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Abstract

Distributed aperture radars represent an interesting solution for target detection

in strong interference environments. Distributed apertures provide improved angu-

lar resolution or are able to view a target from multiple look-angles, thereby exploit-

ing scintillation. However, due to the large distances between array elements, both

target and interfering sources are in the near field of the antenna array. Further-

more, due to the relative motion between antenna elements and interference sources,

the clutter Doppler frequency is not stationary. Recent works have demonstrated

the benefits of combining frequency diversity and space time adaptive processing for

distributed aperture radars. In this paper a new waveform diversity system model is

developed. Using orthogonal signaling, the receivers can treat the incoming signals

independently, solving several bistatic problems instead of the initial multistatic

problem. We also apply adaptive techniques to counteract the range dependency

of the clutter Doppler frequency. In particular, we apply the joint domain localized

algorithm, specifically chosen due to its need for only limited secondary data.
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1 Introduction

Several works have shown the benefit of the joint use of distributed aperture radars and

waveform diversity in conjunction with space-time adaptive processing [1, 2, 3]. Diversity

is an important issue for many engineering fieds; the most famous schemes are frequency,

waveform, time and spatial diversity [4]. While some recent literature has designated this

area as multiple-input multiple-output (MIMO) radar [5], we prefer the term ‘distributed

apertures’ keeping in line with prior work in similar radar systems [1]. By using multiple

receiving sites the radar is in a multistatic configuration; if in addition multiple transmit-

ting sites are used and their transmissions are coherently phased, so that the transmitters

operate as a single transmitting array, the configuration is called distributed aperture

radar [6]. The large baseline of the distributed aperture radar results in improved angular

resolution compared to the resolution of a monolithic system, at cost of grating lobes or

high sidelobes.

The system under consideration here is a very sparse array of sub-apertures placed

thousands of wavelengths apart. Each sub-aperture of the array transmits a unique wave-

form, orthogonal to the signals transmitted by the others; to achieve time orthogonality

we use pulses that do not overlap in the time domain. Each aperture receives all the

transmitted signals, but, due to the orthogonality assumption, each signal can be treated

independent of the others. Furthermore, each transmission is unique in its pulse dura-

tion; in this manner waveform diversity among the signals is achieved. The jointly use of

distributed aperture radars and waveform diversity leads to a good detection capability,

especially due to the high information about the target, and the adaptivity to the scenario

due to the waveform diversity. In addition, the time-orthogonality leads to a completely

separated signals, making very easy the processing of all of them, and eliminates the

cross-talk; the interested reader can find useful related information in [7].

A very important issue arising from the work in [2] and [3] is that, due to the very

long baseline, both signals and interference sources are not in the far field of the antenna

array. For this configuration, the spatial steering vector depends not only on the signal

angle of arrival but also on the distances between the receivers and target. To take in

account this range dependency, some works model the steering vector as a function of the

curvature radius of the wave [8], modifying the phase shift contributed to each antenna

element. However, as outlined in [2], to exploit waveform diversity for the interesting case
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of distributed aperture radars, instead of using phase shifts to model the delay of wave

propagation through the array, the processing scheme requires true time delay between the

widely distributed antennas. Previous work such as described above has focused on fre-

quency diversity to enable orthogonal transmissions from each element in the distributed

array. However, frequency diversity raises the difficult issue of coherent processing across

a wide frequency range. This paper proposes a system using an alternative approach,

based on time orthogonal waveforms with different pulse durations to achieve diversity.

Waveform diversity using varying FM rates was proposed in [9] in the context of target

tracking. In addition, the distributed radar problem is inherently multistatic with multi-

ple radars illuminating the area of interest, and also receiving and potentially processing

all these transmissions. A true development of space-time adaptive processing (STAP)

for distributed apertures will therefore include both monostatic [10] and bistatic configu-

rations [11, 12]; from the point of view of one receiving site, the monostatic configuration

is due to the signal transmitted by itself, while the bistatic configurations are due to the

other transmissions.

In this paper the interference is modeled as a sum of noise and clutter, which is due

to a chaff cloud, i.e. a large number of resonant dipoles surrounding the target [13];

the clutter contribution is, in turn, modeled as the sum of several low power interference

sources as done for airborne radar in [10]; however, here, each source has a range dependent

contribution. A well known problem in bistatic radar [14] is that clutter Doppler center

is range dependent due to the relative motion between antennas and interference source.

This dependency significantly degrades the achievable performance of the receiver and

must be taken in account for effective clutter suppression.

The first goal of this paper is to develop a new model for waveform diversity for

distributed aperture radars with time-orthogonal waveforms. In this regard, this paper

represents an extension of the available research into waveform diversity for distributed

aperture radars and also represents an effort into applying bistatic and multistatic STAP

applied to distributed aperture. The time orthogonal waveforms, just like with frequency

diversity, allows for independent processing of each transmit-receive combination. How-

ever, issues of phase coherence across a wide frequency band are now avoided. In [15] the

authors develop waveform diversity using time-overlapping pulses of differing FM rates,

however the analysis there is devoted largely to the interaction between the overlapping

waveforms. In this paper we introduce a new waveform diversity model that involves the
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pulse duration instead of the frequency diversity proposed in [2].

