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Abstract— This paper presents the hybrid algorithm of Σ∆-
STAP and direct data domain(D3) which is robust to the discrete
interferer. Σ∆-STAP provides high performance result with the
relatively low complexity of calculation. It also requires small
number of training sample to estimate covariance matrix. How-
ever this algorithm is vulnerable to the discrete interferer which is
target-like interferer with high SNR. This paper shows that Σ∆-
STAP can suppress discrete interferer signal in conjunction with
direct data domain(D3) method which is an effective method to
eliminate non-correlated interference such as discrete interferer
in the non-homogeneous environment.

I. I NTRODUCTION

Space-Time Adaptive Processing(STAP) is well known
for interference suppression such as clutter, electric counter
measure(ECM) mixed with receiver noise [1]- [3]. STAP is
optimum in the sense of maximizing signal-to-interference-
plus-ratio(SINR). In addition, STAP maximizes probability of
detection for a given false alarm probability and minimizes
output power subject to an unity constraint in the target
direction [3]. However, even though STAP has a high perfor-
mance on suppressing interference,optimumSTAP1 algorithm
has a problem with computation load and sample support to
estimate covariance matrix since ideal covariance matrix with
the unwanted signal can not be obtained in the real world [3].
Besides, existing STAP algorithms have a problem with the
non-homogeneous environment which makes hard to detect
the target. The presence of the discrete interference deceives
radar into detecting a wrong target.

To overcome these computation problems, many algorithms
have been proposed [3]- [9]. One example isΣ∆-STAP which
is a very unique and efficient algorithm proposed in [7] [8].
This algorithm reduces computation load dramatically with
high performance result in the sense of modified sample
matrix inversion(MSMI) [8]. However, if there exists a discrete
interference, it is hard to detect the target withΣ∆-STAP
within the primary range cell. It causes a false alarm at
the different angle/Doppler domain from that of target.D3

method can be used to solve this problem. [10] shows that
discrete interferer in the primary range cell can be removed by
using direct data domain(D3) method.D3 method is originally

1it is also called byfully adaptedSTAP to distinguish itself from the other
sub-optimum STAP algorithms

combined with joint domain localized(JDL) algorithm which
is another computation efficient STAP algorithm. However, no
paper has been published about removing discrete interferer
of Σ∆-STAP. The solution of suppressing of the discrete
interferer will be introduceed in conjunction withΣ∆-STAP.
This paper will also provide the theoretical background of
Σ∆-STAP andD3 method.

The remainder of this paper is organized as follows.Σ∆-
STAP andD3 Algorithm are reviewed in section II and section
III, respectively. In section IV, hybrid algorithm is proposed,
and the simulation results are given in section V. Section VI
concludes the paper.

II. Σ∆-STAP

These are many systems using sum and different beams
which has low side lobe due to the advance in antenna
technology. Because of this fact,Σ∆-STAP can be applied to
the clutter suppression without the major change in the front-
end electronics [8]. Another advantage ofΣ∆-STAP is that
it needs less training samples than other STAP algorithms.
For example,K ≥ 2NM samples are needed to achieve
performance within 3dB of optimum, whereN is number
of spatial channel andM is number of pulses in a coherent
processing interval(CPI) [5].3×3 JDL in [6] needs 18 training
samples while only 12 training samples are needed inΣ∆-
STAP with one difference channel. In addition,Σ∆-STAP has
an advantage on the size of covariance over JDL algorithm. At
the same situation, JDL has a covariance matrix of size9× 9
while the size of the covariance matrix ofΣ∆-STAP is6× 6.

Let xΣ be Nt × 1 sum-channel data andx∆ be NpsNt × 1
stacked delta-channel data before degree of freedom(DOF)
reduction.Nt×1 temporal steering vector of a chosen Doppler
bin is defined asst. Nps is the processor’s spatial DOF
which equals to the number of∆-beams with the absence of
redundant∆-beams andNt is the number of pulses in CPI.
With Nt× (Npt +1) temporal DOF reduction matrixQ where
Npt is the processor’s temporal DOF, data after DOF reduction
can be expressed as follows

x̃Σ = QHxΣ, (Npt + 1)× 1 (1)

x̃∆ = [I(Nps)⊗Q] Hx∆, Nps(Npt + 1)× 1 (2)



s̃t = QHst, (Npt + 1)× 1 (3)

where(·)H represent Hermitian(conjugate transpose),I(Nps)
the identity matrix of orderNps.

