provide upper bounds
on the maximum likelihood (ML) bit error rate (BER) and
frame error rate (FER) for linear codes [12]. Two components
are required for calculating the union bound: the weight
enumerator (WE) and the Bhattacharyya parameter (BP). The
WE is a vector of numbers Ah that describes the number of
codewords with weight h. The derivation of WE for “turbo-
like” codes was presented in [13], where RA codes were also
introduced. The second component, BP, is associated with the
channel condition. The BP for binary input channels with
inputs {0, 1} and output y is given by

β ,
∑

y∈Y

√
p(y|0)p(y|1) (5)

where Y is the alphabet of output y, and p(y|0) and p(y|1) are,
respectively, the probability of y given 0 and 1 was sent. For
the binary symmetric channel (BSC) with bit-flip probability
p, β = 2

√
p(1− p), and for the additive white Guassian noise

channel with received SNR γ, β = e−γ . After deriving the WE
and BP, the FER bound for a point-to-point channel is given
by

Pf ≤
n∑

h=1

Ahβh. (6)

These results can be extended to scenarios where the code-
word is sent through multiple parallel channels. The scenario
where the codeword is divided into subsets, with each subset
is transmitted through a different channel was analyzed in [7],
where each channel can have a different BP. By averaging over
all possible channel assignments for the codeword bits, the



authors derived the parallel-channel UB on the FER. Assuming
that there are J parallel channels, then

Pf ≤
n∑

h=1

Ah




J∑

j=1

αjβj




h

(7)

where αj is the probability that each bit of the codeword
transmitted through channel j and

∑J
j=1 αj = 1 and βj is the

BP for channel j. The IR cooperative coding scheme, where
the source codeword is divided into subsets, with each subset
relayed by at most one relay, is analyzed using UB-BP in [9].

For codewords with large block lengths, asymptotic results
can be used to estimate the SNR threshold above which the
error rate decreases very quickly. Let [C(n)] denote a binary
code ensemble with rate r and length n, and let A

[C(n)]
h denote

the average number of codewords with Hamming weight h
for the entire code ensemble [C(n)]. Then the asymptotic
normalized exponent of the weight spectrum is defined as [9]

r[C](δ) , lim sup
n→∞

ln A
[C(n)]
h

n

where [C] denotes the binary code ensemble with rate r.
Using the same notation as [9], we define the asymptotic UB
threshold of a code ensemble [C] as

c0 , sup
0<δ≤1

r(δ)
δ

, (8)

With some manipulation of (6), it can be shown that if

J∑

j=1

αjβj < exp(−c0) (9)

then the average FER approaches zero as n →∞.
Note that this section only provides a brief overview of the

union bound and BP. A more detailed description, including
the derivation of the union bound, can be found in [12], and
discussions of tighter decoding error bounds can be found in
[7], [14], [15].

IV. APPLICATION OF UB-BP TO RELAY CHANNELS

Similar to the single-input single-output channels, the UB
and BP can be applied to relay channels. We will first show the
BP corresponding to two different schemes where repetition
code is used: AF and DemF. In both cases, the relay repeats
data based on the received signals, and no coding is performed
at the relay. We will then show how the UB-BP can be used in
relay channels to determine the region in the parameter space
where a given performance criterion can be met when AF or
DemF is used.

A. BP for AF Repetition Code

Recall that with the use of fractional cooperation, each bit
can be relayed by any number of relays ranging from 0 to
m. Let Mi be the set of relays that are relaying bit i of
the source codeword. After combining the received signals

from the source and all the relays, we have the ith bit of the
combined signal yd

yd,i =
h∗SDy

(SD)
i

ND
+

∑

k∈Mi

h∗SR,kh∗RD,ky
(RD)
k,bk,i

NSRD,i

√|hSR,k|2 + NR,k

(10)

where x∗ is the conjugate of x and NSRD,k = ND +
|hRD,k|2NR,k

|hSR,k|2+NR,k
. After some manipulation, it can be shown that

yd,i is a Gaussian signal, with SNR given by

γAF,i = γSD +
∑

k∈Mi

γSR,kγRD,k

γSR,k + γRD,k + 1
(11)

Recall that for a Gaussian channel with SNR γ, the BP is
given by β = exp{−γ}. Hence the BP of bit i for the AF
coding scheme is given by

βAF = exp

{
−γSD −

∑

k∈Mi

γSR,kγRD,k

γSR,k + γRD,k + 1

}
(12)

= βSD

∏

k∈Mi

βAF,k (13)

where

βSD = exp{−γSD}
βAF,k = exp

{
− γSR,kγRD,k

γSR,k + γRD,k + 1

}
(14)

In the case of AF, the SNR of the equivalent channel may
be exactly calculated, as in (11). By placing it in the UB-BP
expression (12), and noting that this expression can be used
to verify that a given performance criterion is satisfied, βAF,k

– or the equivalent expression in any other relaying system –
may be used as a figure of merit for that system.

B. BP for DemF Repetition Code

For DemF, we have the following likelihood equations for
the ith received signal from relay k

p(y(RD)
k,i |c(S)

i = +1) = (1− pSR,k)f(y(RD)
k,i ; 1, 1/2γRD,k)

+ pSR,if(y(RD)
k,i ;−1, 1/2γRD,k)

p(y(RD)
k,i |c(S)

i = −1) = (1− pSR,k)f(y(RD)
k,i ;−1, 1/2γRD,k)

+ pSR,kf(y(RD)
k,i ; 1, 1/2γRD,k)

where

pSR,k =
1
2
erfc(

√
γSR,k)

f(y;µ, σ2) =
1√

2πσ2
exp

{
− (y − µ)2

2σ2

}

After substituting these equations into (5) and some simple
manipulations, we have

βDemF,k =
√

γRD,k

π

∫ ∞

−∞
exp

{−γRD,k(y2 + 1)
}

[(1− pSR,k + pSR,k exp {−γRD,ky})
(1− pSR,k + pSR,k exp {γRD,ky})]1/2

dy (15)
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Fig. 1. Contours of βi for AF (solid) and DemF (dash-dot).

