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Abstract—Due to the associated computational load and re-
quired statistically homogeneous training, fully optimal space-
time adaptive processing (STAP) is well-accepted to be imprac-
tical. Previous work has addressed these issues by reducingthe
adaptive degrees of freedom (DoF). In this paper we introduce
a new multistage STAP approach that significantly reduces
required sample support, and computational complexity, while
still processing all available DoF. The multistage “fast fully
adaptive” (FFA) scheme draws inspiration from the butterfly
structure of the Fast Fourier Transform (FFT). The reduction in
complexity and required sample support rival currently available
reduced DoF algorithms. We test the efficacy of this algorithm
using measured high frequency surface wave radar data.

I. I NTRODUCTION

Space-time adaptive processing (STAP) remains the most
effective means of detecting a weak target buried within sig-
nificantly stronger interference. Consider an adaptive phased-
array radar withN spatial channels andM pulses in a coherent
pulse interval (CPI). The fully adaptive matched filter (AMF)
approach computes an adaptive weight for each of theNM
adaptive degrees of freedom (DoF) based on theNM ×NM
interference covariance matrix. This matrix must be estimated
using available training measurements. It is now well accepted
that there are two important problems with implementing the
AMF in practice [1]:

1) Obtaining the adaptive weights requires the solution of a
NM × NM matrix equation in real time for each range cell
of interest. Given reasonable values forN andM this task is
almost impossible.

2) Obtaining a reasonably accurate estimate of the interfer-
ence covariance matrix withNM DoF, such that the output
signal-to-interference-plus-noise ratio (SINR) is within 3dB of
the optimum, requires at least2NM statistically homogeneous
secondary data samples [2]. Given that these secondary data
samples are obtained from range cells surrounding the one
under test, this requirement can rarely be met in practice.

To address these issues researchers have developed tech-
niques with lower complexity and fewer adaptive DoF. Some
popular low complexity approaches include the Joint Domain
Localized (JDL) algorithm [3], [4], the Parametric Adaptive
Matched Filter (PAMF) [5] and theΣ∆ algorithm [6]. The
common feature that all these methods share is that the total
number of adaptive DoF are reduced to meet the constraints on

the available secondary data, which inevitably leads to most
of the originally available adaptive DoF being “wasted”. The
JDL method, for example, adaptively processes data within
a relatively small localized processing region (LPR), after
performing a non-adaptive transformation of the space-time
data to the angle-Doppler domain. Reducing the adaptive
DoF yields corresponding reductions in the sample support
required and computational load, but at the same time impacts
performance and reduces target discrimination.

This paper proposes an alternative approach that exploits all
available degrees of freedom while simultaneously reducing
computational complexity and required sample support. This
multistage adaptive processing technique, referred to here as
the Fast Fully Adaptive (FFA) approach, draws its inspiration
from the butterfly structure of the Fast Fourier Transform
(FFT). Essentially, the FFA approach sub-divides anN × M
space-time data matrix into several sub-matrices of smaller
dimensions, and then uses the AMF within each such sub-
matrix to compute an intermediate statistic. The key idea
underlying the FFA approach is that theoutputs from each
stage form the data matrix of the subsequent stage. This
process of partitioning the newly formed data matrix, followed
by adaptively processing each resulting partition, is repeated
until the originalN × M data matrix is reduced to a single
final statistic (whose magnitude can be compared against a
chosen threshold to determine if a target is present or absent
at the range cell under test). Hence, as with the FFT algorithm,
the FFA achieves lower complexity via a divide-and-conquer
approach. A distinct advantage the FFA approach has over
other conventional low-complexity STAP methods, such as the
JDL, is thatall the adaptive DoF are used at every stage.

In this paper we develop the FFA algorithm and compare
the performance of the AMF (when possible), FFA and JDL
algorithms using both simulated andmeasured high frequency
surface wave radar (HFSWR) data obtained by Defense Re-
search and Development Canada (DRDC) [7].