Equation (1) and (2) can be put together as follows

x̃ =
[

x̃Σ

x̃∆

]
= [I(Nps + 1)⊗Q] H

[
xΣ

x∆

]

, (Npt + 1)(Nps + 1)× 1
(4)

Equation (4) can be re-written as

x̃ = QH
Σ∆x, (Nps + 1)(Npt + 1)× 1 (5)

if x andQΣ∆ are defined as

x ≡
[

xΣ

x∆

]
, Nt(Nps + 1)× 1 (6)

QΣ∆ ≡ [I(Nps + 1)⊗Q]
, (Nps + 1)Nt × (Nps + 1)(Npt + 1) (7)

where⊗ is Kronecker product.
Correlation matrixR is defined as follows

R = E
{

xxH
}

(8)

After DOF reduction, low-dimension correlation matrix can
be found as

R̃ = QH
Σ∆ R QΣ∆ (9)

Since the ideal correlation matrix can not be obtained in the
real world, estimate ofR can be used instead and is defined
as R̂.

R̂ =
K∑

k=1

xkxH
k (10)

with xk, k = 1, 2, . . . , K being data samples from nearby
range cells.

From the general frame work of the STAP, filtering weight
vector can be found as follows.

ˆ̃w = R̃
−1

s̃, (Nps + 1)(Npt + 1)× 1 (11)

wheres̃ is defined as follows

s̃ =
[

s̃t

0

]
, (Nps + 1)(Npt + 1)× 1 (12)

Therefore MSMI can be obtained

ηMSMI =

∣∣∣ ˆ̃wH x̃
∣∣∣
2

s̃HR̃
−1

s̃

H1

>
<
H0

η0 (13)

III. D3 ALGORITHM

D3 algorithm does not employ data from outside the pri-
mary range cell under test and no covariance matrix estimation
is performed. Therefore it is very useful in a severely non-
homogeneous environment which statistics between range
cells varies rapidly.

DefineXa
∆ andX as follows

Xa
∆ =

[
x∆1 , x∆2 , . . . , x∆Nps

]
, Nt ×Nps (14)

X = [ xΣ , Xa
∆ ] , Nt × (Nps + 1) (15)

wherex∆k
, k = 1, 2, . . . , Nps is the data ofkth delta-channel.

X is a matrix version of (6) filling each column with the data
of each delta-channel.

(Nps+1)×(Nt−1) matrix B can be defined with the phase
factor z = ej2π$, where$ is normalized Doppler frequency,
as follows

B =




X00 − z−1X10 X10 − z−1X20

X01 − z−1X11 X11 − z−1X21

...
...

X0Nps
− z−1X1Nps

X1Nps
− z−1X2Nps

. . . X(Nt−2)0 − z−1X(Nt−1)0

. . . X(Nt−2)1 − z−1X(Nt−1)1

...
...

. . . X(Nt−2)Nps
− z−1X(Nt−1)Nps


 (16)

whereXnm is nth row andmth column element ofX.
In the obtained signals after subtraction, there are no target

signal and contain only interference signals. The basic idea
of D3 algorithm is to obtain the weight vector which makes
this interference term minimize while maintaining gain in the
target direction. Consider the following two scalar functions
of a weight vectorwt

Gwt =
∣∣wtb(0:M−2)

∣∣2 = wH
t b(0:M−2)b

H
((0:M−2)wt (17)

Iwt = ‖B∗wt‖2 = wH
t BT B∗wt (18)

Rwt = Gwt − κ2Iwt (19)

where ‖ · ‖ represents the two-norm of a vector,(·)∗ the
complex conjugate,b(0:M−2) the first (M − 1) entries of the
temporal steering vector, andκ the emphasis parameter.

The termGwt in (17) represents the gain of weight vectorwt

at the look Doppler frequencyft while Iwt in (18) represents
the residual interference power after the data is filtered by the
same weights. Hence,Rwt in (19) represents the difference
between the gain of the antenna at the look Doppler and
the residual interference power. TheD3 algorithm finds the
weights which maximize the difference. Mathematically

max‖wt‖2=1 Rwt = max‖wt‖2=1

[
Gwt − κ2Iwt

]

= max‖wt‖2=1 wH
t

[
b(0:M−2)b

H
((0:M−2) − κ2BT B∗

]
wt (20)

where asκ → 0 the D3 weight vector approaches the non-
adaptive steering vector used in pulse-Doppler processing.



