
Time-Orthogonal-Waveform-Space-Time

Adaptive Processing for Distributed

Aperture Radars

Luciano Landi
Dipartimento di Ingegneria

Elettronica e delle Telecomunicazioni
Università degli Studi di Napoli “Federico II”

via Claudio 21, I-80125
Napoli, Italia

Telephone +39 081 7683810
Fax: +39 081 7683149
Email: llandi@unina.it

Raviraj S. Adve
Department of Electrical

and Computer Engineering
University of Toronto

10 King’s College Road
Toronto, ON M5S 3G4, Canada

Telephone: (416) 946 7350
Fax: (416) 946 8765

Email: rsadve@comm.utoronto.ca

Abstract—Distributed aperture radars represent an
interesting solution for target detection in environ-
ments affected by ground clutter. Due to the large
distances between array elements, both target and
interfering sources are in the near field of the antenna
array. As a consequence the characterization of both
the target and the clutter is complicated, combining
bistatic and monostatic configurations. Using ortho-
gonal signaling the receivers can treat the incoming
signals independently solving separately bistatic prob-
lems instead of the initial multistatic problem. Recent
works have demonstrated the benefits of the use of
frequency diversity space time adaptive processing for
distributed aperture radars. This paper modifies the
waveform diversity signal model, resorting to a time
orthogonal signaling scheme, which does not present
the coherence loss exhibited by frequency diversity.

I. Introduction

Recent works have shown the benefits of the joint use
of distributed aperture radars and waveform diversity [2],
[3]. The large baseline of the distributed aperture radar
results in improved angular resolution compared to the
resolution of a monolithic system, at cost of grating lobes
or high sidelobes. The phrase “waveform diversity” has
now come to include distributed communication networks,
distributed space-time coding, and distributed target de-
tection [1]. Our focus here is target detection using a
distributed radar. In this regard, we focus on the fur-
thering the development of space-time adaptive processing
(STAP) algorithms for distributed apertures.

The system under consideration is a very sparse array
of sub-apertures placed thousands of wavelengths apart.
Each sub-aperture of the array transmits an unique wave-
form, orthogonal to the signals transmitted by the others;
to achieve time orthogonality we use pulses that do not
overlap in the time domain. Each aperture receives all
the transmitted signals, but, due to the orthogonality
hypothesis, each signal can be treated independent of

the others. Waveform diversity is achieved using multiple
signals characterized by different pulse durations.

An important issue arising from the work in [2] and
[3] is that, due to the very long baseline, both signals
and interference sources are not in the far field of the
antenna array. For this configuration, the spatial steering
vector depends not only on signal angle of arrival but
also on the distance between receiver and target. To take
in account this range dependency, some works model the
steering vector as a function of the curvature radius of
the wave [4], modifying the phase shift contributing to
each antenna element. However, as outlined in [2], to take
in account the waveform diversity, instead of using phase
shifts to model the delay of wave propagation through
the array, the processing scheme requires true time delays
between the widely distributed antennas. Moreover, the
interference is modeled as a sum of several low power
interference sources, each with a range dependent contri-
bution. Previous works have developed the model required
to generate simulated data [2], [3] to develop and test
signal processing algorithms.

Previous work such as described above has focused
on frequency diversity to enable orthogonal transmissions
from each element in the distributed array. However,
frequency diversity raises the difficult issue of coherent
processing across a wide frequency range. This paper
proposes a system using an alternative approach, using
time orthogonal waveforms, with differing pulse durations,
to achieve diversity. Waveform diversity using varying
FM rates was proposed in [5] in the context of target
tracking. In addition, the distributed radar problem is
inherently multistatic with multiple radars illuminating
the area of interest, and also receiving and potentially
processing all these transmissions. A true development of
STAP for distributed apertures will therefore include both
monostatic [6] and bistatic configurations [7], [8].



