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I. INTRODUCTION

Distributed RF sensing systems have been an

active research area for some time now [1—5]. In spite

of the increased complexity due to its distributed

configuration, such a system has many advantages:

energy from a target echo generated by one platform

can be used by many platforms, which reduces

the energy necessary for the coverage of a large

surveillance volume; the observations from the

different aspect angles reduce the probability of miss

yielding an antistealth characteristic, especially with

fluctuating targets. This spatial diversity is the main

advantage of a distributed sensing system; the reader

is referred to [1], [2] for a more detailed discussion of

the benefits of distributed systems.

Most of the original work in distributed RF

sensing, or multistatic radar, focused on the simplest

case of a single transmitter and multiple receivers

[3—6]. This simplest configuration is extended multiple

transmitters and multiple receivers. This system is

analyzed preliminarily in [1]. Recently Fischler et al.

proposed a detector improving detection performance

under the system with multiple transmitter and

multiple receivers [7]. In [8] the authors generalize

this configuration allowing for multiple colocated

antennas at each platform, i.e., an antenna array

at each transmitter/receiver. This paper focuses on

this most general configuration that includes the

first and second configurations as special cases. In

this regard, a recent proposal has been the use of

frequency diversity to allow for the simultaneous

processing of multiple transmit-receive pairs [9]. This

approach is one, but not the only, implementation of a

multiple-input multiple-output (MIMO) radar wherein

multiple distributed transmitters radiate waveforms

orthogonal in some convenient dimension [10].

A related track in radar signal processing is

that of interference suppression. Radar systems,

especially airborne systems, invariably deal with

strong interference. Space-time adaptive processing

(STAP) techniques promise to be the best means to

detect weak signals in severe, dynamic, interference

scenarios including clutter and electromagnetic

interference (EMI) [11, 12]. STAP entails adaptively

combining signals received at multiple antenna

elements and over multiple pulses within a single

coherent pulse interval (CPI). While STAP was

originally developed for monostatic radar, it has been

recently extended to bistatic [13, 14] and multistatic

configurations [8, 9, 15].

A crucial issue raised in [9] is that joint adaptive

processing across multiple platforms requires true

time delay to align, in time, the signals received at the

multiple transmit-receive pairs. The system in [9] is

a ground-based system with a single antenna at each

radar platform. Using true time delay, each platform

can process target signals from multiple transmissions
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simultaneously. However, a significant overhead is

that such a system allows for probing only a single

look point in space. This is in contrast to a monostatic

STAP system where a look direction is probed [12].

Such a system is therefore best used after preliminary

processing has identified a few regions of interest.

Since the true time delay allows focusing at a single

point (point target) in space, an adaptively combined

signal provides robust detection as well as improved

track-while-scan accuracy.

This paper investigates STAP for airborne

distributed sensor systems. Our system is closest in

design to the work in [15] wherein the authors derive

the likelihood ratio test and investigate distributed

detection for such a system of radars, comparing

optimal and decentralized detection. There are

however, some important differences: in [15], the

authors assume each platform receives only a single

signal, whereas multiple transmissions from different

platform are considered in this paper. Here we

consider, in some detail, the issues that would arise

in implementing STAP algorithms in a distributed

radar such as multiple, simultaneous, illuminating

sources and true time delay. Furthermore, the authors

use a proxy for signal-to-interference-plus-noise

ratio (SINR) whereas here we use a more traditional

definition of SINR. Finally, while there is some

conceptual overlap in the discussion of probability

of detection (PD), the systems under consideration are

different enough to warrant our discussion.

The contributions of this paper are:

1) the development of a data model for distributed

radar networks with and without frequency diversity

extending the true time delay model of [9] and the

bistatic radar model of [16], [17],

2) the analysis of both cases using SINR and

probability of detection as figures of merit, in turn

illustrating the importance of frequency diversity,

3) numerical simulations implementing the

data model to illustrate the robustness provided by

spatial and frequency diversity and the importance of

avoiding mutual interference across platforms.

Notation: In this paper, scalars are denoted

in italics, e.g., x, vectors are denoted in bold face,

lowercase letters, e.g., x, while matrices are denoted

in bold face, upper case letters, e.g., R. IN represents
the N £N identity matrix and Ef¢g represents the
statistical expectation operator. Spatial and velocity

vectors in 3-dimensional space, on the other hand, are

denoted with an overline, e.g., v̄.

The remainder of this paper is organized as

follows. Section II presents the system model for

the distributed sensor system under consideration,

developing both the case with and without frequency

diversity. The data models for the desired signal,

clutter and noise are developed in Section III.

