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Abstract—Due to the associated computational load and re- the available secondary data, which inevitably leads totmos
quired statistically homogeneous training, fully optimal space- of the originally available adaptive DoF being “wasted”.€Th
time adaptive processing (STAP) is well-accepted to be imBC- 35 method, for example, adaptively processes data within

tical. Previous work has addressed these issues by reducirige lativel I lized : . LPR ft
adaptive degrees of freedom (DoF). In this paper we introdue & relatively small localized processing region (LPR), mfte

a new multistage STAP approach that significantly reduces Performing a non-adaptive transformation of the space-tim
required sample support, and computational complexity, whle data to the angle-Doppler domain. Reducing the adaptive
still processing all available DoF. The multistage “fast flly —DoF yields corresponding reductions in the sample support
adaptive” (FFA) scheme draws inspiration from the butterfly  reqyired and computational load, but at the same time irspact
structure of the Fast Fourier Transform (FFT). The reduction in P
complexity and required sample support rival currently available perfo_rmance and reduces target d_lscrlmlnatlon. .
reduced DoF algorithms. We test the efficacy of this algoritm This paper proposes an alternative approach that explbits a
using measured high frequency surface wave radar data. available degrees of freedom while simultaneously redycin
computational complexity and required sample supports Thi
multistage adaptive processing technique, referred te her
Space-time adaptive processing (STAP) remains the mdsé Fast Fully Adaptive (FFA) approach, draws its inspinati
effective means of detecting a weak target buried within siffom the butterfly structure of the Fast Fourier Transform
nificantly stronger interference. Consider an adaptivesptia (FFT). Essentially, the FFA approach sub-dividesian M
array radar withV spatial channels antl/ pulses in a coherent space-time data matrix into several sub-matrices of smalle
pulse interval (CPI). The fully adaptive matched filter (AMFdimensions, and then uses the AMF within each such sub-
approach computes an adaptive weight for each ofNtld matrix to compute an intermediate statistic. The key idea
adaptive degrees of freedom (DoF) based onXhe x NM  underlying the FFA approach is that tleetputs from each
interference covariance matrix. This matrix must be edtigha stage form the data matrix of the subsequent stage. This
using available training measurements. It is now well atamp process of partitioning the newly formed data matrix, foiéal
that there are two important problems with implementing they adaptively processing each resulting partition, is atpe
AMF in practice [1]: until the original N x M data matrix is reduced to a single
1) Obtaining the adaptive weights requires the solution offmal statistic (whose magnitude can be compared against a
NM x NM matrix equation in real time for each range celthosen threshold to determine if a target is present or absen
of interest. Given reasonable values fgrand M this task is at the range cell under test). Hence, as with the FFT algurith
almost impossible. the FFA achieves lower complexity via a divide-and-conquer
2) Obtaining a reasonably accurate estimate of the interfapproach. A distinct advantage the FFA approach has over
ence covariance matrix withv M/ DoF, such that the output other conventional low-complexity STAP methods, such as th
signal-to-interference-plus-noise ratio (SINR) is witBdB of JDL, is thatall the adaptive DoF are used at every stage.
the optimum, requires at lea&lV M statistically homogeneous In this paper we develop the FFA algorithm and compare
secondary data samples [2]. Given that these secondary dataperformance of the AMF (when possible), FFA and JDL
samples are obtained from range cells surrounding the aagorithms using both simulated angtasured high frequency
under test, this requirement can rarely be met in practice. surface wave radar (HFSWR) data obtained by Defense Re-
To address these issues researchers have developed teefirch and Development Canada (DRDC) [7].
nigues with lower complexity and fewer adaptive DoF. Some
popular low complexity approaches include the Joint Domain
Localized (JDL) algorithm [3], [4], the Parametric Adamiv We develop the FFA algorithm in the context of an equi-
Matched Filter (PAMF) [5] and the&A algorithm [6]. The spaced linear array aV isotropic point sensors. This choice
common feature that all these methods share is that the tasalargely for ease of exposition and is not essential to the
number of adaptive DoF are reduced to meet the constraintswaaorkings of the algorithm. The radar transmits a pulse in

I. INTRODUCTION

II. SYSTEM MODEL AND FULLY ADAPTIVE STAP



a chosen direction,, referenced to broadside, searching for
potential targets in this direction. In turn, the array rees
returns from potential targets and other interference casur
The return signal is sampled times with each sample
corresponding to a range cell. This process is repeated
times within a CPI forming aN x M x L data cube. For
each range bin, the received data can be stored in a length
N M vector which is a sum of the contributions from external
interference sources, thermal noise, and possibly a tarpet

vector can be written as draws its inspiration from the butterfly structure of the FFT
Essentially, the FFA approach sub-divides &hx M data

