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Introduction

Space-Time Adaptive Processing (STAP) techniques
promise to offer the best means to detect weak targets in se-
vere, dynamic, interference scenarios. Traditionally, STAP
techniques were developed for the detection of low RCS,
high velocity airborne targets, well removed from main-
beam clutter in Doppler. STAP algorithms are only now
being used for Ground Moving Target Indication (GMTI)
from an airborne reconnaissance platform.

The motion of an airborne platform, including crab and
yaw, tends to spread the clutter in Doppler. Low velocity
ground targets are therefore buried within mainbeam clutter,
making detection difficult. Non-adaptive techniques, such
as the two-pulse canceller including motion compensation,
are usually able to detect only large ground targets or must
deal with several false alarms. This problem is worsened
by electronic countermeasures such as jamming. The need
to detect small ground targets or targets under cover while
minimizing false alarms leads to research in applying adap-
tive processing to GMTIL.

Classical STAP algorithms achieve interference suppres-
sion within a primary range cell using an estimated inter-
ference covariance matrix. The estimate is typically formed
using secondary data from range cells symmetrically placed
about the range cell under test. The underlying assumption
is that the secondary data samples are an accurate statistical
representation of the interference in the primary range cell,
i.e. the data is homogeneous. Statistical algorithms suffer
from significant loss in performance when this assumption
is violated. Non-homogeneous data occurs in many prac-
tical situations such as airborne surveillance over land-sea
interfaces, urban terrain, etc.

To minimize the loss in performance due to non-
homogeneous sample support, a Non-Homogeneity Detec-
tor (NHD) [1,2] can be used to separate the range cells into
homogeneous cells and non-homogeneous cells. Within the
homogeneous cells a statistical algorithm may be applied
using other homogeneous cells as secondary data. These
algorithms were originally developed for proof of concept,
assuming an idealized linear array of equispaced, isotropic,
point sensors. To fully exploit the capabilities of STAP al-

gorithms applied to measured data, attention must be paid to
real world issues such as non-linear arrays, mutual coupling
between elements, and channel mismatch [3].

Within the cells declared to be non-homogeneous, corre-
lated and uncorrelated interference hinders target detection.
For these cells, purely statistical algorithms are inappropri-
ate because the surrounding range cells help suppress cor-
related interference, but do not possess information about
the uncorrelated interference. Statistical algorithms based
purely on secondary data therefore cannot suppress a dis-
crete non-homogeneity within a single range cell.

The need for adaptive processing within a non-
homogeneous range cell leads to a new class of direct data
domain (D?) algorithms. These algorithms use data from
the primary range cell only and make no attempt to estimate
a covariance matrix. The performance of D? algorithms
in countering correlated interference is enhanced by imple-
menting a second stage of adaptive statistical processing; i.e
following D?® adaptive processing with adaptive statistical
processing [4]. The second stage of this hybrid algorithm
uses homogeneous cells as the secondary data.

In this paper, we present a practical approach to
STAP incorporating the three components mentioned: non-
homogeneity detection, statistical processing of measured
data, and hybrid processing. This combined approach ties
together previous research in different aspects of STAP into
one algorithm. The algorithm is tested using measured data
from the Multi-Channel Airborne Radar Measurements pro-
gram with particular interest in Ground Moving Target De-
tection.

Practical STAP for GMTI

A practical application of STAP for weak target detection
requires at least three components: a NHD, a statistical al-
gorithm for use within homogeneous cells, and the hybrid
algorithm for use within non-homogeneous cells. This min-
imal approach is illustrated in Fig. 1. This section presents
these components in some detail and the advantages of using
the described approach.
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Fig. 1. Practical Space-Time Adaptive Processing

Non-Homogeneity Detection

The first step in adaptive processing is to distinguish
between homogeneous and non-homogeneous range cells,
i.e. the first step is a non-homogeneity detector. The prob-
lems associated with non-homogeneities and the resulting
need for a NHD are described in detail elsewhere and are
not repeated here [1,2].

It must be noted that non-homogeneities may be dis-
tributed or localized. Distributed non-homogeneity occurs
when two or more kinds of terrain are illuminated, for ex-
ample at a land-sea interface. The statistics of sea clutter
are significantly different from those of land. This sort of
non-homogeneity can be countered by developing a knowl-
edge base of the illuminated terrain. This knowledge base
may be informed by a-priori information such as map data,
previous passes over the surveillance volume or information
from other sensors. For example, if flying near a land-sea in-
terface, a knowledge based controller can split the data cube
into land-only and sea-only data. The STAP algorithm then
uses secondary data only from the set to which the primary
data belongs.