Section IV presents the analysis of the systems in

terms of SINR and PD. The analysis is accompanied

by results of simulations to illustrate the performance

gains due to spatial and frequency diversity in

distributed RF sensor systems. This paper ends

in Section V after drawing some conclusions

and indicating potential avenues for future

research.

II. SYSTEM MODEL

This section develops the system model for a

radar system with K distributed airborne apertures

potentially using joint processing of the received

signals over all K platforms. The entire system is

used to detect the potential presence of a target in

a specific region of space, the look point, and at

a specific velocity, the look velocity. Each radar

in the system transmits a pulse which reflects off

the ground (causing clutter) and possibly a target.

External sources of EMI may also be present. Unlike

in [15], each platform receives the reflections due to

its own transmissions and those of all other K ¡ 1
radars.

We distinguish two forms of this system: in the

nonfrequency diverse (NFD) case, all platforms use

the same center frequency f0. Since the transmissions

are concurrent, individual receptions cannot be

isolated. In the frequency diverse (FD) case, each

platform transmits at a different center frequency and,

using bandpass filters (BPFs), each component of

the received signal can be isolated.1 Fig. 1 illustrates

the workings of each of these forms of multistatic

radar. In the figure xpq represents the signal created
at platform p due to a transmission from platform q.

Note that for convenience, the figure presents only a

single antenna at each element, though each platform

uses N antenna elements and M pulses within a CPI,

i.e., xpq is a length-NM vector.

A. True Time Delay on Receive

In a system as illustrated above, an important

issue for coherent processing is synchronization

across platforms. Specifically, in order to probe the

same look point from different angles and distances,

the K radar apertures need to be synchronized.

Furthermore, with potentially joint processing of the

signals received at the K arrays, the samples at the

receiver, which correspond to a specific range, need to

be aligned in time. While distributed synchronization

is outside the scope of this paper, the received samples

are aligned using true time delays in relation to the

look point [9]. The sample corresponding to the look

point is therefore, effectively, sampled simultaneously

by all receivers. The time delay, before sampling, used

1An alternative approach is to consider a system based on

orthogonal frequency division multiple access (OFDMA) with the

attendant reduction in hardware complexity, though potentially at a

higher sampling rate [18].
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Fig. 1. Receiver structure without and with frequency diversity, respectively. (a) NFD case, K = 3. (b) FD case, K = 3.

by the pth platform is

¢Tp =
maxpfDpg¡Dp

c
(1)

where Dp is the distance between the look point and

pth platform and c is the speed of light.

B. Signal Models for NFD and FD Cases

Because of the differences in resolvability of

individual signals, the FD and NFD cases require

their own signal models. This section develops these

models for the two cases. In addition, for use with

STAP, we also develop corresponding covariance

matrices. Since the sensor platforms are widely

separated, we assume that the signals received at the

platforms are statistically independent.

1) NFD Case: In the NFD case, all platforms

share a single frequency. As illustrated in Fig. 1(a),

signals from individual platforms cannot be
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distinguished and so the received signal at platform

p is the sum over all reflected signals. Therefore, for

platform p, the received signal corresponding to the

target-absent (H0) and target-present (H1) hypotheses

are, respectively,

H0 : xp =

KX
q=1

xpq =

KX
q=1

cpq+np =

KX
q=1

[cpq+ n̄pq]

= cp+np

H1 : xp =

KX
q=1

xpq =

KX
q=1

[®pqgpq+ cpq] +np

=

KX
q=1

[®pqgpq+ cpq+ n̄pq]

=

KX
q=1

®pqgpq+ cp+np (2)

where cpq represents the clutter vector at platform

p due to the transmission from platform q and cp
and np represent the overall interference (clutter

and EMI) and additive white Gaussian noise

(AWGN) components at platform p, respectively. For

convenience in defining an interference-plus-noise

covariance matrix, a new noise term for each

incoming signal from platform q to p is defined

as n̄pq = (1=K)np. Under hypothesis H1, ®pq and

gpq represent the target amplitude and space-time

steering vector, corresponding to the look point and

look Doppler, at platform p due to the transmission

from platform q. The amplitude, ®pq is assumed to

follow a Swerling-II model, i.e., a complex Gaussian

distribution with zero mean and variance ¾2tpq
(referred to as ¾2tp when p= q). Since all platforms

operate at a single frequency, xp is a length-NM

vector.

The covariance matrix, at platform p, under H0,

is therefore given by the NM £NM matrix Rpq =

EfxpqxHpqg for zero mean, Gaussian and independent
xpq. Since all platforms share the same frequency,

Rp =Rp1 +Rp2 + ¢ ¢ ¢+RpK: (3)

2) FD Case: In the FD case, platform q transmits

at a center frequency of fq. We assume that there is

no overlap between the K transmissions and each

platform, therefore, is able to separate the K signals,

as illustrated in Fig. 1(b).