The second goal of this paper is to characterize the impact of clutter non-stationarity

due to the bistatic problem in the context of waveform diversity. We analyze the effect of

the clutter Doppler frequency non-stationarity and the performance improvement achiev-

able applying specific techniques to counteract it. In particular, we use the Joint Domain

Localized (JDL) algorithm. The JDL algorithm, first introduced in [16], transforms the

received space-time data to the angle-Doppler domain. Adaptive processing is restricted

to a localized region centered on the target look point, in the angle-Doppler domain,

significantly reducing the degrees of freedom while retaining maximal gain against ther-

mal noise. This in turn reduces the training required for the adaptive processor. Given

the inherent non-stationarity of the clutter in distributed aperture systems, this is the

primarily motivation to consider reduced rank algorithms such as JDL.

The paper is organized as follows. In Section 2 we introduce the system and interfe-

rence models without accounting for the range dependency of the clutter. In Section 3

we introduce the problem of the non-stationarity of the environment and illustrate the

use of the JDL algorithm as applied to our model. In Section 4 we provide a proof of the

CFAR property of the decision statistic considering both the receivers with and without

the JDL algorithm. Section 5 presents numerical simulations of the system of interest. In

Section 6 we present conclusions and suggest future possible avenues for research.

2 System Model

The system under consideration is a ground based distributed aperture radar attempting

to detect low flying targets. The elements of the array are unmoving, widely separated

from each others and are placed thousands of wavelengths apart. Given an antenna array

of aperture D operating at wavelength λ, the distance r to the far-field must satisfy the

following conditions [17]






r ≫ D,
r ≫ λ,
r ≫ 2D2/λ.

(1)

Using some suggested values for distributed radars, D=200m and λ=0.03m, the far field

distance begins at a distance of approximately 2700km. Both target and interference

sources are, therefore, in the near-field of the antenna array. In this case the associated

steering vectors depend on both angle and range, while in the far-field model they depend
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Figure 1: Time orthogonal signals with different pulse duration and common PRI.

only on the angle of arrival.

The system is composed of N sub-apertures that are both receivers and transmitters.

Each sub-aperture transmits a waveform with a unique pulse width; however, each element

receives and processes all transmitted signals. To achieve orthogonality and waveform

diversity, the signals do not overlap in the time domain on transmit or receive. Figure 1

presents an example with 3 transmitting elements and 2 pulses per element; in the figure

n denotes the transmitting element.

The sensors are located in the (x, y) plane at points (xn, yn), n = 1, . . . , N and transmit

a coherent stream of M linear FM pulses, with common frequency f0, common pulse

repetition interval (PRI) Tr, common bandwidth B but different pulse durations, that

is, the slope of instantaneous frequency varies among the N transmitted signals. All N

elements receive and process all N incoming signals, that is, if M pulses are used in a

coherent pulse interval (CPI), the overall return signal over time, space, and waveform

can be written as a length-N2M vector.

Due to the orthogonality of the signals, the receiver processes each incoming sig-

nal independently from the others and uses true time delay to focus on a look-point

(XL, YL, ZL). Denote as Dn =
√

(XL − xn)2 + (YL − yn)2 + Z2
L the distance between the

look point (where the target is supposed to be) and the nth element. The true time delay

used by the receiver i is

∆Ti =
maxp{Dp} −Di

c
, (2)

where p = 1, . . . , N and c is the speed of light. Delaying the signals using this amount

means aligning them in the space domain to the furthest element of the array with respect

to the look-point; essentially, true time delay nullifies the propagation delay over the array.

This also allows for the target to be present in the same range gate for all receive elements.

True time delays restore the orthogonality at the receiving sites.
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Let us denote by y the complex vector of the samples from the range cell where the

presence of the useful target is sought (primary data). The detection of this target is made

difficult by interference comprising thermal noise and clutter. As in [18] we suppose that

a target-free secondary data set yk, k = 1, . . . , K is available (K ≥ N+1). The secondary

data is assumed homogeneous with respect to the primary data, i.e., the statistics of the

interference in both data sets are assumed identical.

The detection problem to be solved can be formulated in terms of the following binary

hypotheses test

H0 :

{

y = c + n

yk = ck + nk k = 1, . . . , K,

H1 :

{

y = s + c + n

yk = ck + nk k = 1, . . . , K,

(3)

where s is the useful signal associated with the target, c is the clutter contribution, n

the noise contribution for the primary data, H0 and H1 are the null and target-present

hypotheses respectively; we use the same notation for the secondary data. We now develop

the signal and the interference models in some detail.

