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Abstract—This paper considers relay selection and power power amongst all source nodes which have selected that
allocation in a two-hop multi-source multi-destination mesh node as a relay. Without considering power allocation, @nsth
network wherein fixed relay nodes use the decode-and-forward in [5] proposed low-complexity sub-optimal schemes foayel

protocol. The jointly optimal solution is of exponential complex- . .
ity. Introducing a set of time-sharing factors into the objective selection. In [7], the authors showed that wilk users

function, and relaxing the selection constraint, provides an upper and J dedicated relays, selection cooperation is the optimal
bound to the original problem. We also provide a heuristic relaying strategy for at leask — J + 1 of the users and
method to impose selection on each source-destination pair. system performance is indistinguishably close to optinfial i
Second, we propose a decentralized selection scheme in Wh'%election is imposed on al users. Therefore, given its

each individual source-destination pair chooses its best relay benefit lecti to be the best choi h
independently followed by power allocation. Simulation results many beneits, selection appears 1o be the best choice when

reveals that the performance of the decentralized selection sciie ~ Multiple relays are available. However, the work in [7] asss
almost exactly tracks that of an upper bound for both max sum all relays can decode, an assumption valid for their cellula

rate as well as max min rate metrics. The key difference from network. Unfortunately, this assumption is not valid in the
previous works on selection is that, throughout, we account for mesh networks considered here.
the source-relay channel and the need for the relay to decode ¢h . L .
source. The importance of considering the source-relay channel in
resource allocation problems has been dealt with in nunserou
|. INTRODUCTION studies in literature especially for orthogonal frequedoyi-

Cooperative diversity is a relatively new class of spatigion multiplexing/multiple access (OFDM/OFDMA). Wang et
diversity techniqgues made possible by retransmitting the ial. [8] studied the resource allocation problem to maxintinze
formation of a source through geographically distributeldy user rate in a three terminal OFDM-based network. The works
nodes in the system. By sharing the network resources, thg9]-[11] impose a joint power constraint on the source and
nodes in a distributed communication network can harnesdays and solve the resource allocation problem to maximiz
the benefits of multiple-input multiple-output (MIMO) seshs the sum rate or the minimum rate across users. In our work
with only a single antenna at each transmitter/receivee Tiwe impose selection with a per-node power constraint. As
works in [1]-[3] has led to much research activity in the areae will see, there is also a key difference in our approach
of cooperative communications. making our respective optimization problems concave. #j,[1

In [2], [3] Laneman et al. introduced different cooperatiomithout considering power allocation, a fairness-awaipbr
modes including decode-and-forward (DF) wherein eactyrelbased relay and subcarrier allocation approach is proposed
decodes, re-encodes the source data with the same codebatlich maximizes the sum rate in the network.
and retransmits it to the destination. They also showed thatin [13] Ng et al. constructed a utility maximization frame-
distributed space-time code achieves full spatial disgmider work for solving both the resource allocation problem as
in the number of potential relays in the system and hagll as choosing an appropriate cooperation strategy in a
higher spectral efficiency than the repetition-based selsemcellular network after a brute force search over a fixed set
However, from a practical point of view, due to the need faof rates. The total utility of the network is decomposed as
symbol level synchronization over distributed nodes in the sum of utilities of each individual data stream; however,
system, this scheme is likely impractical. The work in [4]this scheme cannot be applied to max-min problems. Fur-
[5] showed thatselection, wherein a single “best” relay helpsthermore, the DF cooperation strategy is used whenever the
the source, provides all the benefits of cooperation whitmurce-relay channel is stronger than the compound source-
minimizing the overhead. relay- destination communication link. Weng et al. in [14]

Selection cooperation in a single-source single-destinat proposed a resource allocation and cooperation strateég@nfo
network has been well studied for the DF protocol [4]-[6]QFDMA-based network wherein relay nodes have their own
but is not as well investigated for multiple sources whemata to transmit. The cooperation strategy is chosen only by
finding the best relay for each source becomes a combinktodamparing the source-destination and source-relay ch&nne
problem. In such scenarios, one specific relay node can Tee decomposition method of [13] is used to minimize the
chosen by multiple sources. Thus, it should share its &ailapower subject to data rate constraints on each source node.