For platform p, the received signal corresponding

to the signal transmitted from platform q, at frequency

fq, in the target-absent (H0) and target-present (H1)

hypotheses are, respectively,

H0 : xpq = cpq+npq

H1 : xpq = ®pqgpq+ cpq+npq
(4)

where ®pq is the target amplitude, gpq is the target
space-time steering vector corresponding to the

look point and look Doppler frequency, cpq is the

interference component, incorporating clutter and

EMI, and npq is the AWGN component at platform
p due to the transmission from platform q. Each of

the K vectors, corresponding to the K transmitted

frequencies, received at the pth platform are of length

NM.

Since each transmission occupies its own

frequency band, the covariance matrix at platform p,

under H0 is a KMN £KMN block diagonal matrix.

The covariance matrix of pth platform in FD case can

be expressed as

Rp =

2666664
Rp1 0 ¢ ¢ ¢ 0

0 Rp2 ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ RpK

3777775 (5)

where each diagonal entry is a NM £NM matrix

associated with the corresponding transmit frequency.2

III. DATA MODEL

The previous section developed the signal and

covariance matrix model for the NFD and FD cases.

This section develops the data model for multistatic

radar. To focus on the issue of spatial and frequency

diversity, the model here makes several simplifying

assumptions. Each platform uses an N-element,

side-mounted, uniformly spaced, linear array and M

coherent narrowband pulses within a single CPI. All

platforms are assumed to use the same pulse repetition

interval (PRI) T.

A. Target Model

The signal components in (2) and (4), for a chosen

look point and look velocity and transmission from

platform q received at platform p, are defined in terms

of target amplitude ®pq and the target space-time

steering vector gpq. The definition of this steering
vector is fundamental to both the data model and the

adaptive processing schemes used. It is assumed here

that the target exhibits coherent scattering over the

bandwidth of individual transmissions.

The target steering vector gpq is a function of

the look point and look velocity in relation to the

locations and velocities of platforms p and q:

gpq = tpq− spq (6)

where tpq and spq are, respectively, the temporal and
spatial components of the target space-time steering

vector and − denotes the Kronecker product.

2We are inherently assuming that the center frequencies are spaced

far enough apart to eliminate cross-correlations between different

frequencies.

JUNG ET AL.: DETECTION PERFORMANCE USING FREQUENCY DIVERSITY WITH DISTRIBUTED SENSORS 1803



The temporal steering vector is the length-M

vector received at the platform due to a unit amplitude

target moving with the look velocity. Then, the

temporal steering vector, for a slowly fluctuating

target, at platform p due to the signal from platform

q is

tpq = [1,exp(j2¼$
t
pq),exp(j2¼$

t
pq2), : : : ,

exp(j2¼$t
pq(M ¡1))]T (7)

where $t
pq = f

t
pqT is the Doppler frequency f

t
pq

normalized with the common PRI T.

For simplicity, to obtain the spatial component in

(6), we ignore any crab angle. The spatial steering

vector for platform p for the transmission from

platform q is then given by

spq = [1,exp(j2¼$
s
pq),exp(j2¼$

s
pq2), : : : ,

exp(j2¼$s
pq(N ¡ 1))]T (8)

where $s
pq = dāp ¢ r̄tp=¸q is the normalized spatial

frequency of the target, d is the interelement spacing,

¸q is the wavelength corresponding to frequency fq,

āp and r̄
t
p are the unit vector along the antenna array at

platform p and the unit vector pointing from platform

q to the target, respectively.

Note that without frequency diversity (the

NFD case) the spatial steering vector, for platform

p, is common to all K transmissions, i.e., the K

transmissions cannot be distinguished. As we will see,

this implies that fully K ¡1 of the transmissions then
act as interference and hinder the detection process.

B. Interference Model

In this section we develop the model for the EMI

and clutter interference components individually. The

approach taken is similar to that for a monostatic

airborne radar [12].

1) Electromagnetic Interference: The received

signal due to EMI in the distributed configuration is

basically same as in the monostatic case; it has the

characteristics of a point target in the spatial domain,

but of thermal noise in the temporal domain.