X = Ev(9e, fi) +m, @) matrix intg several subp—%atrices of smaller dimensiongl an
wheren is the vector of all interference and noise sourcethen uses the AMF within each such sub-matrix to compute
¢ is the target amplitudey is the space-time steering vectoman intermediate statistic.
corresponding to a target at look angle and look Doppler  The key idea behind the FFA approach lies in that the out-
frequencyf,. This steering vector can be written in terms oputs from each successive stage can be combadaptively
a spatial steering vecter(¢;) and a temporal steering vectorto form the data matrix of the subsequent stage. This process
b(f:) [1], of repartitioning the newly formed data matrix, followed by
adaptively processing each resulting partition, is regbantil

Fig. 1. The multistage representation of the FFA method

v(on, fi) = b(fr)@a(d), - @ the original N x M data matrix is reduced to a single
a(dy) = {1 Zs Z? o ng_l)} , (3) final statistic whose magnitude is compared against a certai
- threshold to determine if a target is present or absent at the
b(f) = {1 ze 22 ... zt(M*”} , (4) range cell under test. The FFA scheme is of relatively low
_ anf Ty complexity, with the distinct advantage that the entireadat
Zg = el o 2 = e’ t R7 (5)

matrix is adaptively processed at every stage.

where ® represents the Kronecker product of two vectorg, Regular FFA
T the transpose operatof, = (d/\)sin¢; the normalized hi ) ; he devel  th
spatial frequency) the wavelength of operation ang, the " this section we focus on the development of the FFA ap-

pulse repetition frequency (PRF). A linear processor use?¥ach in its most intuitive form; the “regular” FFA illustied
weight vectorw to form a decision statistid,, i.e., in Fig. 1. We adopt a divide and conquer strategy that pamntti
the N x M space time snapshot info, x ¢;) smaller spatio-

H J—

Yy = WX, (6) temporal matrices of dimensiod¢’ x M’, whereN’ = N/t
A 2 o H_ 2 A 7 and M’ = M/t, are chosen corresponding to the available
lyl* = [w"x] 5 o () training data. ImportantyN’ < N and M’ < M. We

where A, is a threshold andH, and H, represent the the_n apply the_ AMF algorithm on e_ach of these _partmons
which results in a newt, x t; matrix whose entries are

target-absent and present hypotheses respectively. Timeabp d oth | tout Statisi ina E 6). of
weight vector, in the minimum mean-squared error sense,igMPosed okne compiex output SASICS, using Egn. (6). 0

: = ; ; ; the corresponding AMF processes.
given byw = R~!v whereR is the covariance matrix of . - .
the interferenceR = E [nnH], and® denotes the Hermitian The weights computed by the AMF within each partition

of a matrix. In practice, the interference covariance masi are scaled to retain the steering vector structure acrass th

unknown and must be estimated using training data. In STA{s,SUIt'ng spatlal ar_1d tempor_al dimensions. As a result dve_n
the covariance matrix corresponding to the primary range ¢ x t; matrix of residual spatio-temporal outputs, from the first

(the cell under test) is estimated using data freBhsecondary stage of processing, forms a s.pace-nme matrix c-ontamnag t
same target, but with a steering vector whose inter-element

~ K . .
range cells aR = > xxxf’, wherex; is the space-time and inter-pulse phase shift has been modified. Note that this
r=1 . . 3 . .
data snapshot at theé" secondary range cell. As mentioned® Iargely_fqr convenience, as Io_ng the impact of the pracgss
of the original steering vector is tracked, performanceads n

earlier, the fundamental reason this processor is immalds . X b
that an adequate number of secondary cells are rarely bkﬂaild'f‘ffe(:md‘ Also mpd|f|ed by the first stage Of processing 1S the
in practice. mterferencg, vyh|ch has been supprgssed_m each partllyon b
the AMF, yielding an “attenuated” residual interferencetiixa
in the forthcoming processing stage.
The resultingt, x t;, data-matrix is again repartitioned
In this section we will propose an alternative STAP apnot necessarily in the same way as the original space-time
proach that exploits all available degrees of freedom wéile snapshot) and each partition is processed by the AMF yigldin
multaneously reducing computational complexity and remlii the next stage of spatio-temporal outputs. This procedare i
sample support. This multistage adaptive processing sehemapeated until a final statistic is obtained.

