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Abstract

This paper presents a method to account for the
effects of mutual coupling in least squared er-
ror adaptive algorithms. The mutual coupling is
quantized using the Method of Moments. The
Method of Moments admittance matrix is used
to compensate for the mutual coupling.

[. INTRODUCTION

Least Squared Error (LSE) adaptive algorithms [1], [2], [3]
have been proposed to overcome the drawbacks of clas-
sical, statistical, adaptive algorithms. They adaptively
minimize the total interference power at the output of
the receiver while maintaining array gain in the direction
of the signal. The least squares techniques use data from
the range cell of interest only and hence bypass the re-
quirement of secondary data. Further, not estimating a
covariance matrix leads to enormous savings in required
real time computations.

The LSE techniques show some promise to overcome the
drawbacks of traditional statistical methods. However, all
adaptive algorithms assume the receiving antenna array
1s composed of independent, isotropic, point sensors. This
implies that the sensor only passively samples the incident
fields spatially. But, the elements of the array must physi-
cally be some kind of antenna. The elements not only spa-
tially sample, but also re-radiate the incident fields caus-
ing mutual coupling between the array elements. When
mutual coupling is taken into account statistical and LSE

algorithms fail [4], [5], [6].

Another assumption of the adaptive algorithms is that
the array operates in a physical environment where noth-
ing impedes the reception of the signals and interference.
However, the array is often in the presence of scatterers,
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e.g. an airborne radar is in the presence of the fuselage
of the aircraft. These near field scatterers much like the
array elements themselves, affect the signal reception by
re-radiating the incident fields.

The Method of Moments (MOM) [7] is an established
electromagnetic analysis technique that is ideally suited
to evaluate the mutual coupling analysis. The work of [5]
has presented a simple formulation, based on the MOM,
to eliminate the effects of mutual coupling on the LSE
algorithm of [1]. The formulation there uses the MOM
admittance matrix, with multiple unknowns per element,
to relate the voltages measured at the ports of the antenna
with selected entries of the MOM voltage vector. The key
to the formulation is reducing the larger MOM admittance
matrix to a smaller square matrix of order equal to the
number of elements in the array. This is in contrast to [4]
where only one MOM unknown is used per element.

The major drawback with the formulation of [5] is that
it is valid only for a z—directed linear dipole array. An-
other drawback is that it cannot account for the effects
of scatterers in the vicinity of the array. This i1s because,
to take the scatterers into account, the Method of Mo-
ments solution requires additional columns in the equa-
tions relating the measured voltages with the MOM volt-
ages. Therefore, in the presence of scatterers the square
matrix equation cannot be formed.

This paper introduces a technique that is applicable
in general. The proposed algorithm uses the admittance
matrix and the measured voltages to estimate the entire
MOM voltage vector. This is done by using the minimum
norm solution of an underdetermined system of equations.
The estimated MOM voltages are used in conjunction
with Matrix Pencil to estimate the directions of arrival
of the signal and interference. The signal is then recov-
ered by maximizing the gain of the antenna in the look
direction while, simultaneously, placing pattern nulls in



the directions of the interference. Therefore, the mutual
coupling 1s not eliminated, but rather accounted for in
each step of the adaptive process.

A. Array and Signal Models

In this paper, the receiving antenna is modeled as a
linear array of N, straight, perfectly conducting, identical
dipole elements, equispaced along the x—axis,. The wires
are thin and z—directed. The wires are assumed to be
point loaded at the center. The near field scatterers are
also assumed to be thin, short circuited, z—directed wire
dipoles. This assumption allows for a simplified MOM
analysis of the electromagnetics of the problem.

The desired signal is modeled as a source of incident
energy arriving from a given direction in space. For the
radar problem, this may be thought of as a point scatterer
that has reflected a transmitted beam from a specific an-
gle. As space is scanned for targets, large regions will not
contain any targets. In such a case, the “desired signal”
is identically zero. The thermal noise is modeled to be
white and Gaussian. Deliberate jamming is treated like
a farfield point source of incident energy. The jammer
location in space is unknown.

The other interference source considered here is clut-
ter. The clutter is assumed to arrive at the same Doppler
frequency as the signal. The clutter is modeled as arriv-
ing from a ridge - a area of space as opposed to a point
source. Within the area, the continuous clutter ridge is
approximated as many weak point sources spaced very
close to each other. Each clutter source has random am-
plitude found from a uniform random variable. The limits
of random variable set the total clutter power.