This paper, on the other hand, addresses the issue of dis-
crete non-homogeneities. Discretes may arise in urban and
spiky clutter scenarios due to natural and man-made features
or be caused by large targets in the transmit sidelobes. A
target in the primary range cell, but not at the look angle-
Doppler, is effectively discrete interference. True targets
must also be considered discrete interference - when the
range bin containing the target is a secondary data sample
for other range cells.

The NHD obtains a statistic for each range cell in the
radar data cube, which is used to determine if the range cell
is to be considered homogeneous or not. Several NHD for-
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Fig. 2. JDL algorithm used as a NHD.

mulations are possible, such as the Generalized Inner Prod-
uct (GIP) [1] and the Joint Domain Localized-NHD [2]. The
rationale behind these approaches is that with known co-
variance, the matched filter case, the detection statistic only
contains residual thermal noise. Any significant deviations
from the mean are caused by localized non-homogeneities
such as targets and discretes.

This paper is based on the JDL-NHD as illustrated in
Fig. 2. In the figure, x represents the data and s the space-
time steering vector. IV, and N4 refer to the number of angle
and Doppler bins within the Localized Processing Region
(LPR). In the angle-Doppler domain, adaptivity is restricted
to within the LPR. The JDL-NHD evaluates the modified
sample matrix inversion (MSMI) statistic using the JDL
algorithm of [3], assuming homogeneous interference. A
range bin is considered to be non-homogeneous if the JDL-
MSMI statistic is above a chosen threshold. The choice of
threshold is described later. This approach is closely related
to that taken for detection declarations in a traditional ap-
plication of STAP. However, range bins that traditionally
would be declared to contain targets are now considered to
be non-homogeneous. In this multi-pass approach, the first
pass of STAP serves as a NHD.

As formulated above, the NHD yields two advantages
to the next stage of adaptive processing. One, identifying
all threshold crossings as non-homogeneities allows the hy-
brid algorithm to distinguish between true targets and false
alarms: applying the hybrid algorithm in these range cells
reduces false alarms. Secondly, since even true targets are
considered non-homogeneities in the estimation of a sam-
ple covariance matrix, any weak targets suppressed by the
presence of a target in the secondary data can now be de-
tected: the NHD yields improved detection performance.



Processing in Homogeneous Range Cells: JDL

In the second stage of adaptive processing, range cells de-
clared to be homogeneous are processed using a statistical
STAP algorithm. Here the algorithm of choice is the same
JDL algorithm used for the NHD. The difference arises from
using only homogeneous range cells for the required sec-
ondary data sample support.

The basic formulation of the JDL algorithm is illustrated
in Fig. 2. When applied to real arrays, the transformation
from the element domain to the angle domain is based on the
measured spatial steering vectors. For example, if the LPR
covers 3 angle bins (¢_1, ¢o, ¢1; N, = 3) and 3 Doppler
frequencies (f_1, fo, fi1;Ng = 3) the transformation pro-
cess is

gLpr = THx, (D

where x is a received space-time data vector. The primary
and secondary data is transformed to the angle-Doppler do-
main using this transformation process. The transformation
matrix T is given by

[b(f-1) b(fo) b(f1)]
@ [am(p-1) am(do) am(d1)], 2)

where a,,(¢) is the measured spatial steering vector cor-
responding to angle ¢, b(f) is the temporal steering vec-
tor corresponding to Doppler frequency f and ® represents
the Kronecker product. b(f) ® a,,(¢) therefore represents
the spatial-temporal steering vector corresponding to (¢, f).
The space-time steering vector is also transformed using the
same process, hence matching the angle-Doppler steering
vector in the transform domain to the transformation used
for the data.

The use of measured steering vectors, instead of ideal
steering vectors, accounts for real world array effects such
as non-linear arrays, mutual coupling and channel mis-
match. The resulting performance improvements, using this
enhanced JDL algorithm, are significant [3].

T =

Hybrid Processing in Non-homogeneous Range Cells

In range cells declared to be non-homogeneous, the inter-
ference has both discrete and correlated components. Form-
ing a covariance matrix suppresses the correlated interfer-
ence, but the secondary data has no information about the
discrete interference and this component cannot be sup-
pressed. Purely statistical algorithms are therefore not appli-
cable to these range cells. The need for adaptive processing
within a non-homogeneous range cell leads to a new class of
direct data domain (D?) algorithms. Originally introduced
for spatial adaptivity [5], these algorithms use data from the
primary range cell only and make no attempt to estimate a
covariance matrix.