II. SYSTEM MODEL AND FULLY ADAPTIVE STAP

We develop the FFA algorithm in the context of an equi-
spaced linear array ofN isotropic point sensors. This choice
is largely for ease of exposition and is not essential to the
workings of the algorithm. The radar transmits a pulse in



a chosen directionφt, referenced to broadside, searching for
potential targets in this direction. In turn, the array receives
returns from potential targets and other interference sources.
The return signal is sampledL times with each sample
corresponding to a range cell. This process is repeatedM
times within a CPI forming aN × M × L data cube. For
each range bin, the received data can be stored in a length
NM vector which is a sum of the contributions from external
interference sources, thermal noise, and possibly a target. This
vector can be written as

x = ξv(φt, ft) + n, (1)

wheren is the vector of all interference and noise sources,
ξ is the target amplitude,v is the space-time steering vector
corresponding to a target at look angleφt and look Doppler
frequencyft. This steering vector can be written in terms of
a spatial steering vectora(φt) and a temporal steering vector
b(ft) [1],

v(φt, ft) = b(ft) ⊗ a(φt), (2)

a(φt) =
[
1 zs z2

s . . . z(N−1)
s

]T

, (3)

b(ft) =
[
1 zt z2

t . . . z
(M−1)
t

]T

, (4)

zs = ej2πfs ; zt = ej2πft/fR , (5)

where ⊗ represents the Kronecker product of two vectors,
T the transpose operator,fs = (d/λ) sin φt the normalized
spatial frequency,λ the wavelength of operation andfR the
pulse repetition frequency (PRF). A linear processor uses a
weight vectorw to form a decision statisticΛ, i.e.,

y = w
H
x, (6)

Λ = |y|2 =
∣∣wH

x
∣∣2

H1

>
<

H0

Λ0, (7)

where Λ0 is a threshold andH0 and H1 represent the
target-absent and present hypotheses respectively. The optimal
weight vector, in the minimum mean-squared error sense, is
given by w = R

−1
v whereR is the covariance matrix of

the interference,R = E
[
nn

H
]
, andH denotes the Hermitian

of a matrix. In practice, the interference covariance matrix is
unknown and must be estimated using training data. In STAP,
the covariance matrix corresponding to the primary range cell
(the cell under test) is estimated using data fromK secondary

range cells aŝR = 1
K

K∑
r=1

xkx
H
k , wherexk is the space-time

data snapshot at thekth secondary range cell. As mentioned
earlier, the fundamental reason this processor is impractical is
that an adequate number of secondary cells are rarely available
in practice.

III. FAST FULLY ADAPTIVE PROCESSING

In this section we will propose an alternative STAP ap-
proach that exploits all available degrees of freedom whilesi-
multaneously reducing computational complexity and required
sample support. This multistage adaptive processing scheme

Fig. 1. The multistage representation of the FFA method

draws its inspiration from the butterfly structure of the FFT.
Essentially, the FFA approach sub-divides anN × M data
matrix into several sub-matrices of smaller dimensions, and
then uses the AMF within each such sub-matrix to compute
an intermediate statistic.

The key idea behind the FFA approach lies in that the out-
puts from each successive stage can be combinedadaptively
to form the data matrix of the subsequent stage. This process
of repartitioning the newly formed data matrix, followed by
adaptively processing each resulting partition, is repeated until
the original N × M data matrix is reduced to a single
final statistic whose magnitude is compared against a certain
threshold to determine if a target is present or absent at the
range cell under test. The FFA scheme is of relatively low
complexity, with the distinct advantage that the entire data
matrix is adaptively processed at every stage.

A. Regular FFA

In this section we focus on the development of the FFA ap-
proach in its most intuitive form; the “regular” FFA illustrated
in Fig. 1. We adopt a divide and conquer strategy that partitions
the N ×M space time snapshot into(ts × tt) smaller spatio-
temporal matrices of dimensionsN ′×M ′, whereN ′ = N/ts
and M ′ = M/tt are chosen corresponding to the available
training data. Importantly,N ′ ≪ N and M ′ ≪ M . We
then apply the AMF algorithm on each of these partitions
which results in a newts × tt matrix whose entries are
composed ofthe complex output statistics, using Eqn. (6), of
the corresponding AMF processes.