If there exist Nj EMI sources, the overall

space-time snapshot of the EMI signal at platform p

can be expressed as follows

j=

NjX
l=1

®jl − sjl (9)

where ®jl = [®
j
l0,®

j
l1, : : : ,®

j
l(M¡1)]

T is a complex

Gaussian random vector with Ef®jl®j
H

l g= ¾2l IM ,
where ¾2l represents the power of the lth source. The

spatial steering vector of lth interfering signal s
j
l can

be defined similar to (8).
2) Clutter: To model the clutter, a distributed RF

sensor system can be considered as a generalization
of a bistatic system. The signal received at a platform

Fig. 2. Geometry for multistatic system.

is due the signal transmitted by itself (in a monostatic

configuration) and due the other K ¡1 platforms, each
of which are in bistatic configurations. Furthermore,
since a monostatic system is a special case of

bistatic radar we focus on bistatic radar systems [17]

exclusively.
As in [12] the clutter signal is modeled here as the

sum over the contributions over many small clutter

patches. Each individual patch can be described in
a manner similar to the target signal. This paper

assumes there are no ambiguous ranges which may

be treated by repeated implementation of the model

presented here. The clutter signal received at platform
p is the superposition of the signals from all clutter

patches at the iso-range associated with the target

range.
Assuming a flat Earth, the iso-range contours

of a bistatic radar system, are the intersection of

the ellipsoid of revolution, with foci at the transmit

and receive sites, with the ground plane. However,
from the point of view of a receiving platform the

iso-range is the same as that of a monostatic radar.

This becomes relevant when determining the training
data to be used in a STAP implementation. Fig. 2

illustrates this concept, though not shown in the figure

is the shift in this iso-range contour due to the true

time delay, as described in Section II, on transmit and
receive.

The clutter signal received at antenna l of platform

p due to the PRI m from the signal transmitted by
platform q is

clmpq = V0

NcX
r=1

acrGlr exp(j2¼f
cr
pqmT)exp

μ
j
2¼

¸q
ȳlp ¢ r̄rp

¶
exp(j'pqr)

(10)

where Nc is the total number of clutter patches in the

iso-range, acr is random complex amplitude of rth

clutter patch, Glr is the gain factor of antenna l toward

the rth clutter patch, V0 is amplitude of the transmit

signal, and r̄rp is a unit vector from platform p to rth

clutter patch. 'pqr =¡2¼Rpqr=¸q is a phase constant
where Rpqr is the total distance from platform q clutter
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TABLE I

Common Parameters

Parameter Value

System Parameters

Frequency Offset 20 MHz

Interelement Spacing 0.1 m

Peak Transmit Power 200 KW

Instantaneous BW 4 MHz

System Loss 4 dB

PRF 1 KHz

M 10

N 10

K 3

Clutter Parameters

Ground Reflectivity ¡3 dB
Number of Clutter Patches 360

Clutter to Noise Ratio 70 dB

patch r and then to platform p. fcrpq is the Doppler

frequency of the rth clutter patch.

The gain factor Glr in (10) is defined as

Glr =

8>>>>><>>>>>:

¸qFT(r̄
r
q)FRl(r̄

r
p)
p
¾0r ¢ArPtp

(4¼)3LsN0RprRqr

for Rpr < RRmax
and Rqr < RTmax,

0, elsewhere

(11)

where FT(r̄
r
q) is the transmit voltage pattern in the

direction of r̄qr , FRl(r̄
r
p) is the antenna field gain of

receive channel l in direction r̄rp, ¾
0
r is the ground

reflectivity of the rth clutter patch of area ¢Ar, Pt
is the peak transmit power, Ls is the system loss,

N0 is the receiver noise power spectral density,

and Rqr is the distance between platform q and

clutter patch r. The maximum receive and transmit

distances RRmax = 130
q
hp and RTmax = 130

q
hq are

the range-to-horizon of the receiver and transmitter

platform, respectively, in kilometers where hq,q=

1,2, : : : ,K is the height of platform q [17]. The clutter

area of the rth patch ¢Ar can be approximated as [19]

¢Ar ¼
c¿Rpr¢μr

2cos2(¯r=2)
(12)

where ¿ is the pulse width, ¢μr is the azimuth angular

extent of the rth clutter patch seen by the receiver,

and ¯r is the angle between the transmitter and the

receiver seen by the rth clutter patch.

Therefore, using the space-time steering vector

gcrpq of the rth clutter patch the overall clutter
space-time snapshot created at platform p by the

signal transmitted by platform q for one iso-range

contour is

cpq = V0

NcX
r=1

acrGr¯ gcrpq exp(j'pqr) (13)

TABLE II

Platform Parameters

Parameter Value

Platform 1

Operating Frequency(NFD &

FD)

450 MHz

Location (0,0,3£ 103)
Velocity 100 m/s

Moving Direction (0,1,0)

ā1 (0,1,0)

Platform 2

Operating Frequency (NFD) 450 MHz

Operating Frequency (FD) 430 MHz

Location (20£ 103,16£ 103,3£ 103)
Velocity 100 m/s

Moving Direction (1,0,0)