2.1 Signal model

This section focuses on the target contribution to the received signals. The signal trans-

mitted by the nth element of the array is

xn(t) = un(t)e
j2πf0t+jψ, (4)

where ψ is a random phase, j =
√
−1 and un(t) is the complex envelope of the FM pulse

given by

un(t) =
M−1
∑

m=0

upn(t−mTr), (5)

where upn(t) is the envelope of the single pulse. The transmitted signal is reflected by the

target and it is received by all the sub-apertures. The signal received at the ith receiver is

rin(t) = αtun(t− τLin)e
j2π(f0+fdn)(t−τLin), (6)

where αt is the amplitude (the phase ψ is also included), fdn is the Doppler frequency

relative to the nth transmission and τLin is the total trip delay, due to the delay from the

nth transmitter to the look point (XL, YL, ZL) plus the delay from the target to the ith

6



receiver

τLin =

√

(xn −XL)
2 + (yn − YL)

2 + Z2
L +

√

(xi −XL)
2 + (yi − YL)

2 + Z2
L

c
. (7)

The received signal (6) is delayed by the amount ∆Ti, so that the same range gate is used

at all elements. After this delay and downconversion, the signal becomes

r̃in(t) = αtun(t− τLin − ∆Ti)e
−j2πf0τLinej2πfdn(t−τLin−∆Ti). (8)

Applying the matched filter the signal becomes

sin(t) =

∫ +∞

−∞

r̃in(τ)u
∗
pn(τ − t)dτ,

=

∫ +∞

−∞

αtun(τ − τLin − ∆Ti)e
−j2πf0τLinej2πfdn(τ−τLin−∆Ti)u∗pn(τ − t)dτ,

= αte
−j2πf0τLin

∫ +∞

−∞

ej2πfdn(τ−τLin−∆Ti)
M−1
∑

m=0

upn(τ − τt)u
∗
pn(τ − t)dτ,

(9)

= αte
−j2πf0τLin

M−1
∑

m=0

ej2πfdnmTr

∫ +∞

−∞

upn(β)u∗pn[β − (t− τt)]e
j2πfdnβdβ,

= αte
−j2πf0τLin

M−1
∑

m=0

ej2πfdnmTrχn(t− τt, fdn), (10)

where τt = mTr + τLin + ∆Ti and χn(τ, f) is the ambiguity function relative to the nth

transmission evaluated for the delay t − mTr − τLin − ∆Ti. Note that the total delay

τLin + ∆Ti is constant with respect to index i and is equal to

τLin + ∆Ti =
Di

c
+
Dn

c
+

maxp{Dp}
c

− Di

c
,

=
maxp{Dp} +Dn

c
. (11)

The signal in (10) is sampled at t = ts = mTr + τLin + ∆Ti resulting in

sinm(ts) = αte
−j2πf0τLinej2πfdnmTrχn(ts − τc, fdn),

= αte
−j2πf0τLinej2πfdnmTrχn(0, fdn). (12)

This sample represents the target contribution to the ith receive element due to the trans-

mission from the nth antenna at the mth pulse in the CPI.
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The NM × 1 steering vector relative to the nth transmission is composed by all the

samples over the indices i and m

sn =

































s0n0
...

s(N−1)n0

s0n1
...

s(N−1)n1

s0n2
...

s(N−1)n(M−1)

































. (13)

We introduce the temporal steering vector bn(̟n) and the spatial steering vector an(ϑn)

defined as

bn(̟n) =
[

1, ej2π̟n, ej2π2̟n, . . . , ej2π(M−1)̟n

]T
, (14)

an(ϑn) = χn(0, fdn)
[

e−j2πf0τL0n , . . . , e−j2πf0τL(N−1)n
]T
, (15)

where (·)T denotes the transpose operator and

̟n = fdnTr = fdn/fr, (16)

is the normalized Doppler frequency relative to the nth transmission and

ϑn =
[

f0τL0n, . . . , f0τL(N−1)n

]T
, (17)

is the vector of the spatial frequencies relative to the nth transmission. Finally, we can

express the target steering vector as

sn = αtbn(̟n) ⊗ an(ϑn), (18)

where ⊗ denotes the Kronecker product of two matrices.

2.2 Interference model

The interference is due to two statistically independent components, thermal noise and

clutter modeled as a chaff cloud. As in [10], we model the clutter as the sum of many

low power discretes; here they form a ball surrounding the target. Let us assume Nc

as the number of discrete clutter sources. We assume that the noise components n and
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nk , k = 1, . . . , K are independent complex circular Gaussian vectors with zero mean and

covariance matrix given by

Rno = E{nnH} = E{nknHk } = σ2I, (19)

where I denotes an identity matrix of required order, E{·} denotes statistical expectation

and (·)H the Hermitian or conjugate transpose.

An artifact (i.e., a clutter discrete) at
(

xl, yl, zl
)

reflects the incoming wave given

by (4). The received signal at the ith element due to the nth transmission reflected by the

lth artifact is

rinl(t) = Anlun(t− τinl)e
j2π(f0+fdnl)(t−τinl), (20)

where Anl is a random amplitude that includes also the random phase, fdnl is the Doppler

frequency relative to the lth artifact and the nth transmission and τinl is the total delay

from the nth transmitter to the lth artifact plus the delay from the artifact to the ith

receiver

τinl =

√

(xn − xl)2 + (yn − yl)2 + (zl)2 +
√

(xi − xl)2 + (yi − yl)2 + (zl)2

c
. (21)

The artifact is not located at the look point. Note that, if required, the return due to

a target not at the look point can be included as a discrete clutter source. Figure 2

illustrates the total trip delay involving the look-point and the one involving the artifact.