The D?® approach implemented here minimizes the in-
terference within the primary range cell in a least squares
sense while maximizing the gain of the array at the look an-
gle/Doppler. D? approaches work particularly well against
discrete interference, but fail to suppress range and/or
Doppler spread interference to the degree possible with sta-
tistical algorithms. To overcome these problems, a two-
stage algorithm has been developed using a stage of sta-
tistical adaptive processing to follow the D? stage of pro-
cessing [4]. The second stage of this hybrid algorithm uses
homogeneous cells as the secondary data to suppress corre-
lated interference not suppressed by the first stage D? pro-
cessing.

Consider the general framework of any STAP algorithm.
The algorithm processes received data to obtain a com-
plex weight vector for each range bin and each look an-
gle/Doppler. The weight vector then multiplies the primary
data vector to yield a complex number. The process of ob-
taining a real scalar from this number for threshold compar-
ison is part of the post-processing and is not inherent to the
algorithm itself. The adaptive process estimates the signal
component in the look angle/Doppler and may therefore be
viewed as a transform to this angle-Doppler point. These
weights play a role similar to the non-adaptive steering vec-
tors used in Eqn. (2) to transform the space-time data to the
angle-Doppler domain.

The hybrid algorithm is therefore based on the formula-
tion of the JDL algorithm given by Eqns. (1-2). The non-
adaptive steering vectors in matrix T are replaced by the
adaptive weights obtained from a repeated application of the
D? algorithm. If w (¢, f) represents the adaptive D® weights
corresponding to look angle ¢ and Doppler f, the transfor-
mation matrix for the 3 x 3 LPR is given by

T = [w(g-1,f-1) W(do,f-1) W(¢1,f-1)

w(d_1, fo) wW(do, fo) w(¢1,fo)
w(d-1,f1) w(do, f1) w(o1, f1)] 3)

for an LPR covering angles {¢_1, ¢, #1} and Dopplers
{f-1, fo, i}

Using Eqns. (1) and (3), the transformed data x is used
to calculate a new set of adaptive weights within the LPR.
The secondary data is drawn from the range cells declared
to be homogeneous. The secondary data is also transformed
to the angle-Doppler domain using Eqns. (1) and (3).

The hybrid algorithm has been shown to combine the ben-
efits of D? and statistical processing [4]. The D? stage sup-
presses discrete interference. The statistical processing in
the second stage then suppresses any residual correlated in-
terference.



Advantages

The formulation described above incorporating the JDL-
NHD, the JDL algorithm, and hybrid processing yields sev-
eral advantages for implementation. To quote Chang [6],
“A data set is termed wide sense homogeneous if the sys-
tem performance loss can be ignored or is acceptable for a
given STAP algorithm. A data set is said to be wide sense
non-homogeneous if it is not wide sense homogeneous”.
This definition implies that discrete interference affecting
one STAP algorithm may not affect another. For example, a
sidelobe discrete that falls in a natural null of the transform
to the angle-Doppler domain is not relevant to the perfor-
mance of the JDL algorithm. By using the JDL-NHD, only
non-homogeneities that are relevant to the JDL algorithm
are identified as such.

All three components are based on the JDL algorithm.
The hybrid algorithm uses a D? algorithm for the first stage
in the transformation from the space-time domain to the
angle-Doppler domain. This is in contrast to traditional
JDL where non-adaptive spatial-temporal steering vectors
are used. Otherwise, the formulation is the same as in JDL.

The transformation described localizes the interference
in the angle-Doppler domain, while retaining maximal gain
against thermal noise. The size of the LPR can be picked in-
dependently of the number of elements or pulses. The num-
ber of secondary data vectors required is dependent on the
chosen size of the LPR. In severely non-homogeneous re-
gions, the size of the LPR can therefore be reduced to match
the secondary data available. In an extreme case, no sec-
ondary data may be available and a pure direct data domain
algorithm may be used, effectively setting the size of the
LPR to 1 x 1, the look angle-Doppler.