ā2 (1,0,0)

Platform 3

Operating Frequency (NFD) 450 MHz

Operating Frequency (FD) 410 MHz

Location (20£ 103,¡24£ 103,3£ 103)
Velocity 100 m/s

Moving Direction (¡1,0,0)
ā3 (¡1,0,0)

where ¯ represents the Hadamard (element-wise)
product, acr is a complex random amplitude and

Gr = 1M − [G0r,G1r, : : : ,G(N¡1)r]T is the channel gain
vector. Here 1M is a length-M column vector of

ones. The amplitude acr is modeled as a zero-mean,

complex Gaussian random variable CN (0,¾2cr) with
variance ¾2cr determined by the chosen total clutter

power. The variance is weighted by transmit and

receive beampatterns.

IV. PERFORMANCE METRICS: SINR AND
PROBABILITY OF DETECTION

This section presents the results of simulations

illustrating the performance of the two systems (NFD

and FD) considered. This performance is measured

using two figures of merit: the output SINR after

adaptive processing and probability of detection

for a given probability of false alarm. Unless stated

otherwise, the parameters used in the simulations are

given in Tables I and II.

A. Signal-to-Interference-plus-Noise Ratio

Using STAP the NM signals at the pth platform

in the distributed system are multiplied with a weight

vector wp =R
¡1
p gp, p= 1, : : : ,K. The overall SINR of

the K-platform multistatic radar system, defined as the

ratio of powers of the output signal component to the

interference plus noise component is given by

SINR=

PK
p=1 ±

2»tpjwHp gpj2PK
p=1w

H
p Rpwp

(14)
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Fig. 3. SINR at platform 1: Monostatic case.

where ±2 is the noise power per element, »tp is the

target signal-to-noise ratio (SNR) on a single pulse

and array element at platform p, wp, gp and Rp are

the weight vector, target space-time steering vector,

and covariance matrix of the unwanted signals at

platform p, respectively. Unless stated otherwise,

the simulations assume each platform has the same

SNR.

The first simulation illustrates the drawbacks of

relying on a monostatic system, corresponding to

using only platform 1 from Table II. Fig. 3 plots

the SINR of this monostatic system, as a function

of look velocities in the x and y directions. The

target is located at (20£ 103,0,0) with SNR of 0 dB.
As is clear from the figure, since the platform is

moving along the y-axis, the SINR of monostatic

radar is independent of the y-component of the

look velocity. The loss in SINR at the clutter ridge

(x-component of the velocity is 0) is also clear. As

expected, a monostatic system is unable to detect

targets with low radial, though potentially high

absolute, speed.

Figs. 4 and 5 plot the SINR of platform 1 in

NFD and FD cases, respectively. These figures

illustrate the benefits of frequency diversity. In

the NFD case, because each platform sees the

multiple transmissions as interference, the SINR

plot is worse than the monostatic case; the loss

in SINR near the clutter ridge is wider. On the

other hand, because each transmission can be

independently exploited, the FD case clearly shows

an enhanced SINR result than the NFD case and

monostatic cases. As illustrated in Fig. 3 previously,

the SINR deduction, associated with platform 1,

is maximum along the y-axis. In the FD case, for

higher y-components of target velocity, the other

platforms contribute significant signal components

Fig. 4. SINR at platform 1: P1-NFD case.

Fig. 5. SINR at platform 1: P1-FD case.

in a bistatic mode, in turn resulting in higher SINR.

This is in contrast to the NFD case where the multiple

transmissions mutually interfere, resulting in a wide

SINR notch.

Figs. 6 and 7 plot the overall SINR of the NFD

case and FD cases, respectively. Compared with

the single platform results in Figs. 4 and 5, the

overall response illustrates the benefits of spatial

diversity. Since the directions of platforms 2 and 3 are

perpendicular to that of platform 1, the corresponding

SINR notches are not aligned. In addition to the

velocities of the platforms, the geometry of platforms

plays an important role in multistatic radar. Different

geometries result in different Doppler frequencies

even though velocities of platforms are the same.

This is the main advantage of multistatic radar. By

viewing the target from different aspect angles, these

two figures show that the SINR can be improved.

The overall response has a null only in the low
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Fig. 6. SINR using multiple platforms: MP-NFD case.

Fig. 7. SINR using multiple platforms: MP-FD case.

absolute-velocity region which is around the clutter

ridge regardless of target direction. Note that this

spatial diversity can be obtained in both the NFD

and FD case. However, clearly, the combination of

frequency and spatial diversity in the FD case leads

to significantly improved performance over the NFD

case.