A closed form solution to the integration in (15) does not
exist, but the integral can be approximated using the Taylor
expansion of

√
1 + x for |x| < 1. The received signal from

the relays are combined with the signal from S in the decod-
ing process. Similar to the AF repetition code, if fractional
cooperation is used, then we have the BP associated with ith
bit of the equivalent received signal given by

βDemF,i = βSD

∏

k∈Mi

βDemF,k. (16)

This quantity may be used as a figure-of-merit for a DemF
system, which is significant since the equivalent SNR of DemF
cannot be calculated as easily as for AF.

In both AF and DemF, the BP “contribution” for each relay
can be isolated. The βAF,k and βDemF,k values are shown
in Fig. 1. The contours of various β values are plotted for
different γSR,k and γRD,k values. In the figure, the solid lines
represent values of βAF,k and the dash-dot lines represent
values of βDemF,k. In most cases, βDemF,k < βAF,k, except
when γRD,k is much larger than γSR,k, as indicated by the
crossover points in the plot. The BP can be used to compare
the performance the AF and DmF, and helps us estimate under
what condition it is more advantageous to use AF or DmF. If
a relay is capable of both AF and DmF, then it can choose the
relaying scheme that will provide the best error performance
given the channel conditions.

C. Decodable region

The upper bounds on the FER can be used to specify the
region in the (2m+1)-dimensional SNR space where a given
error rate can be achieved. Depending on the relaying scheme,
we can then substitute (14) or (15) into (7) to obtain the upper
bound on the error performance. Let I = {1, 2, . . . ,m} be the
set of relays, and Ij be all disjoint subsets of I , including the

empty subset ∅, j = 1, . . . , 2m. Then the UB is given by

Pf ≤
n∑

h=1

Ah


βSD

2m∑

j=1

αj


 ∏

k∈Ij

βk







h

(17)

where

αj =


 ∏

k∈Ij

εk





 ∏

k∈I\Ij

1− εk




and βk can be βAF,k or βDemF,k, depending the type of
relaying scheme chosen by relay k. With some simple ma-
nipulations, (17) can be simplified to

Pf ≤
n∑

h=1

Ah

(
βSD

m∏

k=1

(1− εk(1− βk))

)h

(18)

To find the region of SNR where the FER is below Pf,t,
we need to first find the value of βt such that

Pf,t =
n∑

h=1

Ahβh
t .

Then it is easy to see that as long as the condition

βSD

m∏

k=1

(1− εk(1− βk)) ≤ βt (19)

is satisfied, the FER is below Pf,t. The set of SNRs where
the condition in (19) is satisfied defines the region in the
(2m+1)-dimensional SNR space where the FER requirement
is fulfilled.

For source codewords with asymptotically large block-
length, if the asymptotic UB threshold c0 exists and is finite,
it can be used to estimate the SNR region where the FER ap-
proaches zero [7]. It can be assumed that successful decoding
can be achieved if the condition

βSD

m∏

k=1

(1− εk(1− βk)) ≤ exp(−c0) (20)

is satisfied. As a result, the expression in (20) can be used to
predict the outcomes of density evolution.

V. SIMULATION RESULTS

This section compares Monte Carlo simulation results and
the associated union bounds. For all the results shown here,
a rate-1/2 systematic RA code is used, and the blocklength
of the source codeword, n is 16000. It is assumed that the
information bits are repeated q = 3 times and punctured to
form the parity bits [16]. The WE can be obtained using the
formulation in [17]. In Fig. 2, only one relay is used, and the
SNR over all channels are the same. Simulation results for both
AF and DemF are shown, and the cases where εk = 1 and
εk = 1/2 are illustrated. The SNR thresholds corresponding
to the asymptotic UB threshold c0 of the rate-1/2 systematic
RA code for various cases are also illustrated. In all the cases,
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the waterfall of the FER is about 0.5 dB away from the SNR
threshold corresponding to c0.

In Fig. 3, the FER for multiple relays in fading channels
are shown. In this case, m = 6, εi = 0.2 and the average
SNR is the same over all channels. The probability of (20)
not satisfied, or equivalently, the outage probability Pout for
both AF and DemF are also shown in the plot. As shown in
the plot, Pout follows the FER closely. Although the outage
probability only provides an upper bound on the FER, and does
not provide an exact expression for the FER, it can be used
to gain an understanding of the diversity order of the system.
Similar to the previous scenario, DmF performs better than
AF when the average SNR over all the channels are the same.

VI. CONCLUSION

In addition to single-in single-out channels, UB-BP can also
be used for analysis in relay channels. In this paper, we have
presented the BP associated with AF and DemF repetition

code. We have also shown how the UB with BP can be used
to determine the SNR region where a given error performance
can be achieved. By applying asymptotic results, it can be
used to determine where correct decoding is achievable for
large blocklengths. Finally, we have shown that this is not
only applicable to relay channels with one relay, but also ones
with multiple relays with fractional cooperation.
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