The authors of [15] proposed a resource allocation scheme
for two-hop transmisson with relays selectgriori.

The focus of this paper is on a static mesh network of
access points (APs) with multiple sources and fixed-relay
nodes, wherein each source can communicate with its cor-
responding destination only through theected relays. The
main objective of this paper is to provide an optimization
framework to jointly assign a relay and power to each source
node to maximize two performance metrics: the sum rate
and minimum rate across all source nodes while accounting Fig. 1. Two-Hop multi-source multi-destination mesh network
for the source-relay and relay-destination channels. hgeit
relay selection nor power allocation is doaepriori. Unlike
previous works, we impose a per-node power constraint. Consider, for now, a system where a relay is chosen for

We begin by formulating the optimization problem to allo€ach source node. As a result, the maximum achievable rate
cate resources to each flow. By introducing time-sharindficoe at which sources can communicate with its destination with
cients, we transform this combinatorial problem into aggad relay ! helping is:
convex optimization problem which leads to an upper bound

for the original resource allocation scheme with the s&lact Iy, = min{ls,,Ina,.}, (1)
constraint. We then deal with imposing selection scheme on I _ llog (1+ SNRy) @
each flow using a heuristic method. Finally, we propose a e 2 2 ’

distributed relay selection scheme with low complexity ethi I, = %logQ (1 + SNRyy) | 3)

has close-to-optimal performance. Once the relay has been
assigned to each source node, power allocation aCcrossesofare SNR,, — P|hu|? /Ny is the received signal-to-noise

nodes can be applied. _ ~ ratio (SNR) at relayl due to the transmission from source
The rest of the paper is organized as follows. Section |, while sNR;, = ay, P|hi|?/No is the received SNR at the
describes the system model under consideration in thisrpaper jestination due to the transmission from relayn these
In section 1Il, the node selection and power allocation igypressionsq, is the fraction of power that relayallocates
two-hop mesh networks is investigated for both performangg sourcer, iy, is the channel gain between nodand relayl
metrics in some detail. In section IV, distributed relayesibn ypile 1, is the channel gain of the relay-destination pa¥i:;

scheme s introduced. Simulation results are illustrated js the power spectral density of the white noise at the receiv

section V. Finally, section VI wraps up this paper. I,,,, is the rate at which sourdecan communicate with relay
I, while I, 4, is the rate at which relay can transmit data
II. SYSTEM MODEL to the destination. Therefore, (1) ensures that the maximum

ovferall rate is the rate at which both relay and destinatam c

The system under consideration is a static mesh networkaoecode source information

APs whereinK source nodes are assisted Wyfixed relay
nodes. Each source node has its own destination which is
not in the set of source and relay nodes. Since nodes are !ll- NODE SELECTION ANDPOWERALLOCATION

static, we assume the inter-node channels vary slowly dnoug As described above, in a two-hop mesh network framework,

that feedback of the channel state information (CSI) to SOMfithout a source-destination channel, the rate limitir@dais
centralized unit is possible without significant overhead. either the source-relay or relay-destination channel eleping
Each of the source nodes uses an orthogonal chann@ly, many benefits of selection cooperation, we enforce the
over which source-to-relay and relay-to-destination cammcqngition that each source transmits its information vimgle
nications take place. Furthermore, it is assumed that &80Yfelay node. However, in a practical system model, the number
node can transmit data only via relay nodes and direct patrbilssources,K, is much higher than the number of relays,
blocked due to the source-destination distance or obstaclg Thus, it is likely that multiple source nodes are to be
All'inter-node paths are modeled as block-fading Rayleigh,,norted by a single relay. In such a situation, each reday h
channels. The system model is illustrated in Fig. 1. All AP, istribute ‘its available power amongst those source siode

are attached to the power supply and can transmit data Withis section develops the joint node selection and power
maximum power of> watts/symbol. Relaying is based on DFyjncation problem in the described network to maximize two
and only relay nodes which fully decode a received datamre%erformance metrics.

can be chosen to forward it to the corresponding destination
The system uses time division duplex and all communications
happen in two phases. In Fig. 1 the solid arrows show the data
sharing stage while dashed arrows represent the second pha3he sum rate metric measures the maximum achievable
whereinonly one node is assigned to each source node. throughput that all source nodes can deliver to their own