It is worth comparing these results with that in

[15]; there the authors assumed that each platform

receives a signal from itself only, i.e., that each

platform receives data in a monostatic configuration

only. The underlying assumption is that orthogonal

signals are used. However, this paper shows SINR

enhancement by using not only monostatic reflection

but also bistatic reflections. This leads to higher

detection probability which is shown in the following

section.

Fig. 8 plots one-dimensional cuts of all these

figures along the zero x- and y-target velocity

Fig. 8. SINR plots along specific x- and y-target velocity

components. (a) Cut along Y-axis, vy = 0 m/s. (b) Cut along

X-axis, vx = 0 m/s.

components. The multiple platform, frequency

diverse (MP-FD) curve clearly indicates the best

performance among all schemes. Note that the case

without frequency diversity (MP-NFD) shows marked

improvement over the single-platform NFD case, i.e.,

spatial diversity provides robustness as expected.

However, the performance is still significantly

worse than the case with frequency diversity. Taken

together, a significant improvement when using

spatial diversity in conjunction with frequency

diversity is achieved, i.e., the advantages of the

scheme proposed and developed in this paper are

clear. These gains of the MP-FD scheme also translate

to the minimum detectable velocity (MDV). The

width of the SINR notch of the MP-NF cases for

zero x- and y-target velocity, at 0 dB SINR, are

35 m/s, 26 m/s, respectively. The corresponding

numbers are 1.5 m/s and 1.25 m/s for the MP-FD

case.
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B. Probability of Detection

In distributed radar networks, a popular approach
is based upon purely distributed detection which
uses an independent target-detection test at each
platform and then merges these binary decisions
at a centralized processor (e.g., using the OR
rule) [1, 20]. Each platform may use an optimized
threshold to maximize the detection probability
PD while maintaining a fixed false alarm rate PFA.
This distributed approach is clearly suboptimal and
improved detection performance could be achieved if
all platforms signals were processed jointly. While
joint processing would place an enormous burden
on required inter-platform communication and
computation load, joint processing also provides an
upper bound on the system performance.
The test statistic of the optimum centralized

detector is defined as [15]

NFD case : z =

KX
p=1

jwHp xpj2
1=¾2tp+ g

H
p R

¡1
p gp

FD case : z =

KX
p=1

KX
q=1

jwHpqxqj2
1=¾2tpq+ g

H
pqR

¡1
pq gpq

(15)

where the adaptive weights are given by wp =R
¡1
up gp

for the NFD case and wpq =R
¡1
pq gpq for the FD case.

For notational convenience, if we rearrange the indices
such that j = p for the NFD case and j =K(p¡ 1)+ q
for the FD case, (15) can be unified as follows

z =

JX
j=1

jwHj xj j2

1=¾2tj + g
H
j R

¡1
j gj

(16)

where J = K and K2 for the NFD and FD cases,
respectively.
Using this statistic, the probability of detection

(PD), as derived in the Appendix, is

PD =

JX
j=1

0@ JY
l=1, l 6=j

(A1j ¡A1l)¡1
1AAJ¡11j e

¡¤=A1j (17)

where A1j = ¸0j(1+¸0j¾
2
tj)=®j and ¸0j = g

H
j R

¡1
j gj .

Fig. 9 plots the probability of detection seen by
platform 1 with common probability of false alarm
PFA = 10

¡6 and SNR= 15 dB. The parameters used
in these simulations are given in Tables I and II.
The target speed is fixed to 10 m/s and the target
is located at (20£ 103,0,0). The direction of the
target is measured counterclockwise from the positive
x-axis. Pp-NFD and Pp-FD represent the detection
probability of the NFD and FD cases at the pth
platform, respectively. Ppq is the PD of the (monostatic
or bistatic) scenario with signal transmitted from
platform q and received at platform p. Finally, the
plot also includes the OR case (where a target is
declared present if any of platforms identifies a
target). Pp-FD-OR is the PD when using the OR
processor combining PD of each incoming signal as

Fig. 9. Probability of detection with PFA = 10
¡6, SNR = 15 dB.

Fig. 10. Target Doppler frequency seen by platform 1.

follows

P1-FD-OR= 1¡ (1¡ P11)(1¡ P12)(1¡ P13)

(18)

since the events corresponding to P11, P12, and P13
are independent.

As can be seen in the figure, the FD case (P1-FD)
has the highest PD among all cases. From the figure,

the impact of varying the Doppler frequency on

the monostatic configuration is clear; the PD of the

monostatic configuration (P11) varies significantly
more than that of bistatic configuration (P12 and P13).
Even though the target speed remains constant, the

Doppler frequency depends on the relative motion

of the target and platform. On the other hand, in a

bistatic configuration, the Doppler frequency is a

function of both the transmitter and receiver velocities

resulting in an inherent robustness.