The weights computed by the AMF within each partition
are scaled to retain the steering vector structure across the
resulting spatial and temporal dimensions. As a result the new
ts×tt matrix of residual spatio-temporal outputs, from the first
stage of processing, forms a space-time matrix containing the
same target, but with a steering vector whose inter-element
and inter-pulse phase shift has been modified. Note that this
is largely for convenience; as long the impact of the processing
of the original steering vector is tracked, performance is not
affected. Also modified by the first stage of processing is the
interference, which has been suppressed in each partition by
the AMF, yielding an “attenuated” residual interference matrix
in the forthcoming processing stage.

The resulting ts × tt data-matrix is again repartitioned
(not necessarily in the same way as the original space-time
snapshot) and each partition is processed by the AMF yielding
the next stage of spatio-temporal outputs. This procedure is
repeated until a final statistic is obtained.



For convenience, we formalize this approach for the case
with the same partition size at all levels for a linear array of
point sensors. We begin by reformatting the data and steering
vectors,x andv, asN × M matricesX andV respectively.
These matrices are partitioned intots × tt sub-matrices each
of size N ′ × M ′. Denote thenth spatial andmth temporal
partition of the space-time snapshot and steering matrix as
X

(0)
nm and V

(0)
nm, n = 1, 2, . . . , ts and m = 1, 2, . . . , tt

respectively. The superscript(0) specifies that we are currently
processing the starting (zeroth) stage in the tree-like structure.

The (n, m)th steering matrix partition,V(0)
nm, is related to

first steering matrix partition,V(0)
11 as follows:

V
(0)
nm = z(n−1)N ′

s z
(m−1)M ′

t V
(0)
11 . (8)

The AMF is used within each partition. Consider the first
partition, with data matrixX(0)

11 of sizeN ′ ×M ′. The sample
support required to estimate the relevant interference covari-
ance matrix,R(0)

11 , is reduced from2NM to approximately
2N ′M ′, with corresponding reductions in the computational
load to solve the resulting matrix equation. The weight vector
for the first partition is given byw(0)

11 = (R̂
(0)
11 )−1

v
(0)
11 , where

x
(0)
11 andv

(0)
11 are theN ′M ′×1 vectorized forms ofX(0)

11 and
V

(0)
11 respectively. The intermediate statistic, for thenext stage,

corresponding to this first partition is given by

y
(1)
11 =

(w
(0)
11 )H

x
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11

(w
(0)
11 )Hv

(0)
11

=
(w

(0)
11 )H(n

(0)
I11)

(w
(0)
11 )Hv

(0)
11

+ ξ
(w

(0)
11 )H(v

(0)
11 )

(w
(0)
11 )Hv

(0)
11

,

(9)

= n
(1)
I11 + ξ, (10)

wheren(0)
I11 is the colored noise component in the first partition

which reduces ton(1)
I11 in the next stage. The target amplitude,

ξ, remains unchanged. In a similar fashion we can compute
the optimal weight vector and intermediate statistic for the
(n, m)th partition usingw(0)

nm = (R̂
(0)
nm)−1

v
(0)
nm to get

y(1)
nm =

(w
(0)
nm)H

x
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nm

(w
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(0)
11
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Inm
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(w

(0)
nm)H
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11

,

(11)

= n
(1)
Inm + ξz(n−1)N ′

s z
(m−1)M ′

t , (12)

where we made use of the relation in Eqn. (8) between the
(n, m)th steering matrix partition and the first steering matrix
partition. Note that the normalization in Eqn. (11) uses the
steering vector corresponding to the first partition.