The received signal due to the artifact is treated in the same manner as the signal due

to the target. Using the same development as in the previous subsection, we can write

the final signal due to the artifact, after delaying, down conversion and matched filtering,

as

cinl(t) = Anle
−j2πf0τinl

M−1
∑

m=0

ej2πfdnlmTrχn(t−mTr − τinl − ∆Ti, fdnl), (22)

similar to (10); note that the only differences are in the total trip delay where τinl is used

instead of τLin, in the Doppler frequency (fdnl instead of fdn) and in the amplitude (Anl

instead of αt). A generic element at the ith receiver, due to the nth transmission and to

lth artifact and at the mth pulse can be written as

cinml(t) = Anle
−j2πf0τinlej2πfdnlmTrχn(t−mTr − τinl − ∆Ti, fdnl). (23)
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Figure 2: Total trip delays involving the target (solid line) and the artifact (dashed line).

The next section deals with the use of space-time adaptive processing to detect the target

buried in relatively strong interference. To do so, we need to estimate the unknown

interference covariance matrix. As is common in STAP, we estimate this matrix from

the environment using the secondary data. Estimating the covariance matrix involves

sampling cinml at the range gates straddling the look point’s range gate. The time of the

samples is given by

tk = mTr + τLin + ∆Ti + kTs, (24)

where Ts is the additional delay due to the k-th secondary range cell and the integer

k ∈ [−⌈K/2⌉, ⌊K/2⌋], where ⌈·⌉ denotes the rounding off to the higher integer and ⌊·⌋
denotes the rounding off to the lower integer. Sampling the received signal in (22) every

tk yields

ĉinmlk = Anle
−j2πf0τinlej2πfdnlmTrχn(τLin − τinl + kTs, fdnl). (25)

Summing over all the Nc unambiguous interference sources we can write the sample rela-

tive to the nth transmission, the ith receiver, the mth pulse and the kth secondary range

gate as

ĉinmk =
Nc−1
∑

l=0

Anle
−j2πf0τinlej2πfdnlmTrχn(τLin − τinl + kTs, fdnl). (26)

As with the target signal in the previous section, we assemble these samples to obtain the

length-NM steering vector of the clutter source cnk relative to the nth transmission and
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the kth range cell

cnk =

































c0n0k
...

c(N−1)n0k

c0n1k
...

c(N−1)n1k

c0n2k
...

c(N−1)n(M−1)k

































. (27)

Figure 3 shows the geometry of the isorange contours for a bistatic configuration; they

are ellipses wich foci are the transmitter and the receiver.

Figure 3: Isorange contours for a bistatic configuration.

2.3 STAP implementation

We can now implement STAP using the modified sample matrix inversion (MSMI) [19]

statistic for target detection. As usual, we estimate the interference covariance matrix

from secondary data. Due to the time-orthogonality of the N transmitted waveforms, the

interference covariance matrix is block-diagonal

R̂ =











R̂0 0 . . . 0

0 R̂1 . . . 0
...

...
. . .

...

0 0 . . . R̂(N−1)











, (28)
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where

R̂n =
1

K

⌊K/2⌋
∑

k=−⌈K/2⌉

ynky
H
nk,

is the nth block of the matrix in (28) and is relative to the nth transmission. The vectors

ynk are the secondary data collected from the environment for the nth transmission; they

include the additive Gaussian noise and clutter. Due to the independence of noise and

clutter contributions, the matrix is

R̂n = R̂no + R̂cn, (29)

where R̂cn is the (NM)×(NM) clutter covariance matrix relative to the nth transmission.

Note that the noise contribution is independent of the transmission index. Using the

matrices defined in (28) and recalling that the inverse of a block diagonal matrix is a

block diagonal matrix which blocks are the inverse of the corresponding blocks in the

initial matrix, we can calculate the weight vectors for each bistatic problem

wn = R̂−1
n sn, (30)

where sn is length-NM space-time steering vector from (13) corresponding to the look

point. The overall length-N2M steering vector is given by

s =











s0

s1
...

s(N−1)











. (31)

Finally, the coherent output MSMI statistic is [19]

MSMI =

∣

∣

∣

∑N−1
n=0 wH

n yn

∣

∣

∣

2

∣

∣

∣

∑N−1
n=0 wH

n sn

∣

∣

∣

. (32)

where yn is the received signal for the nth transmission. Note that the statistic assumes

coherence across all the transmissions. This is possible because, unlike the frequency

diversity case of [2], all transmissions share a common center frequency. Implementation

difficulties to maintain this phase coherence is outside the scope of this paper. Note that

the computational complexity of the MSMI statistic is O(N2M).
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3 Clutter non-stationarity

One of the advantages of the orthogonal signaling is that each transmission can be treated

independently at each receiver. The orthogonality implies that the initial multistatic prob-

lem is essentially a superposition of a series of individual bistatic problems and we can

use results from the bistatic theory for our treatment. In particular, the non-stationary

nature of ground-based clutter in bistatic airborne radar is well known [14]; in this con-

figuration the motion of either transmitter and receiver causes the range dependency of

the clutter. In our system the motion is due to the artifact, while both transmitter and

receiver are ground-based and we have to reconsider the bistatic problem in the context

of the waveform diversity. As demonstrated in [2] this non-stationarity affects the output

of the STAP processor.