Max Sum Rate



destinations. Therefore, the formal optimization probliesm andp;, it is easy to show that the second term in the objective

K function, pyi 1,4, , IS notjointly concave in (pyx, o). Using
maXZLzM (4) the technique introduced in [16], we s@f. = pjraq,. This
R is a key difference from the work in [10], [11] which did not
sit. Cy : oy = 0,Yk, 1 # j, (5) take the coupling constraint betwegmndr into account. The
K new optimization problem in terms of; andp; is:
Cy: Y oup =1V, (6) J K o2
k=1 max ZZmin{plklsm,plklogQ(lJr W)}
Cs =gy > 0,V k. @) puc€l01] {= = 2 piNo
Tk €[0,p1%]
I, = max {min{ls,,,, Irya,},-...min{Is,,,, Ir,a,}}, CON- (12)
straintC'; enforces selection cooperation on each source node, J
andC, limits the available power of each relay; states that s.t. Ci: > pi = 1,Vk, (13)
each relay allocates non-negative fraction of its totallakbe =1
power to source nodes which have chosen that node as a K
relay. As can be observed from (5), each source node can C2: Y 7k = 1,VL. (14)
k=1

only receive power from one relay.

Since each relay must split its available power amongst a”Proposition 1: The objective function in (12) is concave in
source nodes which it supports, the individually optimdhye (p,7).

allocation scheme may not be globally optimal. Hence, the Proof: As can be seen from (12), the achievable rate of

problem formulated in (4)-(7) is a combinatorial optimipat o401 source node consists of two terms where the first term is
problem with exponential complexity in the number of comzg; o in pus.

munication links in the network. In order to make the problem L
) o . The second term has the forg(p;x, rix) = Lk,
tractable, we introducd{J indicator variables,;, to the Pl i) plkf(mk)

T . . ST
objective function. Therefore, the new optimization peshl which is jointly concave in(pix, ). In particular, Vg < 0,
. i.e., the Hessian evaluated within the optimization regmn

IS a negative semi-definite matrix. Furthermore, from [17]sit i
T E I I 8 known that a point-wise minimum as well as the nonnegative
mfl;[%ill Zszk win { sy Iriay } (8) summation of a set of concave functions are also concave
pue{0,1} =1 R=1 functions. Hence, the underlying objective function is care
J in (p,r). [ |
st. Cv: Y pi =1,Vk, (9 Finally, by introducingK'.J new variables¢’, the optimiza-
’;1 tion problem can be stated in the epigraph form as:
Cy: > pieuk = 1,V (10) J K
max > > ¢ (15)
From this modified optimization problem, for any setgf, plkél[o,l] =1 k=1
satisfying (5)-(7), we have: 71k €[0,p1k]
J
_ L o #0 t O —1,Vk 16
Pik = { 07 g = 0. (11) S.t. 1- lzzlplk ) ) ( )
Equations (9)-(11) enforce each source to be relayed with on K
one relay node in the system. Thus, (9)-(11) are equivalent Cs: Zm =1,vI, (17)
to (5) in the original optimization problem. However, besau k=1
o can only take integer values, the problem is still mixed- Cs : puelspr, > CF, VK, (18)
integer optimization problem. Our next step is to relax the ik T2
corresponding constraint and allow each source to be helped Cy: =~ logy (1 + “oiNo ) >, Vik o (19)

by more than one relay. Thus, relay indicators can take any
value on the convex hull of the original discrete set. Cons&he optimization problem formulated in (15)-(19) is a starti
guently, the resulting sum rate from this modified problem @nvex optimization problem which can be solved using
an upper bound on the original sum-rate optimization pmobleefficient iterative algorithms [17]. The relaxed convexigemm
formulated in (4)-(7). does not necessarily ensure selection, since relay imdgat
The termp;;, can now be interpreted as tfraction of time  can take any rational number betwe@mand 1 and a specific
that the data of the sourdecan be relayed by relaly Since transmission can receive power from multiple relay nodes.
each source transmits with its maximum available poweret thience, the solution is an upper bound on the original problem
first stage and central resource allocation unit has theCfall A simple heuristic method to impose selection is to assign
I,,r, is constant. Althougt,, 4, is individually concave iny;, to each source node the relay that provides the maximum