IT. ANALYSIS OF THE ARRAY

To properly understand how the mutual coupling be-
tween the elements of the array affects the antenna be-
havior, and to quantize the mutual coupling, we have to
analyze the response of the antenna to an incident field.
In this work we use the Method of Moments [7] to analyze
the antenna. The Method of Moments numerically solves
the linear integral equation relating the incident field im-
pinging on the antenna (considered the known) with the
currents on the antenna (considered the unknown). The
integral equation is then reduced to solving a matrix equa-
tion. As we will show, the elements of the matrix quantize
the mutual coupling between the antenna elements.

There are assumed to be N, total wires in the array
and scatterer system. The array elements are of length L
and radius a, with a € L. The array is in the presence
of an arbitrary linearly polarized time harmonic incident
field Ei”¢. The incident field induces a current J. and
charge o on the surface of the wires. The induced current

re-radiates to produce a scattered field E® to satisfy the
Maxwell’s equations and the boundary conditions of the
problem.

Since the wires are thin, the following assumptions can be

made [8]:

1. The current flows only in the direction of the wire
axes (here the z-direction).

2. The surface current (Jg) and charge (o) densities on
the wire can be approximated by line currents (I)
and charge (p) on the wire axes (they lie in the y = 0
plane).

3. The boundary condition can be applied to the axial
component of E on the wire axes i.e. the boundary
condition is applied to £, on the wire axes.

Using these assumptions, and the boundary condition
that the total electric field on the axis of the wires must be
identically zero, the integral equation that characterizes
the behavior of the antenna array is
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We solve this equation for the currents using the
Method of Moments (MOM). The procedure is to expand
the currents in a series of convenient basis functions. To
reduce the integral equation to a matrix equation, we test
the resulting expansion with a set of weighting functions.
The basis functions used are the piecewise sinusoids as
described by Strait et.al. in [9]. The weighting functions
are the same piecewise sinusoids i.e. a Galerkin formu-
lation has been used. This formulation has been chosen
because it yields analytic expressions for the elements of
the matrix and hence eliminating the need for numerical
integration.

The resulting matrix equation can be written as
V1= [Zll]= 1] =[¥][V] (2)

where [I] is the MOM current vector with the coefficients
of the expansion of the current in the above basis. [Z]
is the MOM impedance matrix. [Y] is the MOM admit-
tance matrix, the inverse of the impedance matrix. The
matrices are of order N x N, where N is the number of
unknowns used in the MOM formulation. The entries of
[V] and [Z] are given by
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where, 0, ¢ 1s the elevation and azimuth direction of arrival
of the incident field.
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where, i =[(m—1)P+gq]. {=[(n—1)P+p]and f, , is
the ¢-th basis function on the m-th element.
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Note that the entries of the voltage vector are directly
related to the incident field and are hence free of the ef-
fects of mutual coupling. The entries of the impedance
matrix are the interaction between the field due to the
current source f,, , at the location corresponding to the
basis function f; ,,. Therefore, by their very nature, the
entries of the impedance matrix are a measure of the mu-
tual coupling between the sections of the array.

Using the MOM admittance matrix and the voltage vec-
tor, we can show that the voltages measured at the ports
of the array are given by

VI = 2] Ypord[V] (6)

where, [Yport] is the N. x N matrix of the rows of [V]
that correspond to the ports of the elements. [Z1] is the
diagonal matrix with the port loads as its entries.

1. EFFECT OF MUTUAL COUPLING

The effects of mutual coupling are illustrated using the
LSE algorithm of Sarkar and Sangruji [1]. The least
squared error algorithm presented by [1] automatically
steer nulls in the direction of interference while simulta-
neously maintaining the gain of the antenna in the given
look direction. The effects of mutual coupling are illus-
trated comparing the following two scenarios.

An array receives a target signal from a known direc-
tion. The signal reception is corrupted by three jammers.
In the first scenario, the receiving algorithm is applied to
the hypothetical case where mutual coupling is absent.
The receiving array is assumed to be a linear array of
isotropic, point sensors. The array voltages due to the
signal and jammers is given by

M
Vi = Seli=Dikduo 4 N= g e=Dikdun =1 N,
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where, S is the complex intensity of the signal and J,, is
the complex amplitude of the m—th interference source.
The M interfering sources arrive from the direction cor-
responding to u, = ¢y, m = 1,..., M. These voltages
V; are used as input to the least squared error algorithm
to recover the signal while nulling the jammers.