The basic hypothesis of the space-time adaptive processing is the stationarity of the

environment. In fact, the secondary data are collected from range gates close to the

one under test and are used to estimate the covariance matrix of the interference; the

quality of this estimation depends on the stationarity of the environment. Due to the

range dependency of the clutter Doppler frequency, this hypothesis is no longer valid. It

is therefore important to study this phenomenon in the context of waveform diversity.

Figure 4 shows the geometry of the system, where Ar is the artifact, v is its velocity, θT ,

θR and θv are, respectively, the elevation angles of the transmitter-artifact path, of the

receiver-artifact path and of the artifact velocity, ϕT , ϕR and ϕv are, respectively, the

azimuth angles of the transmitter-artifact path, of the receiver-artifact path and of the

artifact velocity. Note that each clutter source of the ball has the same velocity vector v.

The direction of the interference sources is fixed and determined by the angles θv and ϕv.

The clutter Doppler frequency due to the motion is

fD = fDx + fDy + fDz, (33)

where

fDx =
v cos θv cosϕv[cos θT cosϕT + cos θR cosϕR]

λ
, (34)

fDy =
v cos θv sinϕv[cos θT sinϕT + cos θR sinϕR]

λ
, (35)

fDz =
v sin θv[sin θT + sinϕR]

λ
. (36)
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Figure 4: Geometry of bistatic ground radar.

The threesome of transmitter/receiver/scatterer Ar identifies the bistatic plane; so, there

is a different plane for each transmitter/receiver pair. It is defined by the axes x−yb and is

characterized by the elevation angle θb with respect to the reference (x, y). The iso-range

contour, which lies in this plane, is shown in the Figure 5; it is an ellipse with foci at the

transmitter and the receiver with major axis a and minor axis b =
√

a2 − L2/4, where L

is the distance between the transmitter and the receiver. We can use the points of this

ellipse to evaluate the Doppler frequency of the scatterer along the iso-range contour; each

evaluation point along the ellipse is characterized by the azimuth angle ϕe, used to take

a spatial sample along the iso-range contour. This choice makes comparable the plots

concerning different ellipses. To evaluate the range dependency we need to change the

contour. A new ellipse is defined changing the major axis; the new axis is defined as

a′ = a+ (cτp)/2, (37)

where c is the light speed and τp is the pulse width; the new minor axis is b′ =
√

a′2 − L2/4.

Figure 6 plots the Doppler frequency of the clutter using (33) for different range cells in

function of the azimuth angle in the bistatic plane. The non-stationarity of the clutter

Doppler frequency is readily apparent.
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Figure 5: Bistatic plane with bistatic ellipse. The axes origin is in the middlepoint of the
baseline, i.e. the line where transmitter and receiver lie.
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Figure 6: Clutter Doppler frequency plotted for different range cells.
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3.1 JDL algorithm for distributed aperture radars

To improve the performance of the STAP algorithm over that given in [2] we account for

the clutter non-stationarity by modifying the STAP processing [14]. Essentially, clutter

non-stationarity limits the number of statistically homogeneous secondary data samples

available. The Reed-Mallet-Brennan (RMB) rule suggests that one needs twice the num-

ber of secondary samples as the number of degrees of freedom [20], i.e., using all possible

degrees of freedom is likely impossible. Motivated by this issue, we use the reduced di-

mension Joint Domain Localized (JDL) algorithm. The JDL algorithm adaptive processes

the data after transformation from the space-time to the angle-Doppler domain. This al-

gorithm has been shown to perform well in non-stationary environments [16, 21, 22]. The

work in [21, 22] was the first which studied the need of the limited training-data size of

the localized adaptive processing in non-homogeneous and non-stationary environments;

it was shown that JDL outperforms fully adaptive processing using all adaptive degrees

of freedom, in these scenarios.

The JDL algorithm reduces the number of degrees of freedom by processing only the

data within a localized processing region (LPR). The LPR, comprising ηa angles and

ηd Doppler bins, is centered around the look angle-Doppler. The number of adaptive

unknowns is therefore reduced from NM in the space-time domain to ηaηd in the angle-

Doppler domain per transmission. Figure 7 presents a pictorial view of the processing

scheme, where the bin marked as “Signal” indicates the target location in angle-Doppler

domain.

The original formulation of the JDL algorithm uses a two dimensional DFT to convert

the data from the space-time domain to the angle-Doppler one. This formulation is possi-

ble assuming that the receiving antenna is an equi-spaced linear array of isotropic, ideal,

point sensors. When applying the JDL algorithm to real systems, this crucial assumption

is no longer valid; the elements of a real array cannot be point sensors. Furthermore, the

assumption of linear equi-spaced array is restrictive. In any case, both these assumptions

are invalid in our case of distributed aperture radars. We therefore need to resort to a

more general formulation [23].