achievable rate. Mathematically, selection can be apgied of convex problems, the alternative optimization problem i

max (27)
T ="Tm , m=argmaxmin{l,, ., 4.}, ¢tk
! pix€[0,1]
1k €[0,01%]
wherer, is the relay assigned to node! € {1, ..., J}. Thus, J
the modified power allocation matrif;;, ] can be constructed st. Cr: Y tf > (,Vk (28)
as follows: =1
J
Pk = Tk T =0, VI#£m, Vke{l,..,K}. Ca: ;plk =1,k (29)
K
Since this solution satisfies all constraints of the origina Cs: Z”’f =1,v, (30)
problem in (4)-(7), this heuristic scheme also provides a 1
lower bound on the ach?evable sum rate. Moreover, the power Ci: pusr, > tF VI E, (31)
freed up by the selection step can be reused by waterfilling .t
over other source nodes which are helped by each individual Cs: pﬂlog2(1 + M) >t Vi k. (32)
relays. As we show in Section V, this scheme with power 2 piNo
rearrangement provides an achievable sum rate extrenualg clThe problem formulated in (27)-(32) is a standard convex
to the upper bound. optimization problem, which can be solved efficiently using
interior-point algorithm. Using the same approach that aaxeh
introduced for max sum resource allocation, the close teupp
B. Max Min Rate bound achievable min rate can be found for this metric.

In this section, we consider the second performance met- |V. DECENTRALIZED RESOURCEALLOCATION
ric. maximizing the minimum rate across users. This metric The optimization problem and solution detailed so far is to
assures that the source node with the poorest channel escejiintly assign relay node and allocate power to each source
most of the resources of the network. Thus, as far as possilfethe network. This solution requires a centralized sohuti
max-min resource allocation leads to an equal rate for glith a resource allocation unit which has complete CSI. Is th
source nodes. Succinctly, the optimization problem is: section we develop a simplified decentralized scheme, wrhere
each source selects its best relay as if it vithesonly sourcein
the network, i.e., assuming that the selected relay canaito

max min [y, (20) all its power only to that specific source. In particular:

ok k
s.t. Ol Do = O’Vk,l 7& j7 (21) Th = Tm if
i : 1 Plhy?
= Ig Ty = 1 1 - , 33

Cy: § :alk —1,vI, 22) m argmlax{mln{ siri 5 ogy(1+ Ny ) (33)
. k=1 oLk (23) wherer;, is the relay assigned to node and! € {1, ..., J}.

3o = U, ViR,

Given that each individual source node has been assigned
a relay, J waterfilling problems need to be solved in order
Following the same procedure that has been used in femaximize the sum rate or minimum rate across source
previous part, it is easy to show that the max-min resourg@des. This approach has some similarities to the “simple
allocation problem is: selection” scheme of [5], wherein each source-destingi&n
selects its best relay based only on relay-destinationredan

A o ru | hun | gain. However, as we will see, the performance is superior;
pﬂé‘%{u min E mln{pzkfsm, o log, (1 + oo }in Section V, we will show that, in fact, the performance
Lk 3 d . . .
ik €[0,01x] =1 of the distributed scheme closely tracks that of an optimum

(24) algorithm.

J V. S R
st. Oy 5zplk — 1.k, (25) | _ . SIMULATION RESULTS _ _
=1 This section presents the results of simulations for the
K proposed relay selection and power allocation algorithm in
Cy: Z”’f =1,vI, (26) a two-hop mesh network to compare their performance under
=1 the sum and max-min rate metrics. We consider two different

network geometries; in the first scenario, all inter-nodarch
wherein based on Proposition 1, the objective functioredtatnels are modeled as independent and identically distdbute
in (24) isjointly concavein (p, ). Applying the epigraph form (i.i.d.). The second network setup is more realistic witlle®
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Fig. 2.  Achievable sum rate of different resource allogatstrategies in Fig. 3. Max-min rate across all source nodes of differentugsmallocation

“I.1.D Channel” scenario with] = 2. strategies in “i.i.d Channel” scenario with= 2.
TABLE |
are randomly distributed in space. Each channel comprises o PARAMETER VALUES IN COST-231
2 large-scale path 1o%e component charactenzed by he nodd —_Paameel velus | Parsneter | Vake
9 P P y = AP Height | 15m Frequency 3.5 GHz

locations. Therefore, internode channels have uneverageer
power. We simulate two mesh networks wilk2 relay nodes
and K=3 or 4 source nodes.