Numerical Example

The combined approach above is tested using measured
data from the Multi-Channel Airborne Radar Measurements
(MCARM) database [7]. The database is a vast collection
of clutter and target measurements collected by an airborne
radar over many flights with multiple acquisitions on each
flight. The radar antenna is a 22 element (2x11) rectangu-
lar array of reduced depth notch radiators. Each acquisi-
tion comprises a coherent processing interval (CPI) of 128
pulses at a pulse repetition frequency of 1984 Hz. Each CPI
comprises 630 range bins sampled at 0.8 us. Each range bin,
therefore, corresponds to 0.075 miles. The array operates
at a center frequency of 1.24 GHz. Included with each CPI
is information regarding the position, aspect, velocity, and
mainbeam transmit direction. This information is used to
correlate target detections with ground features. Also in-
cluded with the database is a set of measured steering vec-
tors which account for the mutual coupling and channel mis-
match.

Fig. 3.
airplane during acquisition 575.

Location and transmit direction of the MCARM

The example illustrates the issues addressed in this pa-
per, namely non-homogeneities and the use of the appropri-
ate processing algorithm in appropriate sections of the radar
data cube. This example uses data from acquisition 575 on
flight 5. While recording this acquisition the radar platform
was at latitude-longitude coordinates of (39.379°,-75.972°),
placing the aircraft close to Chesapeake Haven, Maryland.
The plane was flying mainly south with velocity 223.78 mph
and east with velocity 26.48 mph. The aircraft location and
the transmit mainbeam are shown in Fig. 3. The mainbeam
is close to broadside. Note that the mainbeam illuminates
several major highways.

To illustrate the effects of non-homogeneities in sec-
ondary training data we inject two targets at closely spaced
range bins. These artificial targets are in addition to the
ground targets of opportunity on the roadways illuminated
by the array. Based on the measured steering vectors and
chosen Doppler shifts the response of the two simulated tar-
gets may be calculated. The artificial targets are injected in
range bins 290 and 295. In this acquisition, the zero range
is referenced to range bin 74 and so the targets are injected
at ranges of 16.2 miles and 16.575 miles respectively. The
parameters of the injected targets are given in Table I. Note
that the two targets are at the same look angle and Doppler
frequency. Also note that the second target is 20dB stronger
than the first.

TABLE I
PARAMETERS DEFINING THE INJECTED TARGETS.

Target 1 Target 2
Ampl 1x10~* 1x1073
Angle bin 1° 1°
Doppler | -9=-1395Hz | -9=-139.5Hz
Range bin | 290 =16.2mi | 295 = 16.575 mi
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Fig. 4. JDL Processing ignoring non-homogeneities.

This example uses 3 angle bins and 3 Doppler bins (a
3 x 3 LPR) in all stages of adaptive processing, including
the JDL-NHD. Thirty six secondary data vectors are used
to estimate the 9 x 9 angle-Doppler LPR covariance ma-
trix. In addition, two guard cells are used on either side of
the primary data vector. Based on these numbers, without
a NHD stage, range bin 295 would be used as a secondary
data vector for detection within range bin 290. The example
compares the results of using the enhanced JDL algorithm
without non-homogeneity detection of [3] and the combined
approach of this paper illustrated in Fig. 1.

Figure 4 presents the results of using the enhanced
JDL algorithm without any attempt to remove non-
homogeneities from the secondary data. The range-Doppler
plot is of the modified sample matrix inverse (MSMI) statis-
tic after applying a threshold. In producing this figure, a
threshold of 40 is used, i.e. any Doppler-range bin with a
MSMI statistic greater than 40 (not in dB) is said to contain
a target while any Doppler-range bin with a statistic below
40 is declared target free. For Gaussian interference, using
36 secondary data vectors to estimate a 9 x 9 covariance
matrix a threshold of 40 corresponds to a false alarm rate of
Pr, = 5x 1078, Note that the true false alarm rate for mea-
sured data is significantly higher. The plot is for adaptive
processing between range bins 150 and 350, corresponding
to ranges between 5.7 and 20.6 miles and all 128 Doppler
bins. Due to platform motion the radar is approaching these
targets at a speed of 26.48mph.

As is shown later, certain range bins that are declared to
contain a target can be correlated with the map in Fig. 3
as corresponding to roadways. However, not using a NHD
results in many false alarms including several at extremely
high radial velocities. In addition, the first injected target at
range bin 290 is not detected. This is because of the pres-
ence of the larger target at range bin 295 in the secondary
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Fig. 5. Combined Processing for GMTIL.

data when range bin 290 is the primary range bin.

Figure 4 clearly illustrates the need for a stage to identify
non-homogeneities and eliminate them from the secondary
data set. Applying STAP to measured data results in sev-
eral false alarms and the possibility of targets in the sec-
ondary data masking weak targets. The processing structure
detailed in this paper addresses this need.