From Eqn. (12) in stage one, the phase shift of the target
component between the first and(n, m)th partition is given by
z
(n−1)N ′

s z
(m−1)M ′

t , i.e., using Eqn. (5) the equivalent phase
shifts in stage one are given by

z(1)
s = zN ′

s , z
(1)
t = zM ′

t . (13)

Using Eqns. (10)-(13), the second stage comprises ats × tt
data matrix containing a target with the same amplitude
but with new temporal and spatial phase shifts, z

(1)
t and

z
(1)
s respectively. The algorithm iterates the partitioning and

processing until a single final statistic is obtained. At each
stage, the target steering matrix changes as per Eqn. (13).
Block Diagonal Interpretation: The expected advantages of
the FFA are clear: the use of the divide-and-conquer approach
allows forall DoF to be used while significantly reducing both
the sample support requirements and computation load. Each
adaptive problem is of sizeN ′M ′. However, it is important
to note that the FFA schemedoes not lead to an equivalent
model of the fully-optimal AMF which solves for allNM
DoF simultaneously. As a result, if adequate sample support
were available, some performance degradation is expected.
However, for practical scenarios where sample support is
scarce, the fully optimal AMF is not implementable and the
FFA becomes a strong practical alternative.

The FFA algorithm may be interpreted as a block-diagonal
approximation to the fully-optimal AMF. The AMF weights
are given by w = R̂

−1
v where R̂ is matrix of size

NM ×NM . On the other hand, the FFA processes blocks of
sizeN ′M ′×N ′M ′ on thediagonal of R̂. (This interpretation
requires some re-indexing of the space-time data vector. This
re-indexing is not presented here.) The loss in performance
of the FFA, compared to the optimal AMF, is due to the
neglecting of the off-diagonal blocks within̂R.

B. Unequal and Overlapping Partitions

The FFA algorithm, as described above, assumes partitions
of the same size. This restrictive choice is largely for ease
of exposition and not fundamental to the algorithm. Simple
variants of the FFA scheme are unequal and, even, overlapping
partitions. For example, in the case of unequal partitions,one
could usePs spatial andPt temporal partitions such that the
ith partition comprisesN0

i , i = 0, . . . , Ps − 1 spatial and
M0

i , i = 0, . . . , Pt − 1 temporal DoF. At each stage, the
processing remains as described above for equal partitions
except that the steering vector/matrix has to be carefully
calculated for each stage. For example, in creating stage 1,
the (n, m)th entry in thePs × Pt steering matrix is given by

z
S0

n
s z

S0

m

t ,

where S0
n =

∑n
i=0 N0

i and S0
m =

∑m
i=1 M0

i . This entry
assumes that the(0, 0)th entry is set to 1.

The steering vector in stage one, therefore, corresponds to
an unequally spaced array withPs elements andPt unequal
temporal spacings within a CPI. The spacings are defined by
the partition sizes,N i

0 and M i
0 , in the spatial and temporal

domains respectively. Subsequent stages are formed in a
similar manner. The FFA algorithm with unequal partitioning
can therefore be used for any values ofN andM .

C. Randomized FFA

The previous versions of the FFA scheme, described above,
use partitions of the space-time data matrix, i.e., contiguous
entries in the matrix. From the block-diagonal interpretation
described above, this translates to focusing exclusively on
the diagonal blocks of theNM × NM overall space-time



covariance matrix. These blocks may be of different sizes
(unequal partitions) or overlap (overlapping partitions), but are
restricted to the diagonal.

In this section we illustrate a more interesting variation:
a randomized partitioning. This variant has a few key advan-
tages:(i) it addresses the absence of a systematic and efficient
procedure to determine the optimal set of spatio-temporal
partitions that maximizes performance of the algorithm. A
computer search for the “best” sequence becomes impossible
for the case of large values ofN andM with numerous factors;
(ii) using the block diagonal interpretation, the FFA scheme
focuses exclusively on the diagonal blocks of the space-
time covariance matrix. However, a scheme that accounts
for these neglected portions of this matrix would clearly
improve performance;(iii) the fully optimal AMF essentially
forms a coherent weighted average of the random interference
component, thereby reducing its impact. Being able to do this
repeatedly would improve performance.