Building Spacing| 50m Rooftop Height | 30m
Destination Height| 15m | Road Orientation| 90 deg.
Street Width | 12m Noise PSD -174 dBm

A. i.i.d. Channels

Our first example is a mesh net\/\_lorkv_vith ii.d. channels.TheOrking group [18]. This approach models both small and
average SNR of all source-_relay links is set to 10dB. Res_u Bsrge scale fading. Parameters chosen for this model are
zfe z;verla?e(:h overh_loogl mdependtentf ch(z;rf}nel I;eal'Z"’ltloéﬁt‘nmarized in Table I. The variance of the log-normal fading

Illg t'p 0? te ac |evaf € ?um ;etlhe olr |dere.n reNsRc))ur(]:g set to 10.6dB. We generate random node locations over an
allocation strategies as a function ot the relay-aes ) uare area of 0.04 square kilometers. We fix the transmitted

: : S
As seen from the figure, in both networks, the performance gwer of each potential node to [26, 28, 30, 32, 34] dBm. 100

:hetr:]eurlstlc n;eth(;d VTVEh P_owelr Re?rr?ngemint (PR)f 'SSCIhr?Sde locations are generated randomly in the network space
0 the upper bound. The simple selection scheme of [5] ea. Then, for each individual location, 1000 independent

the vyorst performance .Wh'.Ch validates the fact that uqder channel realizations are characterized based on the CO5T-2
relaying protocol, considering only the relay-destinatisk channel model

as a bottleneck of communication rates is not effective.tAs 1 _. .

. . Figures 4 and 5 compare the performance of different relay

is expected, the network with larger number of source nodes, ¥ . ; -
; Sélection and power allocation algorithms for maximizing

has a higher sum rate.

. . - the sum rate as well as minimum rate across source nodes,
Fig. 3 shows the achievable minimum rate across all source . Iy
. . . respectively. Not surprisingly, the performance gap betwe
nodes for different relay assignment and power allocation ; . X
upper bound and decentralized selection scheme increases

strategies. As it is shown, the performance gap betwee.h increasing network sizes. This is expected, since in

. . - i
decentralized selection scheme and heuristic method vith B .
o : networks where the number of sources is larger than relays,
is indistinguishable. Furthermore, since source nodest mus PR :

) . ower splitting is more likely. However, under both network
share available resources in the network, a mesh netwolrk wit

. - metrics, the decentralized scheme shows performance close
the smaller number of sources has a higher minimum rate, : ) .
to that of an upper bound while offering computational and

B. Network Performance for a Distributive Scenario implementation advantages.

This section provides simulation results for a more real-
istic scenario wherein nodes are randomly distributed & th
network. The communication links are characterized usingThis paper deals with the problem of relay selection and
the COST-231 channel model recommended by IEEE 802.1®jwer allocation in a two-hop cooperative mesh network of

VI. CONCLUSION
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proposed a similar approach for a joint power constrairirth
methodology to make the problem jointly concave across the
optimization variables is not valid. By imposing a seleatio
constraint to the given relay assignment and power allogati
matrix, a close to upper bound heuristic scheme is introdluce
A second contribution in this paper is proposing a decentral
ized selection scheme. While offering computational bemnefit
over other resource allocation algorithms, the perforreasfc
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allocation strategies in “Distributive” scenario with= 2. [12]

APs in order to improve two performance metrics; i) sunilS
rate, ii)min-rate across all sources. As it has been shown
in numerous works in literature, selection cooperation hfsi
considerable advantages in distributed networks, edpecia
minimizing overhead and avoiding synchronization issues. 15
Unlike most of the previous works, by taking both source-
relay and relay-destination links into account, we forneithe
underlying problem with selection constraint which ensurgg)
that not only the destination, but also the selected relay ca
fully decode the received information. By introducing th?ﬂ]
time-sharing factors into the objective function and reigx
the selection constraint, an upper bound to the seemingig]
difficult original problem is characterized. While others/éa

the upper bound.
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