The goal of this paper is to develop a new model for
waveform diversity for distributed aperture radars with
time-orthogonal waveforms. In this regard, this paper rep-
resents a continuation in the research about waveform di-
versity for distributed aperture radars and also an effort on
the bistatic and multistatic STAP applied to distributed
aperture. The time orthogonal waveforms, just like with
frequency diversity, allows for independent processing of
each transmit-receive combination. A companion paper
focuses on the case of time-overlapping transmissions with
differing pulse widths [9]. Based on previous results, in
this paper, we introduce a new waveform diversity model
that involves the pulse duration instead of the frequency
diversity proposed in [2].

The paper is organized as follows. In Section II we
develop the system and interference model in the case of
interest. In Section III we report the results of numerical
simulations using the quoted model. In Section IV we
present the conclusions and outline the future possible
works to improve our results.

II. System Model

The system under consideration is a ground based dis-
tributed aperture radar attempting to detect low flying
targets. For distributed arrays the steering vector depends
on both the signal angle of arrival (like in a far field source
model) and on the distance, due to the near field source
model. In fact, given an antenna array of aperture D,
operating at wavelength λ, the distance r to the far field
must satisfy [4]

r ≫ D,
r ≫ λ,
r ≫ 2D2/λ.

(1)

Using typical values for distributed radars, D=200m and
λ=0.03m, the far field distance begins at a distance of ap-
proximately 2700km. It is evident that for many practical
applications both signals and interference source might not
be in the far field. In this case the steering vector depends
on both angle and range.

In order to account for waveform diversity and the
dependence of the steering vector on range, the pro-
cessing scheme requires the use of true time delays. In
the following, we develop the model for the signal and
the interference source. Actually the computation of the
steering vector requires accounting for these issues.

A. System model and steering vector

The system is composed of N elements that are both
receivers and transmitters. To achieve orthogonality and
waveform diversity the pulses have different durations and
do not overlap in the time domain; Fig. 1 presents an
example with 3 transmitting elements and 2 pulses per
element. The elements share a common pulse repetition
interval (PRI). The sensors are located in the x−y plane at
the points (xn, yn), n = 1, . . . , N and transmit a coherent

Fig. 1. Time orthogonal signals with different pulse duration and
common PRI

stream of M linear FM pulses, with common center
frequency f , common pulse repetition interval (PRI) Tr,
common bandwidth B but different pulse durations, i.e.,
the slope of instantaneous frequency varies among the N
transmitted signals. All N elements receive and process
all N incoming signals, i.e., if M pulses are used in a
coherent pulse interval (CPI), the overall return signal over
time, space and waveform can be written as a N2M -length
vector.

Due to the orthogonality of the signals, the receiver pro-
cesses each incoming signal separately from each other and
uses true time delay to focus on a look-point (Xt, Yt, Zt).
Denote as Dn =

√

(Xt − xn)2 + (Yt − yn)2 + (Zt − zn)2

the distance between the look point (Xt, Yt, Zt) and the
nth element. The true time delay used by the receiver is [2]

∆Tn =
maxi{Di} −Dn

c
(2)

where c is the speed of light. By using the true time delays,
the normalized response at the N elements due to the N
signals is just a vector of ones, i.e., the space-time steering
vector, s, is given by

s = st ⊗ ssf , (3)

st =
[

1, ej2πfdTr , . . . , ej(M−1)2πfdTr

]T

, (4)

ssf = [1, 1, 1, . . . , 1]
T
, (5)

where ⊗ denotes the Kronecker product, fd is the target
Doppler frequency, st is the M -length temporal steering
vector and ssf is the N2-length space-waveform steering
vector of ones.