In the implementation presented in this paper, a JDL-
NHD is used to identify non-homogeneous range cells. A
range cell is considered to be non-homogeneous if the JDL-
MSMI statistic is above 18.52, significantly lower than the
threshold of 40 used to produce the results presented in
Fig. 4. Assuming Gaussian interference, using 36 secondary
data vectors to estimate a 9 x 9 covariance matrix to ob-
tain an MSMI statistic, this threshold corresponds to a false
alarm rate of Py, = 10~%. In this acquisition, approxi-
mately 5% of the test statistics fall above this threshold.

The combined algorithm uses JDL processing in those
cells declared homogeneous and hybrid processing in those
cells declared non-homogeneous. Again a 3 x 3 LPR is
used, both in the JDL algorithm and in the hybrid algorithm.
In the second application of the JDL algorithm in homoge-
neous range cells, only similar homogeneous cells are used
for sample support. Within the non-homogeneous cells, a
hybrid algorithm is used. The D? algorithm is applied a to-
tal of 9 times corresponding to the 3 angle and 3 Doppler
look directions, using the same primary data. The angle-
Doppler data so obtained using the D® adaptive transforma-
tion is used for further JDL processing. Homogeneous cells
are used to obtain sample support for the second stage JDL
processing.

Figure 5 shows the result obtained using this com-
bined approach. Again a detection is declared in any
range/Doppler bin with a statistic greater than 40. No-
tice the significantly fewer false alarms than in Fig. 4. In



essence the hybrid algorithm has been applied to all those
range/Doppler bins where the JDL-MSMI statistic is greater
than 18.52. The use of the hybrid algorithm suppresses non-
homogeneities, significantly reducing false alarms.

In addition, the weaker injected target is detected because
the stronger target at range bin 295 is eliminated from the
sample support. Furthermore, the range bins of most tar-
get detections can be directly correlated with the state high-
ways in Maryland and Delaware. Routes 290 and 301 in
Maryland are closely spaced at a range of 9.0 and 9.8 miles.
Accounting for the platform motion, the ground speed of the
target(s) is approximately 50 mph towards (and away) from
the aircraft.

The target detections at the far range shown in the plot are
between 19.4 and 20.4 miles. The range to Route 9 varies
between 19.1 and 21.1 miles within the transmit mainbeam.
These far range detections therefore correspond to Route
9. The targets detected at these ranges are present in both
Figs. 4 and 5.

Summary and Conclusions

This paper presents a practical approach to Space-Time
Adaptive Processing, incorporating previous research into
different aspects of STAP. The paper illustrates the use
of the appropriate adaptive algorithm within the appropri-
ate range bin. The approach presented incorporates non-
homogeneity detection, statistical processing using homo-
geneous data only, and direct data domain processing within
non-homogeneous range cells. Each of these aspects of
STAP has been addressed separately before, but never tied
together into a single, comprehensive adaptive algorithm.

The algorithm presented has been tested using measured
data from the MCARM program. The results prove the
importance of non-homogeneity detection and hybrid pro-
cessing within non-homogeneous range cells. By com-
bining these aspects of STAP our comprehensive approach
achieves a significant reduction in the number of false
alarms and increased probability of detecting weak targets
in multiple target scenarios.

The work presented in this paper helps in moving STAP
from theory to practice. In this regard, this research is
part of a broader knowledge based space-time adaptive pro-
cessing (KB-STAP) approach [8]. Knowledge based con-
trol provides for selection amongst several different al-
gorithms, a-priori knowledge of terrain and interference,
knowledge from other sensors, information from previous
flights/passes, and feedback from other stages in the adap-
tive processing chain. With respect to Fig. 1, the knowledge
base would aid in non-homogeneity detection, training strat-
egy, and choice of STAP algorithm. The goal of knowledge
based control is to match the processing to the environment.

Future Work

The implementation of KB-STAP in a practical manner is
still an open research problem. One issue to be addressed
is which algorithm to use under what conditions. Here we
choose between only two algorithms on the basis of a non-
homogeneity detector. Even this simple implementation re-
sults in vastly improved performance.

Another area of growing importance to the user commu-
nity is the application of STAP to non-planar arrays, espe-
cially circular arrays. While such arrays yield significant
advantages in angular coverage and reduced scanning re-
quirements, the resulting change in interference spectrum
with range requires a reformulation of adaptive processing.
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