The FFA algorithm is not limited to any specific size, or
location, of partition. In fact, there is no need to restrictchoices
to rectangular partitions. As long as the process keeps track
of the steering vector at each stage, the AMF can be applied
to any subset of the space-time data vector. The key to the
randomized FFA algorithm is taking manyrandom subsets of
the data vector. The resulting statistics can be grouped into a
new data vector for the next stage of processing; furthermore
this process can be repeated as many times as necessary.

1) Given the available training data and computation re-
sources, chooseNDoF, the maximum number of adap-
tive DoF that can be processed. Also, vectorize the
space-time data and steering matrices.

2) Randomly interleave (rearrange) the data vector and
apply the same interleaver to the steering vector.

3) Choose blocks of lengthNDoF from within the inter-
leaved vectors and processes these blocks using the
AMF. For example, in the zeroth stage, there would be
approximatelyNM/NDoF blocks.

4) The output statistic of each block forms the data and
steering vectors for the following processing stage. Re-
peat steps 2 and 3 until a single “final”complex statistic
is obtained.

5) Repeat steps 2-4 as many times as computationally
feasible to form multiple “final” statistics that can be
grouped to form a new data and steering vector. Repeat
steps 2 and 3 the truly final statistic is obtained.

There are two unusual aspects to the randomized FFA algo-
rithm described above: the first is the use of random subsets
of the space-time data vector. Essentially, the randomizedFFA
algorithm allows use of random sub-matrices within the larger
NM×NM interference covariance matrix. The second aspect
is that the DoF can bereused as many times as necessary by
re-interleaving and taking different random subsets.

IV. N UMERICAL EVALUATION

In this section we present results of simulations used to
test the efficacy of the FFA approaches. The simulations

use measured HFSWR data. We compare the performance
of the FFA schemes against the nonadaptive filter matched
to the space-time steering vector and JDL algorithms. The
JDL algorithm is chosen for its relatively low complexity and
sample support requirements as representative of the classof
reduced rank algorithms.

The HFSWR data was measured using a system based on
the east coast of Canada. The radar, operated by Defense
Research and Development Canada (DRDC) at Cape Race on
the Canadian East Coast [7], comprisesN = 16 channels,
M = 4096 pulses, andL = 270 range cells. The radar
operating frequency is 3.1 MHz and the first range cell
corresponds to 62.75km with each range cell covering 1.5 km.
The 4096 pulses use a pulse repetition frequency (PRF) of
15.625 Hz. The inter-element distance of the uniform linear
array is d = 33.33 m. The examples here use the data set
measured on25th March 2002 at 03.02.57 am. Of the 270
range cells only the last 93 include ionospheric clutter.

The plots are based on the modified sample matrix inversion
(MSMI) statistic [8], defined for a weight vectorw, primary
data vectorx and steering vectorv as:

ηMSMI =
|wH

x|2
wHv

(14)

A. Proxy for Probability of Detection

Example 1: This example develops a test for the measured
ionospheric HFSWR clutter data analogous to probability
of detection (PD) plots used with simulated data. Using a
measured data set does not allow for independent realizations
to form aPD plot. In this example we add a target-like signal
to a single range cell and measure the ratio of the MSMI
statistic in this primary range to the maximum MSMI statistic
in the target-free cells, essentially the difference on thedB
scale, denoted as∆MSMI. The target Doppler is set at 0.18
Hz. Negative values of∆MSMI indicate false alarms. This
process is repeated for all 93 range cells with ionospheric
clutter and the results averaged. The parameters used are:

• JDL: 3 angle bins,3 Doppler bins, 1/(N
√

2) angle
spacing and1/(M

√
2) Doppler spacing.

• Regular FFA: spatial partitioning sequence= [2, 2, 2, 2]
and temporal partitioning sequence= [4, 4, 16, 16].

