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Abstract— We propose here an analytical framework to quan-
tify the impact of cooperative diversity on the energy con-
sumption and lifetime of sensor networks. It is well accepted
that cooperative diversity increases energy efficiency in fading
environments. However, previous works have not analyzed, from
a theoretical perspective, these benefits in a network setting.
This paper presents a theoretical framework to model routing
behavior and cooperative relay selection, using this information
to predict the lifetime and energy consumption of the network.

I. I NTRODUCTION

Wireless sensor networks (WSNs) refer to a broad class of
wireless networks consisting of small, inexpensive and energy
limited devices [1]. In these networks, sensors have the respon-
sibility of collecting data and communicating this information
to one or more processing centers. Our focus is on large-
scale WSNs with medium-to-low node spatial densities. These
types of WSNs could be used in environmental monitoring
applications, e.g., in detecting forest fires.

Due to the fact that nodes are battery powered, energy effi-
ciency is the main challenge in designing WSNs. Researchers
have generally developed schemes for energy savings in
specific layers of the protocol stack. For example, multi-hop
routing and clustering have been shown to improve the energy
efficiency of large scale WSNs [2]–[5]. Multi-hop routing is
necessary because nodes have a limited transmission range
and can communicate directly over small distances only [2],
[3]. Theoretical analysis of multi-hop routing is restricted
to networks of extremely high densities [2]. The idea of
clustering refers to partitioning the network into local clusters,
with one node in each cluster a cluster-head (CH). Clustering
saves energy by allowing each CH to exploit correlation
through data aggregation [4], [5]. The CH may also act as
a local server for individual nodes.

Energy saving protocols have also been developed in the
physical layer. WSNs, like all other wireless networks, suffer
from the effects of fading.Cooperative diversity has been
shown to mitigate the impact of fading through distributed
antenna sharing [6]–[9]. This form of diversity is especially
suited towards WSNs since size and power constraints restrict
nodes from possessing more than one antenna. Generally
analysis of the resulting energy savings have been limited to 3-
or 4-node networks [6], [7] or to information theoretic issues

such as outage probability [9].
This paper considers the issue of cooperative diversity in

large scale, multihop, WSNs from a theoretical perspective.
The goal is to develop the theory needed to analyze large-
scale WSNs and predict network performance. We present
theory to determine the expected number of packets forwarded
by a node due to routing and cooperative partner selection.
Cooperation is achieved using the simple amplify-and-forward
scheme [8]. We then use these results to predict the impact of
cooperative diversity on the lifetime of sensor networks. To
our knowledge such a theoretical framework for cooperative
diversity in network settings has not been developed before.

The outline of this paper is as follows. Section II provides
an overview of the system model. Section III and Section IV
analyze the behavior of routing and cooperative relay selection
respectively. Section V describes the energy analysis usedto
quantify the impact of cooperative diversity on the lifetime of
WSNs. The paper ends with conclusions Section VI.

II. SYSTEM MODEL

A. General Network Properties

Our network consists ofN sensors communicating with
a single data sink. The sensors are uniformly and randomly
distributed over a circular area of radiusa and the data sink
is located at the center of this area. We assume the sensors
are energy limited and the data sink has unlimited energy.
Since sensors are simple and inexpensive devices, we assume
they have fixed transmission power levels. Specifically, these
power levels correspond to transmission radiiR1 and R2

used for multi-hop and cooperative relay selection respectively.
These transmission radii are chosen to satisfy the lower bound
transmission radius required to provide99% probability of
network connectivity [10]. The sensors and data sink are
stationary.

In Sections III and IV we make the implicit assumption that
each node knows its own and its neighbors distances from the
data sink. This assumption is reasonable since our network is
stationary and requires only local information sharing.

B. Clustering Protocol

We assume out network is clustered using a distributed
algorithm where CHs are selected randomly [3], [4]. These



Fig. 1. Example of a Section Belonging to a Multi-Hop Path

class of algorithms are practical to implement in WSNs since
WSNs are organized in a distributed fashion. We also assume
that the CH role is evenly distributed over the network and
each CH performs ideal aggregation, i.e., all cluster data is
aggregated into a single packet.

C. Routing Protocol

We assume that min-hop routing (MHR) is used to establish
the multi-hop path from each CH to the data sink. MHR is
known to perform well in stationary networks comprised of
nodes with fixed transmission power levels. We use a simple
iterative algorithm that begins with nodes neighboring the
data sink broadcasting their hop number. In turn, neighboring
nodes update and broadcast their hop number if necessary
and the process continues until each node in the network has
determined its min-hop path to the data sink. Note that when
traversing any min-hop path in decreasing hop number we
have implicitly assumed that the distance between the node and
data sink is strictly decreasing. This assumption is suspect for
networks with low densities, but becomes valid with increasing
network density. This assumption significantly simplifies the
theoretical analysis developed below.