The formulation in [23] replaces the DFT with a transformation matrix, T, that

comprises the steering vectors associated with the ηa angles and ηd Doppler bins. This

approach is based on the fact that estimating the response at a specific angle-Doppler
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Figure 7: Localised processing region in angle-Doppler domain for ηa = ηd=3.

point requires an inner product with the corresponding steering vector. Note that since

each transmission uses a different time delay, the transformation matrix is different for

each of the N transmissions. The transformation matrix for the nth transmission is defined

as

Tn = bn(Ωn) ⊗ an(Θn), (38)

where the vector Ωn is the vector of Doppler frequencies normalized by the PRF, centered

at the Doppler of the target and spaced by 1/M and Θn is the vector of the spatial

frequencies for the different angles of arrivals; in this paper we use an angle spacing in

azimuth equal to ∆(ϕ) = π/N .

We need to evaluate the relative propagation delays from point defined by each an-

gle. Each element of the length-N vector Θn has to be evaluated considering the round

trip delay from the nth transmitter to the ith receiver through the new look point while

changing only the azimuth angle by the amount π/N . The point is located in the space

by the same elevation angle θT of the target and the same distance from the origin of

coordinates system to the target. The transformation matrix is defined as

Tn =
[

bn(̟n(−ai)), . . . ,bn(̟n(0)), . . . ,bn(̟n(ai))
]

⊗
[

an(ϑn(−Di)), . . . , an(ϑn(0)), . . . , an(ϑn(Di))
]

,

(39)

where

ai =
⌈ηa

2

⌉

Di =
⌈ηd

2

⌉

, (40)
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and

̟n(h) =
fdn
fr

+
h

M
, ϑn(h) =

[

f0τL0n(h), . . . , f0τL(N−1)n(h)

]T
, (41)

where τLin(h) is the delay associated with the path from the nth transmitter to the ith

receiver through the point which the azimuth angle is ϕt + (hπ)/N and the elevation

angle is the same as that of the target. For example, if ηa=3 and ηd=3 this matrix is

Tn =
[

bn(̟n(−1)),bn(̟n(0)),bn(̟n(1))
]

⊗
[

an(ϑn(−1)), an(ϑn(0)), an(ϑn(1))
]

, (42)

where

̟n(−1) =
fdn
fr

− 1

M
,

̟n(1) =
fdn
fr

+
1

M
,

ϑn(−1) =
[

f0τL0n(−1), . . . , f0τL(N−1)n(−1)

]T
,

ϑn(+1) =
[

f0τL0n(+1), . . . , f0τL(N−1)n(+1)

]T
.

We can now define the vectors in the angle-Doppler domain using the matrix Tn de-

fined above. The relevant transformation is a multiplication with the (ηaηd×NM) trans-

formation matrix Tn. The transformation matrix multiplies the primary and secondary

data and the steering vector associated with the look point. The transformed steering

vector and the received signal for the nth transmission in the angle-Doppler domain are

respectively

snaD = TH
n sn, (43)

ynaD = TH
n yn, (44)

where the subscript aD denotes the vector in the angle-Doppler domain. At the same

way we can convert the secondary data in the angle-Doppler domain

ynkaD = TH
n ynk, (45)

needed to evaluate the covariance matrix of the interference in the angle-Doppler domain

R̂naD =
1

K

Ks
∑

k=Ki

ynkaDyHnkaD, (46)

where

Ki =

⌊

K

2

⌋

Ks =

⌈

K

2

⌉
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and the weight vector

wnaD = R̂−1
naDsnaD. (47)

We can now evaluate the decision statistic in the angle-Doppler domain as in (32) for the

space-time domain

MSMIaD =

∣

∣

∣

∑N−1
n=0 wH

naDynaD

∣

∣

∣

2

∣

∣

∣

∑N−1
n=0 wH

naDsnaD

∣

∣

∣

. (48)

Note that the computational complexity of the MSMIaD statistic is O(N2Mη2
aη

2
d).

4 CFAR behavior

We now show that the MSMI test statistic developed in Section 2 is independent of the

true interference covariance matrix under hypotheses H0 and this gives it a constant false

alarm rate.

The interference is composed by two contributions, clutter and noise. As reported

previously, the noise is Gaussian colored noise with zero mean and covariance matrix Rno

and this holds for each transmission. The clutter therm is characterized by a Gaussian

distribution with zero mean and covariance matrix Rcn for each transmission [24]. The

two contributions are uncorrelated, as reported in (29), for each transmission. We can

conclude that the interference contribution hn = cn + nn is a Gaussian random vector

with zero mean and covariance matrix Rn. Let now be zn = R
−1/2
n yn the whitened data

vector and rn = R
−1/2
n sn the “whitened” steering vector; the test statistic (32) can be

written as
∣

∣

∣

∑N−1
n=0 r†nR

1/2
n R̂−1

n R
1/2
n zn

∣

∣

∣

2

∣

∣

∣

∑N−1
n=0 r

†
nR

1/2
n R̂−1

n R
1/2
n rn

∣

∣

∣

=

∣

∣

∣

∑N−1
n=0 r†nR̃

−1
n zn

∣

∣

∣

2

∣

∣

∣

∑N−1
n=0 r

†
nR̃−1

n rn

∣

∣

∣

, (49)

where the matrix R̃n = R
−1/2
n R̂nR

−1/2
n is subject to the complex Wishart distribution

with parameter K, NM and I, which is denoted as CW (K,NM ; I) [25].