• Overlapping FFA: dM = [2, 8, 8, 2, 16], dN =
[2, 2, 2, 2, 1], sM = [2, 8, 8, 2, 16] andsN = [2, 2, 2, 2, 1].

• Randomized FFA:NDoF = 16, Niter = 1, i.e., iterations
over random interleavings are not used.

Here,dN (dM ) is the length of a spatial (temporal) partition
andsN (sM ) the separation between spatial (temporal) parti-
tions, at a certain depth of the FFA tree. Figure 2 plots the
results for the JDL and FFA methods. It should be emphasized
that the abscissa here is the amplitude of the injected target in
dB and not a signal-to-noise ratio. This is because the noise
level in the data is unknown as is the scale factors used in the
measurements. In this case ofmeasured data, the superiority
of the FFA-based schemes is clear. The JDL scheme is not
able to reliably detect all target amplitudes considered. The
randomized FFA scheme clearly shows the best performance
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Fig. 3. ∆MSMI versus target amplitude for the JDL, and FFA algorithms
reduced sample support scenarios (K = 20).

with about a 4.5 dB gap from the regular and overlapping FFA
schemes which show similar performance.
Example 2: The previous example used all 93 ionospheric
range cells to estimate the interference covariance matrix; the
final example in this section focuses on a reduced sample
support withK = 20.

The algorithm parameters utilized in this simulation are:

• JDL: 3 angle bins,3 Doppler bins, 1/(N
√

2) angle
spacing and1/(M

√
2) Doppler spacing.

• Regular FFA: spatial partitioning sequence
= [2, 2, 2, 2, 1, 1], temporal partitioning sequence
= [4, 4, 4, 4, 4, 4].

• Overlapping FFA:dM = [4, 3, 3, 5, 4, 4, 2, 10, 8], dN =
[2, 2, 2, 2, 2, 2, 3, 1, 1], sM = [2, 2, 2, 2, 2, 2, 2, 3, 1] and
sN = [2, 1, 1, 1, 1, 1, 1, 1, 1].

• Randomized FFA:NDoF = 10 in the first two stages

followed byNDoF = 9 in the following stages.Niter = 1,
i.e., DoF are not reused.

The results of this simulation are shown in Figure 3. There
are several interesting points to note from this figure; while
the performance of all three FFA schemes has worsened
due to the reduced sample support, the performance of the
JDL method has improved significantly. While this may seem
counter intuitive, we attribute the behavior of the JDL al-
gorithm to the non-homogeneity of the ionospheric clutter
across wider range spans. Over shorter spans such as 20 range
cells, the ionospheric clutter does maintain a certain degree
of homogeneity and as a result leads to a more accurate
estimate of the error covariance for the JDL, and, in turn, toan
improvement in performance. Interestingly, the FFA methods
seem to behave in the opposite manner, i.e., they seems to
be less sensitive to the non-homogeneity of the ionospheric
clutter than JDL, and are capable of better exploiting the
available sample support. As this plot reveals, the regular
and overlapping FFA methods enter the linear region at a
target amplitude of approximately15dB. The randomized FFA
enters its linear region at approximately7dB, while JDL
enters the linear region at about23dB. In the high SNR
region all three FFA schemes show similar performance for
the reduced sample support scenario, and outperform JDL by
approximately12.5dB. Note that in this case, the randomized
FFA scheme does not reuse adaptive DoF.

Figures 2 and 3 allow some speculation as to the source of
the stability of the FFA algorithms in non-homogeneous clutter
scenarios. While each individual “small” AMF implementation
within the larger FFA scheme is severely impacted by clutter
non-homogeneities, the figures suggest that the several com-
binations and recombinations average out this impact.