D. Cooperative Diversity

If we assume each sensor in the multi-hop path has a
cooperative partner, then each hop is no different than the three
node network studied in [8]. Figure 1 illustrates one section of
a multi-hop path where nodesM1 and nodeM2 belong to the
multi-hop path and nodeC represents a potential cooperative
relay. All channels are modelled as slow and flat. The receiver
to any transmission is assumed to know the channel perfectly.
The cooperating node,C in Fig. 1, helps in the communication
between nodesM1 and M2 using the amplify-and-forward
(AF) protocol. Thus nodeC receives a noisy version ofM1’s
transmitted signal and transmits an amplified version of this
signal toM2. This protocol creates spatial diversity since node
M2 receives two independently faded signals.

The performance of the AF protocol depends on the quality
of the channel between the source and relay and between
the relay and destination. Since generally channel quality
decreases with distance, we restrict the selection of relays to a

Fig. 2. Example Topology for Multi-Hop Routing

node’s forward transmission region. Section IV describes the
process of cooperative relay selection in more detail.

III. A NALYSIS OF MULTI -HOP ROUTING

In this section, we analyze the behavior of packet for-
warding without cooperation. We assume the transmission of
packets dominates the energy consumption of sensors. Thus
this analysis represents the first step towards predicting the
energy consumption of the network. The focus here is on low-
to-medium density networks, as opposed to the high-density
networks considered in the available literature. The analysis
uses a layered structure, similar to [2], where each layer has a
width R1 (corresponding to the communication radius used by
nodes for multi-hop transmission). We letr denote the distance
of a node from the data sink. When MHR is used, we observe
that at even low densities we can roughly approximate the
number of hops between a node and the data sink by⌈ r

R1

⌉.
The analysis below is based on a preferential routing

framework. This is an approximation to the MHR protocol,
but significantly simplifies the analysis. We differentiateour
framework from [2] by allowing nodes to forward packets
within their own layer. We can thereby approximate MHR at
much lower node densities than considered in [2]. As shown
in Fig. 2(a), for a given nodex, nodes that may potentially
forward packets tox lie in a circle of radiusR1 centered
at x. Since nodes are assumed to transmit forward towards
the data sink only,x can only receive packets from nodes in
the shaded region of Fig. 2(a). The layer structure allows for
differentiation of the routing behavior of nodes in this shaded
region based on whether they are located in the same layer
asx.

If a willing multi-hop partner is available in a higher layer,



a node preferentially forwards its data to the higher layer.For
example, consider Fig. 2(b). where nodex and nodeb are
in different layers. We modelb’s routing behavior as being
indifferent to forwarding packets tox and any other node in
the shaded area of Fig. 2(b). Now consider the case where
x and b are located in the same layer. We modelb’s routing
behavior to prefer forwarding packets to the shaded region in
Fig. 2(c). over forwarding tox. Consequently if no nodes exist
in this region, we then modelb to be indifferent to forwarding
packets to nodex and any other node in the area of intersection
of b’s transmission region andb’s layer.

To express this framework rigorously, define the following
variables (detailed in the appendix):

• A1(x, b)=The area of intersection ofb’s transmission
region and the layer above,

• A2(x, b)=The area of intersection ofb’s transmission
region andb’s layer,

• NAi
=The number of nodes inAi(x, b), whereiǫ(1, 2),

• λ=The density of nodes in the network,λ = N
πa2 ,

• N(r)=The expected number of packets forwarded at a
distancer from the data sink.

As mentioned above, the probability of nodeb choosing
nodex as its next hop, denoted byp(b, x), depends on whether
b andx are in the same layer. For the case whereb andx are
in the different layers,

p(b, x) =

N
∑

n=1

1

n
Pr (NA1

= n|NA1
≥ 1) , (1)

and for the case whereb andx are in the same layer,

p(b, x) =

N
∑

n=1

1

n
Pr(NA1

= 0)Pr(NA2
= n|NA2

≥ 1). (2)

where we use the binomial distribution to determine the
probability of havingn nodes in an areaA.