B. Clutter model

As in [6], the interference here is modeled as the sum
of many low power sources. The signal, transmitted by
the nth element, over M pulses with pulse shape upn(t) is
given by

sn(t) = un(t)e
j(2πft+ψ) (6)

with pulse shape

un(t) =

M−1
∑

m=0

upn(t−mTr) (7)

where ψ is a random phase shift. The choice of same
PRI ensures the same temporal configuration over the
pulse number m. The received signal at the element ith



corresponding to the nth transmitted signal due to the lth

artifact located at the point (xl, yl, zl) is

r̃ni (t) = Alnun(t− τinl)e
j2π(f+f l

dcn
)(t−τinl), (8)

where Aln is the complex amplitude with the random phase
(ψ is therein incorporated), f ldcn is the Doppler frequency
of the interference source and

τinl =

√

(xi − xl)2 + (yi − yl)2 + (zi − zl)2

c

+

√

(xn − xl)2 + (yn − yl)2 + (zn − zl)2

c
,

is the delay from the nth transmitter to the lth interference
source plus the delay from the last one to the ith receiver
element. After down conversion and delay, it becomes

r̃ni (t) = Alnun(t− τinl − ∆Ti)e
−j2πfτinl

ej2πf
l

dcn
(t−τinl−∆Ti). (9)

Applying matched filtering on this signal, the received
signal finally becomes

xni (t) =

M−1
∑

m=0

Alne
−j2πfτinlej2πf

l

dcn
mTr

χn(t−mTr − τinl − ∆Ti, f
l
dcn), (10)

where χn(τ, f) is the ambiguity function of the pulse shape
upn(t) evaluated at the time delay τ = t−mTr−τinl−∆Ti
and the Doppler f ldcn. Sampling this signal every t = kTs
corresponding to each range bin and using χn(mTr, f) ≃
0,m 6= 0,

xni (kTs) =

M−1
∑

m=0

Alne
−j2πfτinlej2πf

l

dcn
mTr

χn(kTs −mTr − τinl − ∆Ti, f
l
dcn). (11)

Finally, given Nc interfering sources located at points
(xl, yl, zl), l = 1, . . . , Nc, the received signal at ith receiver
on the mth pulse due to nth signal is

xni (kTs,m) =

Nc−1
∑

l=0

Alne
−j2πfτinlej2πf

l

dcn
mTr

χ(kTs −mTr − τinl − ∆Ti, f
l
dcn).(12)

C. Space Time Adaptive Processing

We can now implement a space-time-adaptive-
processing (STAP) involving the modified sample matrix
inversion (MSMI) [10] statistic for target detection. As
usual, we estimate the interference covariance matrix
from secondary data. Due to the time orthogonality the
covariance matrix is diagonal

R̂ =











R̂1 0 . . . 0

0 R̂2 . . . 0
...

...
. . .

...

0 0 . . . R̂N











(13)

where

R̂n =
1

K

K
∑

k=1

ynkynk
H

is the nth block of the matrix in (13) and is relative to
the nth transmission. The vectors ynk, n = 1, . . . , N, k =
1, . . . ,K are the secondary data collected relative to the
nth transmission; they include the additive white gaussian
noise beyond the clutter. The superscript ( · )H represents
the Hermitian or conjugate transpose. Using the above
defined matrices we can calculate the weight vectors for
each bistatic problem

wn = R̂−1
n sn (14)

involving the space-time steering vector sn; these are the
space-time steering vector of each transmission, related to
the steering vector in (3) by

s =











s1

s2

...
sN











. (15)

Finally, the coherent output statistic is

MSMI =

∣

∣

∣

∑N
n=1 wH

n yn

∣

∣

∣

2

∣

∣

∣

∑N

n=1 wH
n sn

∣

∣

∣

(16)

where yn is the received signal. Note that the statistic
assumes coherence across all the transmissions. This is
possible because, unlike the frequency diversity case of [2],
all transmissions share a common center frequency.

III. Numerical Simulations

In this section we present the results of numerical
simulations using the model developed in the Section II.
The experiments use the common parameters shown in
table I.