Ill. FAST FuLLY ADAPTIVE PROCESSING



For convenience, we formalize this approach for the casg” respectively. The algorithm iterates the partitioning and
with the same partition size at all levels for a linear arrély grocessing until a single final statistic is obtained. Atteac
point sensors. We begin by reformatting the data and sgerstage, the target steering matrix changes as per Eqn. (13).
vectors,x andv, asN x M matricesX andV respectively. Block Diagonal Interpretation: The expected advantages of
These matrices are partitioned intpx ¢, sub-matrices each the FFA are clear: the use of the divide-and-conquer approac
of size N’ x M’. Denote thent" spatial andm!” temporal allows forall DoF to be used while significantly reducing both
partition of the space-time snapshot and steering matrix #& sample support requirements and computation load. Each
X© and Vv, n = 1,2,....t, andm = 1,2,....t, adaptive problem is of siz&”M’. However, it is important
respectively. The superscriff specifies that we are currentlyto note that the FFA schenmpes not lead to an equivalent
processing the starting (zeroth) stage in the tree-likecgire. model of the fully-optimal AMF which solves for alV M

The (n,m)™" steering matrix partition,\/‘ﬁ%, is related to DOF simu_ltaneously. As a result, if adequate _sam_ple support
first steering matrix partitionvg(i) as follows: were available, some performgnce degradation is expectgd.

However, for practical scenarios where sample support is
V(O = pn= DN (m=)M'y, () (8) scarce, the fully optimal AMF is not implementable and the
FFA becomes a strong practical alternative.

The AMF is used within each partition. Consider the first The FFA a|gorithm may be interpreted as a b|ock-diagona|
partition, with data matrixxg(i) of size N’ x M'. The sample approximation to the fully-optimal AMF. The AMF weights
support required to estimate the relevant interferenc@rcov are given byw = R~!v where R is matrix of size
ance matrix,R\?, is reduced fron2N'M to approximately N1 x NM. On the other hand, the FFA processes blocks of
2N’M’, with corresponding reductions in the computationalize N/’ x N’ M’ on thediagonal of R. (This interpretation
load to solve the resulting matrix equation. The weight ®ectrequires some re-indexing of the space-time data vectds. Th
for the first partition is given byzvﬁ) = (f{ﬁ))‘lvﬁ), where re-indexing is not presented here.) The loss in performance
x§0> andvg(i) are theN’ M’ x 1 vectorized forms oixﬁ) and of the FFA, compared to the optimal AMF, is due to the
Vg(i) respectively. The intermediate statistic, for tiest stage, neglecting of the off-diagonal blocks withiR.

corresponding to this first partition is given by B. Unequal and Overlapping Partitions
W )T @) i) vy

a (Wﬁ))HX Wiy nyy Wiy The FFA algorithm, as described above, assumes partitions
o (qu))HVﬁ) N (Wﬁ))HVﬁ) (Wﬁ))ﬂvgol) " of the same size. This restrictive choice is largely for ease
(9) of exposition and not fundamental to the algorithm. Simple
W variants of the FFA scheme are unequal and, even, overlgppin
=nm +§, (10) partitions. For example, in the case of unequal partitiong,
Id useP; spatial andP, temporal partitions such that the
partition comprisesN?,i = 0,...,P; — 1 spatial and

Wherenﬁ)1 is the colored noise component in the first partitioﬁt?lu

which reduces t@nf,ll)1 in the next stage. The target amplitude’ 0
&, remains unchanged. In a similar fashion we can compu ;4 = 0,..., 5 — 1 temporal DoF. At each stage, the

the optimal weight vector and intermediate statistic foe thg;(c):ze?s'tﬂgt rfr:g‘algtiea;isn de\fg;g?ﬁﬂ:gs(vi;grtgqggl (?;rglftgl)lns
(n,m)t" partition usingw o, = (R'0)~1v{%), to get n 9 y

calculated for each stage. For example, in creating stage 1,

@ (W) Hx0), (W;%)Hngggm g(wg%)va% the (n, m)™ entry in theP, x P, steering matrix is given by
nm — 0 0 0 0 0 0y’
I N S,