To determineN(|x|), the expected number of packets
forwarded by a node at distance|x| from the data sink, we
have to recursively integrate over the shaded region in Fig.2(a)
and add one to account for the packet originating atx. Thus
N(|x|) is expressed as

N(|x|) = 1 + λ

∫ |x|+R1

|x|
p(b, x)N(|b|)2γ|b|dr, (3)

whereλ is the spatial density of nodes and

γ = arccos

(

|x|2 + |b|2 − R2
1

2|b||x|

)

. (4)

Note that we assume all nodes in the first layer are directly
connected to the data sink. Thus for the case where|x| ≤ R1,
we replace|x|, the lower limit for the integration in (3), with
R1.

Figure 3 compares the number of packets forwarded versus
distance determined theoretically using (3) and (4) with sim-
ulations based on MHR. The simulations average over 200
different networks at a density of30/(πR2

1), whereR1=1 and
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Fig. 3. Expected Number of Packets Forwarded vs. Distance

network radiusa = 4R1. This density is considerably lower
than what has been used in the only available literature [2].
In [2], the authors use a density of100/(πR2

1). Clearly the
theoretical analysis compares fairly well to the simulations,
especially so in the first layer, the most critical layer in the
network.

IV. A NALYSIS OF COOPERATIVERELAY SELECTION

This section analyzes the behavior of cooperative relay
selection to determine the number of cooperative packets
forwarded as a function of distance from the data sink. To our
knowledge this is the first paper to consider such an analysis.

The performance of the AF protocol depends on the position
of the relay relative to the source and destination. We assume
a node requests cooperation only from other nodes in its
forward transmission region with corresponding radiusR2.
This ensures that the relay is relatively close to both the source
and destination. A given nodex can only receive cooperation
requests from nodes in the shaded region of Fig. 4(a). Consider
nodeb in this shaded region. We modelb’s cooperation request
behavior to be indifferent to choosingx as its cooperative
partner and any other node in the shaded region of Fig. 4(b).

Denote A(x, b) as the area ofb’s forward transmission
region, andNA as the number of nodes inA(x, b). The
probability thatb choosesx as its cooperative partner is

pc(b, x) = (1 − Pr(x is dest.))
N
∑

n=1

1

n
Pr(NA = n|NA ≥ 1),

(5)
where Pr(x is dest.) refers to the probability thatx may be
b’s next hop node, i.e., it is the destination for the current
transmission (and therefore cannot act as the cooperating
node). Depending onb’s layer relative tox, Pr(x is dest.) is
expressed as (1) ifx andb are in different layers, (2) ifx and
b are in the same layer, and zero ifb is in layer 1.

To determineC(|x|), the expected number of packets re-
ceived exclusively due to cooperation by a node at distance



Fig. 4. Example Topology for Cooperative Relay Selection

|x| from the data sink, we recursively integrate over the shaded
region in Fig. 4(a). ThusC(|x|) is expressed as

C(|x|) = λ

∫ |x|+R2

|x|
pc(b, x)N(|b|)2γ|b|dr, (6)

where

γ = arccos

(

|x|2 + |b|2 − R2
2

2|b||x|

)

, (7)

and whereN(|b|) refers to the number of packets forwarded
determined using (3) in Section III.

Figure 5 is the counterpart of Fig. 3 for networks with
cooperation. Again the number of packets forwarded is av-
eraged over 200 different networks at a density of30/(πR2

1),
where R1=1 and network radiusa = 4R1. We observe
from Fig. 5 that (6) slightly overestimates the number of
cooperative packets forwarded. This is due to the dependence
on preferential routing to determineN(|b|).

The analysis in (3) and (6) illustrates the need to assume
preferential routing and that packets are transmitted forward.
Without these assumptions the simple recursion in these
equations is invalid, requiring a complicated iterative scheme,
thereby making the theory largely useless.

V. ENERGY ANALYSIS

The essential parameter of interest in a sensor network is
energy consumption. The ability to analyze the energy con-
sumption theoretically is the prime motivation for the analysis
undertaken in Sections III and IV. In this section, we use the
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Fig. 5. Expected Number of Cooperative Packets Forwarded vs.Distance

results developed there to analyze the energy consumption,
thereby predicting network lifetime. Under the assumption
that transmission dominates the energy consumption of nodes
we determineE(r), the energy consumption as a function of
distancer from the data sink. Note that, due to clustering, the
number of packetsN(r) and C(r) in (3) and (6) are scaled
by a factor ofp, the probability the node is a cluster-head.
Denote asE1 andE2 the required energy to transmit a packet
with and without cooperation respectively (E1 << E2).