Parameter Value Parameter Value

N 9 M 3
TMIN 10µs TMAX 100µs

B 10MHz f 10GHz
PRI 5TMAX INR 50dB

Target Velocity 50m/s Target SNR 10dB
Xt 476.9158m Yt -59.9566m
Zt 200km Nc 1e5

TABLE I

Common parameters used in the experiments.

In the table TMIN and TMAX represent the minimum
and maximum pulse duration respectively. The difference
between pulse durations of the the N transmissions is
(TMAX − TMIN )/N . The array elements are uniformly
distributed in the x − y plane on a square 200m × 200m
grid. INR is the Interference-to-Noise Ratio.
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Fig. 2. Matched filter processing along the radial Z-direction.
Includes interference.
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Fig. 3. Matched filter processing along the transverse X-direction.
Includes interference.

A. Need for waveform diversity

Results reported in [2] had demonstrated the impor-
tance of the use of waveform diversity for distributed aper-
ture radars in order to deal with the problem of grating
lobes. Since the steering vectors are range dependent, the
beampattern is a plot of the signal strength versus the
transverse coordinate. The range dependency implies a
small decay in the grating lobes level further away from the
target location Xt. However, this decay is inadequate for
target detection. Using frequency diversity proposed in [2]
it is possible to eliminate the grating lobes. We expect
that using waveform diversity model the grating lobes
are smaller than that achievable with frequency diversity
model and a clear target identification is preserved.

Figure 2 plots the output of the matched filter along
the radial z -direction. The target is at a range of 200km,
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Fig. 4. MSMI statistic along the radial Z-direction. Includes inter-
ference.

in the radial (z ) direction. The beampattern shows low
grating lobes for many values of the range, but it is very
asymmetric due to the range dependency of the clutter
that affects the estimation of the covariance matrix. Figure
3 plots similar results along the transverse x -direction.
The target is at a range of 476.9158m in the transverse x -
direction. The beampattern is more regular and symmetric
than the radial direction one. This clearly indicates the
extent of the interference sources.

Figure 4 plots the modified sample matrix statistic
(MSMI) versus the radial z -direction. All interference
range cells are used to estimate the interference covariance
matrix. The target is very clearly identified, even using
only 3 pulses and 9 antenna elements, due to the narrow
lobe centered at 200km in range, i.e., at the target range.
Figure 5 plots similar results along the transverse x -
direction. In this case the target is not clear identifiable
and the system shows a performance decay.

IV. Conclusions and Future Works

This paper develops waveform diversity approach, based
on differing FM rates, as an alternative to the frequency
diversity approach proposed in [3]. Based on the realiza-
tion that target and interference are not in the far field
of the array, this papers uses a data model accounting
for range dependency and waveform diversity based on
true time delay. Frequency diversity, using different and
orthogonal frequencies, has the problem of the coherence;
our approach, based on a single central frequency, avoids
this problem making more simple the signaling scheme.
The numerical simulations illustrate the importance of the
data model and the improved performances achievable.
Using the waveform diversity based on the pulse duration
the problem of grating lobes in the beampattern is still
present, but the results show their impact is lower than
using the frequency diversity scheme and a good detec-
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Fig. 5. MSMI statistic along the transverse X-direction. Includes
interference.

tion capability is preserved in the transverse direction. In
the radial direction the target is not clearly identifiable,
exhibiting the need of a new scheme that can improve the
detection on this direction.

For future works, an interesting point of view is the
possibility of new waveform diversity schemes; using wave-
form differentiated on more parameters (such for exam-
ple the PRI and the pulse duration) can even improve
the achievable performances making the waveforms used
strongly different each others. A companion paper deals
with overlapping transmissions. It is also interesting to
take in account the range dependency of the clutter that
affects the estimation of the covariance matrix; this can
allow better performances because of better covariance
matrix estimation. The long-term goal is the practical
development of space-time adaptive processing schemes for
distributed apertures.
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