B. MSMI vs Range

In previous publications using measured data, e.g., [4], a
popular approach to algorithm testing is plots of the detection
statistic versus range. In this section we inject realistictargets
occupying multiple range cells (due to the range resolution
of the radar and the chosen sampling rate) at specific ranges
into the data cube, and attempt to detect the injected targets
using the algorithms under test. This test is most relevant to
measured data and we focus here on the measured ionospheric
clutter data sets. As in the examples above, the figure of merit
is the ratio of the MSMI statistic at the target range cell to
the maximum statistic at other range cells or the difference
between these two statistics on the dB scale.

The injected target has an absolute amplitude of 45dB, an
amplitude at which non-adaptive processing cannot detect the
target. As before, the target response is obtained via a separate
data set with a high-SNR target. The measured target response
shows a spread over three range cells. The target is injected
in range in 223, in the heart of the ionospheric clutter region,
at an angle of35◦1, and at a Doppler of0.18Hz.

1A preliminary analysis of the measured HFSWR datacubes indicated the
presence of a high power external interference source at an angle of35◦ and
spread across all the ranges of interest.
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The parameters used are:

• JDL: 3 angle bins,3 Doppler bins, 1/(N
√

2) angle
spacing and1/(M

√
2) Doppler spacing.

• Regular FFA: spatial partitioning sequence= [2, 2, 2, 2]
and temporal partitioning sequence= [4, 4, 16, 16].

• Overlapping FFA: dM = [2, 8, 8, 2, 16], dN =
[2, 2, 2, 2, 1], sM = [2, 8, 8, 2, 16] andsN = [2, 2, 2, 2, 1].

• Randomized FFA:NDoF = 16, Niter = 1, i.e., iterations
over random interleavings are not used.

The example uses 30 range cells for secondary sample support.
Figure 4 plots the results of using four processing schemes;

the figure plots the MSMI statistic for non-adaptive matched
filtering, the JDL scheme (representing low DoF methods
available in the literature), and the two schemes developed
here: the regular FFA and the randomized FFA algorithms. The
regular FFA scheme uses partition sizes ofN ′ = 2, M ′ = 4
at each stage while the randomized FFA uses 10 DoF at each
AMF operation.

As is clear from the figure, for these target parameters, both
the non-adaptive and JDL schemes are unable to pick out
the target. The improved performance using the FFA schemes
is clear. The target for both FFA schemes rises far above
the surrounding clutter range cells. The range spread in the
statistic is due to the radar range resolution. It is worth noting
that the improved performance over the JDL algorithm is
achieved with significantly higher computational complexity
due to the multiple AMF processes that must be executed.

V. CONCLUSIONS

In this paper we introduced the Fast Fully Adaptive (FFA)
approach which uses a divide-and-conquer strategy to sig-
nificantly reduce the computational complexity and sample
support requirements of the fully-adaptive STAP scheme. The
key idea underlying the schemes presented is to adaptively
combine the intermediate statistics output from each individual

smaller AMF process by accounting for the impact each stage
has on the space-time steering vector.

In this paper the performance of the FFA schemes was tested
using measured HFSWR data. In the case of non-homogeneous
ionospheric clutter, the FFA scheme far outperforms the JDL
scheme. Our explanation is that the FFA process combines the
results of multiple smaller AMF processes thereby averaging
out the non-homogeneities.

The improved performance of the FFA schemes arises at the
cost of increased computational complexity. This is because
of the multiple, albeit smaller, AMF processes that must be
executed. One could envision a parallel implementation of
these processes to reduce the computational time per look
range cell. It is important to note that the fundamental limiting
factor in STAP is the limited available training and the FFA
scheme was designed to address this fundamental problem.

The work here could be extended in several directions.
There has not been any attempt here to optimize the parameters
of the FFA schemes. In this paper the FFA schemes were
developed in the context of the fully-adaptive AMF algorithm.
In severely non-homogeneous scenarios, researchers have de-
veloped direct data domain approaches [9], [10] which are
generally very computationally intensive. The FFA scheme
could be combined with these approaches to improve their
computational complexity. This is especially true for systems
with large values ofN and/orM .
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