In the second scenario, the mutual coupling is taken
into account. The antenna is analyzed using the Method
of Moments. The intensities of the signal and interference
and their directions of arrival, in conjunction with equa-
tion (3), are used to calculate the Method of Moments
voltage vector. Equation (6) is used to find the voltages
that are measured in the presence of mutual coupling.
These measured voltages, without any correction, are in-
put to the signal recovery program. An attempt is made
to recover the signal intensity using the same adaptive
algorithm.

A seven element array is composed of wires of length
A/2 and radius A/200 and spaced A/2 apart. FEach wire is
loaded at the center with a 5092 load. The MOM analysis
uses 7 unknowns per wire. This array receives a signal of
intensity 1.0V/m from direction ¢ = 45° and two jammers
of intensity 1.0V/m and 1.5V/m from directions ¢ = 60°
and ¢ = 30° respectively. The third jammer arrives from
¢ = 75° and its intensity is varied from 1.0V/m (0 dB) to
1000.0V/m (60 dB) in steps of 5V/m. For each intensity,
the voltages in the absence of mutual coupling are calcu-
lated using equation (7) and used to recover the signal.
Further, the voltages in the presence of mutual coupling
are found using equation (6) and used to recover the sig-
nal. The two cases are compared in Figure 1.

Figure 1 shows that, in the absence of mutual coupling,
the adaptive nulling algorithm is accurate and can null
a strong (60 dB) jammer. However, when mutual cou-
pling is taken into account, the jammer is not nulled and
the reconstructed voltage is approximately linear with re-
spect to jammer intensity. This 1s because the jammer
has not been nulled and the residual jammer component
completely overwhelms the signal.

IV. ACCOUNTING FOR MUTUAL
COUPLING

Reference [5] presents a simple method, based on the
MOM admittance matrix, to eliminate the effects of mu-
tual coupling on adaptive algorithms. However, the
method presented there is valid for z—directed wire ar-
rays only. Further, the method is not applicable when
the array is in the presence of near field scatterers. Here
we present a method that is applicable in general. The
method accounts for the mutual coupling rather than
eliminating it.

The proposed receiving algorithm can be broken into
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Figure 1: Signal recovery in the absence and presence of
mutual coupling.

three steps.

1. Using the measured voltages to estimate the entire
MOM voltage vector.

2. Use the MOM voltage vector to estimate the direc-
tions of arrival of the interference.

3. Use the direction of arrival estimates to suppress in-
terference and maximize gain in the direction of the
signal

Consider the underdetermined matrix equation (6).
This equation can be used to find the minimum norm
solution for the MOM voltage vector [V].

V1= [C1" (ICNCT) ™ [Vimeas (8)

where, [C] = [Z1][Yport] is the N. x N matrix relating the
measured voltages with the MOM voltage vector. Since,
the effects of near field scatterers can be incorporated in
[Yport], this equation is valid for any given array, even if
it 1s in the presence of near field scatterers.

The MOM voltages are estimated using an underde-
termined system of equations, and so cannot be directly
used for signal recovery. We use the MOM voltages cor-
responding to the array ports to estimate the directions
of arrival of the interference. Using equation (4), these
MOM voltages corresponding to the array ports can be
written as

M
V; = Z Azl 4+ n; (9)
m=1
The exponents are directly related to the directions of the

incident fields.
b = ot {2tz

7 (10)

where, ¢,, is the azimuth direction of arrival of the m—th
interference source and d is the distance between two ele-
ments. The Matrix Pencil [10] is a signal processing tech-
nique to estimate the parameters of a sum of complex
exponentials in the presence of noise. Given the entries
of the estimated MOM voltages vector that correspond to
the array ports V;, the Matrix Pencil 1s used to estimate
zm and hence ¢, 1.e. an estimate of the directions of
arrival of the interference is obtained.

Once the directions of the interference is estimated,
beam pattern nulls are placed in the direction of the inter-
ference. Simultaneously, the gain of the antenna i1s maxi-
mized in the direction of the signal. We use a procedure
similar to that of [11]. However, the problem of solving
a new Method of Moments problem is bypassed by ana-
lytically evaluating the far field patterns of the antenna.