On the other hand, ifκ is chosen to be large, the role of
the gain termGwt is negligible and the weight vector is
dependent on the interference terms only. Using the method
of Lagrange multipliers, weight vector is the eigenvector
corresponding to the maximum eigenvalue of the matrix[
b(0:M−2)b

H
((0:M−2) − κ2BT B∗

]
. Finally, D3 weight can be

found

wD3 =
[

wt

0

]
(21)

The zero is appended to represent the lost of DOF.
As can be seen above, since no secondary data are required

in D3 algorithm suppression on the non-homogeneous inter-
ference in the primary range cell can be performed fast and
effective. However, effects of correlated interference still exists
because of lack of statistical information on those such as
jammer, clutter.

IV. H YBRID ALGORITHM

This section presents the hybrid algorithm which is a
combination ofΣ∆-STAP andD3. As explained in previous
sections, STAP algorithm has a ability of suppressing corre-
lated interferences whileD3 method has a great advantage
in removing non-correlated interferences such as discrete
interferer in the primary range cell in the non-homogeneous
environment. Therefore, this algorithm consists of two stages.
At the first stage, discrete interferer signal is removed using
only primary cell data. And correlated interference signals
are suppressed at the second stage usingΣ∆-STAP which
performs a statistical processing.

A. STAGE 1 : Non-Correlated Interferer Suppression

DOF reduction matrixQ in Σ∆-STAP is the discrete
Fourier transform(DFT) of the sizeNt × (Npt + 1) under the
assumption of no zero-padding and a uniform pulse train [8].
Instead of using DFT matrix, DOF reduction matrix is made
using D3 method. Each column ofQ is made ofD3 weight
with different Doppler bins as similar manner in [10].

Q̄ =
[
wD3(f0), wD3(f1), . . . , wD3(fNpt)

]
(22)

wherefk, k = 0, 1, . . . , Npt is the Doppler frequency of the
corresponding Doppler bin.

Therefore overall temporal DOF reduction matrix in Eq. (7)
can be re-defined as follows

Q̄Σ∆ =
[
I(Nps + 1)⊗ Q̄

]
(23)

B. STAGE 2 : Correlated Interferer Suppression

With given DOF reduction matrixQ̄Σ∆ from Stage 1,
reduced dimension snapshotx̄ and covariance matrix̄R can
be expressed as follows

x̄ = Q̄
H
Σ∆ x (24)

R̄ = Q̄
H
Σ∆ R̂ Q̄Σ∆ (25)

Weight vectorw̄ is obtained similar to originalΣ∆-STAP
case using (11).
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Fig. 1. MSMI : Σ∆-STAP without Dicrete interferer

As can be seen from above discussion, since each range bin
has a different̄QΣ∆, weight vector needs to be calculated at
each range bin different from other STAP algorithm. Therefore
computation load of hybrid algorithm is higher than that of
Σ∆-STAP. However, if it is compared to two-step hybrid
algorithm in [10], the computation load is lighter because of
the size of covariance matrix.

V. SIMULATION REAULTS

This section provides simulation results. Simulation param-
eters are shown in Table I. Fig. 1 shows the MSMI result of
Σ∆-STAP without discrete interferer. Target is inserted in the
range bin number 300 and Doppler frequency is 20Hz. Target
can be seen clearly in this figure. Next, discrete interferer
with Doppler frequency 40Hz is inserted at the same range
bin where the target presents. As can be seen in Fig. 2, the
presence of discrete interferer causes false alarm because the
power of discrete interferer is relatively higher than that of the
target. This fact can deceive the radar because statistical char-
acteristic of the discrete interferer is same as that of the target.
As a result STAP processor produces weight vector which
maximizes SNR of discrete interferer. Consequently, false
alarm at Doppler frequency 40Hz appears. Hybrid algorithm
presented this paper can solve this problem caused by discrete
interferer. Instead of using DFT matrix as a DOF reduction
matrix Q, hybrid algorithm usesD3 weights as a column of
Q̄ removing unwanted signals. Fig. 3 shows the MSMI result
of the hybrid algorithm. Since theD3 method maximizes the
gain in the look Doppler, discrete interferer signals which
have different Doppler frequency are suppressed. Due to the
characteristic ofD3 method, correlated signals are suppressed
at the second stage. Comparing Fig’s 2 and 3, it can be seen
that discrete interferer is removed apparently and only the
target is detected in Fig. 3.