Without cooperative diversity the total energy consumed by
a node at a distancer from the data sink,E(r), is

E(r) = pE2N(r). (8)

With cooperative multihop transmissions, the energy con-
sumed in transmittingpC(r), the effective number of packets
due to cooperative relaying, ispE1C(r). The energy consumed
in transmittingpN(r), the effective number of packets due to
MHR, is aspPzE2N(r)+(1−Pz)E1C(r) wherePz refers to
the probability that there are no cooperating nodes to help in
transmission. Combining these two, the total energy consumed
by a node at a distancer from the data sink,Ec(r), is

Ec(r) = pPzE2N(r) + (1 − Pz)E1C(r) + pE1C(r). (9)

To determineE1 and E2, we use the error rate of the
amplify-and-protocol, given in [8]:

Pe = Q(
√

(1 − ρ)[γs,d + γeq]), (10)

where
γeq = γ−1

s,r + γ−1

r,d + γ−1
s,r γ−1

r,d , (11)

and whereQ(t) = 1√
2π

∫∞
t

e−
x
2

2 dx. Using the above equa-
tions and a target error rate, one can determine the required
SNR at the receiver and thereby the required transmission
energy. For example, under Rayleigh fading, for an error rate
of 10−3, E1 ≃ E2/12.

We use the results of energy consumption to determine
network lifetime, defined as the time until the first node in the



TABLE I

NETWORK LIFETIMES WITH AND WITHOUT COOPERATION: THEORETICAL

ANALYSIS

Network Density With Cooperation Without Cooperation
10 519 231
20 474 145
30 808 116

network dies. Starting with unit energy, the network lifetime is
proportional to the inverse of the maximum ofEc(r) or E(r)
depending on whether the network utilizes cooperation or not.

Table I lists network lifetimes determined using (8), (9) and
system parametersp = 0.2 (CH probability) with a target BER
of 10−3. The network density is measured in terms of number
of nodes perπR2

1, where R1 is the transmission radius of
each node, i.e., on average each node is able to “see” these
many other nodes. Note that the analysis is undertaken for
relatively low network densities - an essential distinguishing
feature of the analysis presented here is that it is valid for
all network densities, not just the extremely high densities
assumed in earlier works.

As is expected, and clear from the results in Table I,
cooperation significantly increases network lifetime. Thecon-
tribution in this paper is an approach to quantify this increase
theoretically. An interesting feature from the results in Table I
is that the network lifetime in not a monotonic function. This is
because at higher densities all nodes find a partner to cooperate
with, saving energy, but at lower densities the nodes nearest
the sink have to forward fewer packets (these are first nodes
to die).

VI. CONCLUSIONS

This paper has presented a theoretical analysis of coop-
eration in a network setting. The goal is to quantify, the-
oretically, the gains in key performance measures in using
cooperation. Previous works have analyzed cooperation from
an information theoretic perspective or focused exclusively
on the resulting diversity order. The analysis is based on an
approximation to min-hop routing in a multi-hop network and
uses clustering for further energy savings.

The analysis here uses knowledge of the spatial distribution
of nodes to determine the number of packets to be transmitted
as a function of distance from a sink. This number is a sum of
packets due to MHR and due to cooperation. These numbers
are then used in an energy analysis to determine the average
energy used as a function of distance, thereby predicting net-
work lifetime. An essential feature of the analysis here is that
it does not assume a high node density. The theory presented
quantifies the significant gains in network performance due to
node cooperation.

VII. A PPENDIX

The areaA1(x, b) in (1)

A1(x, b) = β

(

⌊
|b|

R1

⌋

)2

−

(

⌊
|b|

R1

⌋R1

)2
sin(2β)

2

+αR2
1 − R2

1

sin(2α)

2
, (12)

where anglesβ andα are given by

β = arccos

(

(⌊ |b|
R1

⌋)2 + |b|2 − R2
1

2|b|(⌊ |b|
R1

⌋)

)

, (13)

α = arccos

(

|b|2 + R2
1 − (⌊ |b|

R1

⌋)2

2|b|R1

)

. (14)

The areaA2(x, b) in (2)

A2(x, b) = β|b|2 − |b|2
sin(2β)

2
+ αR2

1 − R2
1

sin(2α)

2
, (15)

where angleβ andα are given by

β = arccos

(

|b|2 + |b|2 − R2
1

2|b||b|

)

, (16)

α = arccos

(

R2
1 + |b|2 − |b|2

2R1|b|

)

. (17)

The areaA(x, b) in (5)

A(x, b) = β|b|2 − |b|2
sin(2β)

2
+ αR2

2 − R2
2

sin(2α)

2
, (18)

where angleβ andα are given by

β = arccos

(

|b|2 + |b|2 − R2
2

2|b||b|

)

, (19)

α = arccos

(

R2
2 + |b|2 − |b|2

2R2|b|

)

. (20)
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