This leads to enormous savings in required real time com-
putations. Using such a procedure yields a set of weights
{w;, i = 1,...,Ny}. The weights multiplied with the
voltages measured across the loads yield the maximum
signal reception and maximum interference rejection [6].

V. Numerical Examples

Erample 1. No scatterers.

The first example chosen is a 21 element array receiving
a signal of complex intensity (1.0,0.0) from the direction
¢ = 80°. The reception of the signal is corrupted by three
jammers and clutter. The signal to noise ratio (SNR) ratio
was 13dB. The signal, jammer and clutter intensities and
directions of arrival are given in Table 1. The clutter
in the given azimuth range is modeled as many clutter
sources spaced 0.1 degree apart. The CNR is the total
clutter to noise ratio.

| | Intensity (V/m) | DOA(¢) |

[ Signal | (1000 | 80° |
Jammer # 1 (0.0,100.0) 100°
Jammer # 2 (10.0,0.0) 60°
Jammer # 3 (0.0,1.0) 45°
Clutter #1 50 dB CNR 100.0° - 110.0°
Clutter #2 40 dB CNR 130.0° - 140.0°

Table 1: Jammer and clutter intensities and directions of
arrival. Example 1.

To test the performance of the receiving algorithm, 40
independent simulations were carried out. The results of
the simulations are summarized in the Table 2.

Number of samples 40

True Value (1.0,0.0) V/m
Mean of 40 estimates | (1.00902,0.024044) V/m
Bias of estimate (0.00902,0.024044) V/m
Variance of estimates 0.010105
Output SINR 19.679 dB

Table 2: Results of 40 simulations. Example 1.

The reason the reconstruction is so good can be visualized
from the beam patterns of the weighted array. Figure 2
shows the weighted beam pattern for a sample simulation.
Notice the deep nulls at the location of the jammers and
the broad nulls in the direction of the clutter.
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Figure 2: Sample beam pattern. Example 1.

Ezample 2. Randomly spaced scatterers

The second example presents the response of the same
array in the presence near field scatterers. The location
of the scatterers is given in Table 3.

| Length | Radius | x | Y | z | # of Unknowns |

0.40 0.004 29 |-4.0] 1.0 5
0.80 0.005 4.0 | 0.0 | 1.3 11
0.80 0.008 98 |-34] 04 11
0.90 0.006 | 10.5|-2.0 | -1.3 11
0.30 0.005 7.8 |-1.3] 0.0 3

Table 3: Geometry and locations of near field scatterers.
Example 3.

The target 1s absent, i.e. the signal is absent. How-
ever, the array receives two strong jammers and one weak
jammer. Further, one strong clutter ridge interferes with
the array reception. The signal is assumed to arrive from
¢ = 110°. The jammer and clutter intensities and direc-
tions of arrival are detailed in Table 4. The nominal SNR,
1s 13dB.

Again 40 independent simulations are carried out to
obtain a mean and variance of the estimate of the signal.
The results of the 40 simulations are presented in Table
5. The results are best visualized with a look at a sample
beam pattern of the weighted array. Notice the deep nulls
at ¢ = 65%,¢ = 45% and ¢ = 130°. Also, the clutter



| | Intensity (V/m) | DOA(¢) |

[ Signal | (0000 | 110° |
Jammer # 1 (0.0,100.0) 65°
Jammer # 2 (10.0,100.0) 45°
Jammer # 3 (1.0,1.0) 130°

[ Clutter | 50 dB CNR__ | 80.0° - 90.0° |

Table 4: Jammer and clutter intensities and directions of
arrival. Example 2.
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Figure 3: Sample beam pattern. Example 2.

ridge is suppressed by a broad null between ¢ = 80? and

¢ =90°.
Number of samples 40
True Value (0.0,0.0) V/m

Mean of 40 estimates

(0.048142,0.000829) V/m

Bias of estimate

(0.048142,0.000829) V/m

Variance of estimates

0.01815

Output Interference Power

-16.888 dB

Table 5: Results of 40 simulations. Example 2.

VI. CONCLUSIONS

This paper has presented an adaptive algorithm that
accounts for the mutual coupling between the elements of
the adaptive array. The mutual coupling, if not taken into
account, causes all adaptive algorithms to fail. The tech-
nique presented here uses the MOM admittance matrix
to quantize the mutual coupling and to find the optimum
weights to produce the desired nulling.
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