This discussion related to Fig. 9 is reinforced

by the results in Fig. 10. Each of the P11, P12,
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Fig. 11. Probability of detection with PFA = 10
¡6, SNR= 10 dB.

and P13 cases has low PD when it falls in the low
Doppler frequency region around 0 Hz and the PD
becomes larger as the absolute value of the Doppler

frequency becomes higher. When the target moves

along the positive y-axis (90± in Figs. 9 and 10),
Platform 1 cannot detect the target using only the

monostatic configuration (P11) since the Doppler
frequency is zero. This is consistent with the SINR

result in Fig. 3. However, bistatic configurations P12
and P13 contribute to the P1-FD within platform 1.

We also can see that monostatic configuration still

has a dominant effect on P1-FD except for the low
velocity region. In the FD case, the bistatic Doppler

frequencies are never all zero, i.e., nulls of the PD in a

bistatic configuration do not coincide with those in a

monostatic configuration. This is the main advantage

of using frequency diversity. As earlier, the NFD

case (P1-NFD) results in extremely poor performance
because signals from other platforms act as EMI.

Fig. 11 plots the probability of detection PD of the

overall multistatic system with target SNR= 10 dB. In

this example, the false alarm rate is again PFA = 10
¡6

and the target velocity is 10 m/s. MP-NFD and MP-FD
are, respectively, the PD of the optimum multi-platform

NFD and FD cases using (17). MP-NFD-OR and
MP-FD-OR represent the PD of the output of the OR
processor for the NFD and FD cases, respectively,

based on the binary decision at each platform. Note

that since the data is independent from each platform,

the output of the OR processor can be analyzed in a

manner similar to (18).

Fig. 11 illustrates the gains due to spatial and

frequency diversity in a distributed aperture system.

In both NFD and FD cases, the overall PD has

significantly less fluctuation than the PD from the

other cases. This is because the relative motions and

aspect angles to each platform are different. Minima

(and maxima) in the PD curves for each platform arise

TABLE III

Target Parameters

Parameter Value

Location (20£ 103,0,0)
Speed 10 m/s

Moving Direction (1,3,0)=
p
10

at different target velocities and angles; combining

the data from multiple platforms in an optimal way,

therefore, results in a “uniform” PD curve regardless of

target direction.

These results are a direct result of the geometry

and velocity directions given in Table II. Platform

2 and 3 are moving perpendicular to the platform

1. Because of the geometry and moving directions,

nulls in PD of Platform 2 and 3 (P2-FD and P3-FD)
do not coincide with the null in PD of platform 1

(P1-FD) and the overall PD shows robustness to the
target direction. As a result, the overall PD is almost

uniform as compared with P1-FD, P2-FD, or P3-FD. In
addition, frequency diversity enhances performance.

The FD case has a higher PD than the NFD case in

both Fig. 9 and Fig. 11. As mentioned several times

now, this is due to the fact that the NFD case must

treat signals from other platforms as interference.

For completeness, Figs. 12 and 13 plot the more

traditional PD versus SNR curves for the cases

considered above. Given the target parameters in

Table III, Figs. 12 and 13 are the PD seen by platform

1 and the overall PD, respectively. Fig. 12 illustrate

the advantage of the FD case over the NFD case

for the single platform case seen by platform 1. In

addition, the PD of the OR processor (P1-FD-OR)
is very close to PD seen by platform 1 in the FD

case (P1-FD). Fig. 13 plots the overall PD. As with
the single platform case, using frequency diversity

provides for a higher detection probability. Again, the

OR processor, MP-FD-OR and MP-NFD-OR performs
very close to the optimal case MP-FD and MP-NFD,
respectively.

One should emphasize that the OR processors in

the single and distributed platform cases are similar

theoretically, but significantly different conceptually.

In the single platform case, since the data is gathered

within the same platform, communication bandwidth

is not an important issue. However, when all

platforms work together to decide on a hypothesis,

communication bandwidth plays an important role

since the data collected at each platform has to

be transferred to a fusion center [20]. Since each

transmission can be isolated, the FD requires a

K-fold increase in communication bandwidth. Using

Fig. 13, a strong argument could be made for the

OR processor, wherein only binary decisions are

communicated, across platforms.
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Fig. 12. Probability of detection with PFA = 10
¡6.

Fig. 13. Probability of detection with PFA = 10
¡6.