Now we define a unitary transform that rotates the whitened signal vector into the

first elementary vector

ben = U†
nrn, en = [1, 0, . . . , 0]†. (50)

The first column of Un is the vector rn and the others (NM − 1) ones form an arbitrary

orthonormal basis of the orthogonal complement of the subspace spanned by the vector
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rn. Then the test (49) becomes

∣

∣

∣

∑N−1
n=0 be

†
nU

†
nR̃

−1
n Ungn

∣

∣

∣

2

∣

∣

∣

∑N−1
n=0 b

2e
†
nU

†
nR̃−1

n Unen

∣

∣

∣

=

∣

∣

∣

∑N−1
n=0 be

†
nB

−1
n gn

∣

∣

∣

2

∣

∣

∣

∑N−1
n=0 b

2e
†
nB−1

n en

∣

∣

∣

(51)

where gn = U†
nzn and Bn = U†

nR̃nUn. The vector gn is Gaussian distributed with zero

mean and covariance matrix I under H0 hypotheses and the matrix Bn is distributed

CW (K,NM ; I).

The actual covariance matrix does not appear in the test statistic or in the underlying

density functions; the test statistic is independent of both the structure and the level of

the true covariance matrix and is, therefore, a CFAR test.

We can repeat the analysis made above for the test statistic defined in (32) for the

one defined in (48) applying the JDL algorithm to the classic MSMI. The only difference

is that the vectors are now defined by a linear transformation of the initial vectors, as in

(43)-(45). This transformation does not change the statistical distribution of the vectors;

therefore we can repeat the previous analysis substituting the vectors yn and sn and the

matrix R̂n respectively with ynaD, snaD and R̂naD. So the CFAR behavior holds also for

this test statistic as well.

5 Numerical simulations

In this section we present the results of numerical simulations using the models developed

in Sections 2 and 3. Results reported in [2] had demonstrated the importance of the use

of waveform diversity for distributed aperture radars in order to deal with the problem

of the grating lobes. Since the steering vectors are range dependent, the beam-pattern is

a plot of the signal strength versus the transverse, x, coordinate. The range dependency

implies a small decay in the level of the grating lobes further away from the target location.

However, this decay is inadequate for target detection. Using frequency diversity proposed

in [2] it is possible to eliminate the grating lobes. We expect that using time-based

diversity the grating lobes are worse than that achievable with frequency diversity, i.e.,

the benefits of coherent processing arise at the cost of high grating lobes. We expect also

that the application of the JDL algorithm, which takes into account the non-stationarity of

the environment, improves the achievable performance in terms of an improved detection

probability.
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Parameter Value Parameter Value

N 9 M 3
TMIN 10µs TMAX 100µs

B 10MHz f0 10GHz
PRI Tr INR 50dB

Target Velocity 50m/s Target SNR 10dB
Xt 476.9158m Yt -59.9566m
Zt 200km Nc 200

Table 1: Parameters common to the simulations.

The experiments use the common parameters shown in the Table 1. In the table

TMIN and TMAX represent the minimum and the maximum pulse duration respectively;

the pulse repetition time (PRI) is

Tr = 5

N−1
∑

n=0

T (n), (52)

where T (n) is the nth pulse duration equal to

T (n) = TMIN + n
TMAX − TMIN

N − 1
. (53)

The array elements are uniformly distributed in the (x, y) plane on a square 200m×200m

grid. INR is the Interference-to-Noise Ratio.

5.1 Need for waveform diversity

In this subsection we report using waveform diversity in the original space-time domain

using the decision statistic in (32). These first results allow us to analyze the impact of

the proposed waveform diversity scheme on the system performance independent of the

improvement achievable with the JDL algorithm. In this way it is possible to understand

how the proposed model counters the central issue of grating lobes in a distributed radar

system.

Figure 8 plots the output of the matched filter along the radial z -direction. The target

is at a range of 200km in the radial z -direction. The output is very asymmetric due to

the range dependency of the clutter that affects the estimation of the covariance matrix.

Figure 9 plots similar results along the transverse x -direction. The high grating lobes

are clear, i.e, the benefits of coherent processing are possible at the cost of grating lobes.

The target is at a range of 476.9158m in the transverse x -direction. The output of the

matched filter is more regular and symmetric than the one in the radial direction.
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Figure 8: Matched filter processing along the radial Z-direction. Includes interference.
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Figure 9: Matched filter processing along the transverse X-direction. Includes interference.