TABLE I

SIMULATION PARAMETERS

Parameter Value

Operating Frequency 450MHz

Peak Transmit Power 200KW

Instantaneous BW 4MHz

System Loss 4dB

PRF 200Hz

Pulse Width 200µs

Platform Altitude 9Km

Platform Velocity 50 m/s

Nt 20

Npt 4

Nps 3

Target SNR 0dB

Discrete Interferer SNR 20dB

Target Doppler Frequency 20Hz

Discrete Interferer Doppler Frequency 40Hz

Target Range Cell Number 300

Discrete Interferer Range Cell Number 300
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Fig. 2. MSMI : Σ∆-STAP with Dicrete interferer

VI. CONCLUSION

This paper proposed newΣ∆-STAP algorithm to suppress
discrete interferer usingD3 method. This algorithm consists
of two stages :1)non-correlated interferer suppression part and
2) correlated interferer suppression part. At the non-correlated
interferer suppression part, discrete interferer is suppressed
by usingD3 method which uses only the primary data cell
making the column of the transformation matrix̄Q of D3

weight. Residual correlated interferer signal is then suppressed
using statistical algorithm which isΣ∆-STAP after DOF
reduction withQ̄. This successive weight calculation process
at each range cell makes the computation load high.
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Fig. 3. MSMI : Hybrid algorithm with Discrete inteferer

ACKNOWLEDGMENT

REFERENCES

[1] R. Kelmm, Principles of Space-Time Adaptive Processing, 2ed, London,
U.K. : IEE Press, 2002.

[2] J.R. Guerci, Space-lime Adaptive Processing for Radar, Artech House,
2003.

[3] J. Ward, “Space-Time Adaptive Processing for Airborne Radar”, Techni-
cal Report No. 1015, Lincoln Laboratory, MIT, Dec 1994.

[4] W.L. Melvin, “A STAP Overview”,Aerospace and Electronic Systems
Magazine, IEEE, volume 19, issue 1, part 2, pp.19-35, Jan 2004.

[5] M.C. Wicks, M. Rangaswamy, R. Adve, T.B. Hale, “Space-time adaptive
processing: a knowledge-based perspective for airborne radar”, Signal
Processing Magazine, IEEE, volume 23, issue 1, pp.51-65, Jan. 2006.

[6] H. Wang, L. Cai, “On Adaptive Spatial-Temporal Processing for Airborne
Surveillance Radar Systems”, Aerospace and Electronic Systems, IEEE
Transactions on, volume 30, issue 3, pp.660-670, July 1994.

[7] R.D. Brown, M.C. Wicks, Y. Zhang, Q. Zhang, H. Wang, “A space-time
adaptive processing approach for improved performance and affordabil-
ity”, Radar Conference, Proceedings of the 1996 IEEE National, 1996.

[8] R.D. Brown, R.A. Schneible, M.C.Wicks, H. Wang, Y. Zhang, “STAP
for clutter suppression with Sum and Difference Beams”, Aerospace and
Electronic Systems, IEEE Transactions on, vol 36, issue 2, pp. 634-646,
April 2000.

[9] R.S. Adve, T.B. Hale and M.C. Wicks, “Joint Domain Localized Adaptive
Processing in Homogeneous and Non-homogeneous Environments. Part I:
Homogeneous Environments”, IEE Proc. on Radar, Sonar and Navigation,
vol. 147, no. 2, pp. 57-65, April 2000.

[10] R.S. Adve, T.B. Hale and M.C. Wicks, “Joint Domain Localized Adap-
tive Processing in Homogeneous and Non-homogeneous Environments.
Part II: Non-Homogeneous Environments”, IEE Proc. on Radar, Sonar
and Navigation, vol. 147, no. 2, pp. 66-73, April 2000.