V. CONCLUSION

This paper developed and analyzed the case of

detection over a distributed array of sensors. Of

crucial importance is the use of true time delay such

that the transmitted signals arrive at the look point

simultaneously, i.e., a single time sample corresponds

to the look point. In this paper we developed a data

model for the two cases when frequency diversity is

(the FD case) and is not used (the NFD case). The

use of frequency diversity is shown to be important

because, in the NFD case, transmissions from multiple

platforms interfere with each other and increase, rather

than decrease, the overall interference level.

The system and data models developed in

Sections II and III, respectively, provide the basis for

the analysis that follows. The analysis investigated

the output SINR and probability of detection. As is

clear from the results, the benefits of using frequency

and spatial diversity are significant. Previous work

has largely focused on spatial diversity exclusively.

However, by not considering frequency diversity,

signals from other platforms contribute to undesired

interference at each platform, significantly worsening

performance possibly below even the single platform

case. Frequency diversity allows for the discrimination

of signals from different platforms and alleviates this

situation.

One drawback of the frequency diversity scheme

presented here is that each platform must possess K

entire receive processing chains. This concern may be

addressed by the use of orthogonal frequency division

multiplexing (OFDM) [18]. However, OFDM itself

has its own drawbacks that must be addressed in any

implementation. Another potential avenue for research

is the use of orthogonal code division multiple access

to isolate individual transmissions. A final issue not

considered here is the implementation of the STAP

algorithm. Even though STAP is optimum in the sense

of maximizing SINR and PD for a given PFA, it is

almost impossible to implement in practice due to

the associated computation load and, fundamentally,

the required sample support [12, 21]. The problem

becomes even worse when applied to a distributed

sensor system. The issue of sample support arises

because the interference covariance matrix must be

estimated using training data. Reduced rank STAP

algorithms for distributed sensor systems are an open

research topic.

APPENDIX. PROOF OF THE PROBABILITY OF
DETECTION

In this Appendix we derive the probability of

detection PD and probability of false alarm PFA for the

cases of distributed and joint processing of the signals.

In (16) define ®j = 1=¾
2
tj + g

H
j R

¡1
j gj , yj =w

H
j xj

and zj = jyj j2 = jwHj xj j2, then it can be simplified as

z =

JX
j=1

1

®j
zj: (19)

Since yj » CN (0,¾2yj), its variance ¾2yj is given as
¾2yj = Efyjy¤j g= EfwHj xjxHj wjg=wHj EfxjxHj gwj

=wHj Rjwj = g
H
j R

¡1
j RxjR

¡1
j gj (20)

where Rxj = E[xjx
H
j ] is the covariance matrix of the

received signal depending on each hypotheses as

follows
H0 : Rxj =Rj

H1 : Rxj =Rj +Rsj :
(21)

Given these developments, the random variable

zj is exponential with mean ¾
2
yj , i.e., its probability

density function (pdf) is

fZj (zj) =
1

¾2yj
e¡zj=¾

2
yj : (22)
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For the target-absent (H0) and target-present (H1)

hypotheses, (20) results in

¾2yj jH0 = gHj R¡1j RxjR¡1j gj
= gHj R

¡1
j gj ,

¾2yj jH1 = gHj R¡1j (Rsj +Rj)R¡1j gj
= gHj R

¡1
j RsjR

¡1
j gj + g

H
j R

¡1
j gj (23)

where Rsj = ¾
2
tjgjg

H
j .

Let z̄j , j = 1,2, : : : ,J be independent and identically

distributed (IID) standard exponential random

variables and define ¸0j = g
H
j R

¡1
j gj . Then (19) can

be rewritten as

z =

JX
j=1

¾2yj jH0
®j

z̄j =

JX
j=1

¸0j

®j
z̄j : (24)

Since z is the weighted sum of standard exponential

random variables, its pdf is [22]

fZ(z) =

JX
j=1

0@ JY
l=1, l 6=j

(A0j ¡A0l)¡1
1AAJ¡20j e

¡z=A0j

(25)
where A0j = ¸0j=®j .

The false alarm rate (PFA) corresponding to a

threshold ¤ is, therefore, given by

PFA =

Z 1

¤

JX
j=1

0@ JY
l=1, l 6=j

(A0j ¡A0l)¡1
1AAJ¡20j e

¡z=A0j dz

=

JX
j=1

0@ JY
l=1, l 6=j

(A0j ¡A0l)¡1
1AAJ¡10j e

¡¤=A0j : (26)

The required threshold for a given PFA can

therefore be found via a one-dimensional search to

invert (26).

The probability of detection (PD) can be obtained

in the similar manner, resulting in

PD =

JX
j=1

0@ JY
l=1, l 6=j

(A1j ¡A1l)¡1
1AAJ¡11j e

¡¤=A1j (27)

where A1j = ¸0j(1+¸0j¾
2
tj)=®j .
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