Figure 10 plots the modified sample matrix inversion (MSMI) statistic over the radial

z -direction. All interference range cells are used to estimate the interference covariance

matrix. The target is very clearly identified, even using only 3 pulses and 9 antenna

elements, due to the narrow lobe centered at 200km in range, that is, at the target range.

Figure 11 plots similar results along the transverse x -direction. In this case the target in

not clear identifiable and the system shows a performance decay. This is again because

of the grating lobes.

These plots show that the waveform diversity model used allows for good target de-

tection in the radial z -direction. However, these results, coupled with the work in [2]

underline an essential issue with using distributed apertures - the work in [2] used fre-

quency diversity to eliminate grating lobes. However frequency diversity requires coherent

processing over an extremely wide frequency band. In this work we have investigated time

diversity using varying FM rates raising the issue of grating lobes in the transverse, x,
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direction. The benefits of both may be achievable using orthogonal frequency division

multiplexing (OFDM) [26].
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Figure 10: MSMI statistic along the radial Z-direction. Includes interference.

5.2 Performance of the JDL algorithm

In this subsection we illustrate the performance improvements achievable using the JDL

processing algorithm. For this purpose we compare between the decision statistic obtained

using the waveform diversity in (32) and the one obtained when coupling waveform diver-

sity with the JDL algorithm (as in (48)). In this way it is possible to study the benefits

of using reduced dimension schemes. At the same time we also compare these perfor-

mances with that ones achievable using the frequency diversity model in [3] to analyze

the achievable improvements with respect to this approach. In the following, we indi-

cate the decision statistic in [3] as F-MSMI (Frequency MSMI), the one obtained using
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Figure 11: MSMI statistic along the transverse X-direction. Includes interference.
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Figure 12: Probability of detection versus the SNR. The solid line represents the F-MSMI;
the star-marked the W-MSMI; the dashed one the JW-MSMI.

the waveform diversity model in (32) as W-MSMI (Waveform MSMI) and the last one

obtained introducing the JDL algorithm in (48) as JW-MSMI (JDL Waveform MSMI).

Figure 12 shows the probabilities of detection versus the signal to noise ratio (SNR)

achievable with the three decision statistics. The solid line represents the probability of

detection of F-MSMI, the ones marked with ⋆ the probability of detection of W-MSMI

and the dashed line the probability of detection of JW-MSMI. The significant improve-

ment achievable with the JDL algorithm is clearly evident. The JW-MSMI outperforms

the others and the W-MSMI is better than the F-MSMI. In particular, for probability of

detection equal to 0.9 the performance gain between JW-MSMI and W-MSMI is approx-

imately 4 dB and approximately 8 dB between JW-MSMI and F-MSMI. The behavior

of the curves highlights that the range dependency of the covariance matrix limits the

achievable performance. It is remarkable that the gain between JW-MSMI and W-MSMI

is achieved with dimension reduction; in fact, the dimension of the steering vectors is

27 in the space-time domain and 9 in the angle-Doppler domain. It is evident that all

the statistics need a low SINR to achieve a good probability of detection; the distributed

aperture radars use all the incoming signals and for this reason the needed SINR is lower

than the one in a monostatic or bistatic radar.
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6 Conclusions

In this paper we have considered the design and the analysis of a time-orthogonal wave-

form diversity model for distributed aperture radars. The signal model uses waveform

diversity applied to distributed aperture radars; the chosen signals have different pulse

durations and they do not overlap in time to achieve respectively waveform diversity and

time-orthogonality. The orthogonality allows us to treat the signals at each receiver in-

dependently, simplifying the decision statistic. Based on the realization that both target

and interference sources are in the near-field of the antenna array, this paper uses a data

model based on true time delays. Furthermore, due to the relative motion between clutter

and antennas, the clutter is not stationary. We account for this range dependency of the

interference sources in the adaptive processing by converting the data from space-time

domain to angle-Doppler domain based on the Joint Domain Localized (JDL) algorithm.

The detection capability of the new receiver is very good in the radial direction, where

the MSMI statistic shows a narrow and high lobe centered at the target range, while in the

transverse direction the system shows a performance decay due to a test statistic with high

grating lobes. This is inherent to any single-frequency approach. The signaling scheme

counteracts the grating lobes for many values of the range, but it is very asymmetric

due to the range dependency of the interference. The probabilities of detection, analyzed

through Monte-Carlo techniques, show that the JDL processor outperforms the one based

on frequency diversity; furthermore, they show also the influence of the range dependency

of the interference covariance matrix; the performance is significantly improved taking

this non-stationarity into account.

The overall system is based on the orthogonality of the waves. It is interesting to ana-

lyze the effect of the loss of the orthogonality. It is evident that the estimated covariance

matrix is no more block-diagonal and that some terms are different from zero outside of

the principal diagonal. We did not account for this analysis in this work, but it is an

interesting point of view for future developments. Another possible future research track

might concern the analysis of a new waveform diversity model. In our analysis, we diffe-

rentiated the signals only on the pulse duration. We expect an improvement in the system

performances differentiating the signals on more parameters at the same time (like, for

example, the pulse duration and the PRI) or using different shapes for the pulses.
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