1 Do )N’ (m—1)M’ where S0 = " (NP and S9, = Y7, M?. This entr
- ngn)m + ez ZIE ™ (12) assumes that%éﬂ,oo)‘h entry is set t%jl.1 !
where we made use of the relation in Egn. (8) between theThe steering vector in stage one, therefore, corresponds to
(n, m)*" steering matrix partition and the first steering matrifn unequally spaced array withP; elements and”; unequal
partition. Note that the normalization in Egn. (11) uses tHemporal spacings within a CPI. The spacings are defined by
steering vector corresponding to the first partition. the partition sizesN; and M , in the spatial and temporal
From Eqn. (12) in stage one, the phase shift of the targ‘?—ﬂmams respectively. Subsequent stages are formed in a

component between the first afe, m)t" partition is given by similar manner. The FFA algorithm with unequal partiticgin
Zgnfl)N’ngfl)M” i.e., using Eqn. (5) the equivalent phasgan therefore be used for any valuesNofand M.

shifts in stage one are given by C. Randomized FFA

20 = 2N Z§1> =M. (13) The previous versions of the FFA scheme, described above,
use partitions of the space-time data matrix, i.e., cowtigu
Using Eqns. (10)-(13), the second stage comprises@t; entries in the matrix. From the block-diagonal interpiietat
data matrix containing a target with the same amplitudtescribed above, this translates to focusing exclusively o
but with new temporal and spatial phase shifts, zt(l) and the diagonal blocks of theV M x NM overall space-time



covariance matrix. These blocks may be of different sizesse measured HFSWR data. We compare the performance
(unequal partitions) or overlap (overlapping partitignms)t are of the FFA schemes against the nonadaptive filter matched
restricted to the diagonal. to the space-time steering vector and JDL algorithms. The
In this section we illustrate a more interesting variationlDL algorithm is chosen for its relatively low complexitydan
a randomized partitioning. This variant has a few key advansample support requirements as representative of the afass
tages:(7) it addresses the absence of a systematic and efficieeduced rank algorithms.
procedure to determine the optimal set of spatio-temporalThe HFSWR data was measured using a system based on
partitions that maximizes performance of the algorithm. #e east coast of Canada. The radar, operated by Defense
computer search for the “best” sequence becomes impossiBisearch and Development Canada (DRDC) at Cape Race on
for the case of large values &f and M with numerous factors; the Canadian East Coast [7], compris¥€s= 16 channels,
(#4) using the block diagonal interpretation, the FFA schem¥ = 4096 pulses, andL = 270 range cells. The radar
focuses exclusively on the diagonal blocks of the spaceperating frequency is 3.1 MHz and the first range cell
time covariance matrix. However, a scheme that accoumresponds to 62.75km with each range cell covering 1.5 km.
for these neglected portions of this matrix would clearlfhe 4096 pulses use a pulse repetition frequency (PRF) of
improve performance(iii) the fully optimal AMF essentially 15.625 Hz. The inter-element distance of the uniform linear
forms a coherent weighted average of the random interfereraray isd = 33.33 m. The examples here use the data set
component, thereby reducing its impact. Being able to d® thineasured or25™" March 2002 at 03.02.57 am. Of the 270
repeatedly would improve performance. range cells only the last 93 include ionospheric clutter.
The FFA algorithm is not limited to any specific size, or The plots are based on the modified sample matrix inversion
location, of partition. In fact, there is no need to resteicbices (MSMI) statistic [8], defined for a weight vector, primary
to rectangular partitions. As long as the process keepk tratata vectorx and steering vectov as:
of the steering vector at each stage, the AMF can be applied
to any subset of the space-time data vector. The key to the 7
randomized FFA algorithm is taking mamgndom subsets of . wov
the data vector. The resulting statistics can be groupedant Proxy for Probability of Detection
new data vector for the next stage of processing; furtheemdexample 1. This example develops a test for the measured
this process can be repeated as many times as necessaryionospheric HFSWR clutter data analogous to probability
1) Given the available training data and computation r& detection £p) plots used with simulated data. Using a
sources, choosdp.r, the maximum number of adap_measured data set does not allow for independent realizatio

tive DOF that can be processed. Also, vectorize tH8 form a Pp plot. In this example we add a target-like signal
space-time data and steering matrices. to a single range cell and measure the ratio of the MSMI

Randomly interleave (rearrange) the data vector angfatistic in this primary range to the maximum MSMI stagisti
Choose blocks of lengtiVpor from within the inter- Scale, denpted aAMSMI. The target Doppler is set at 0.18

AMF. For example, in the zeroth stage, there would J&rocess is repeated for all 93 range cells with ionospheric
approximatelyN M /Npor blocks. clutter and the results averaged. The parameters used are:

|wHx|?

MSMI = (14)

2)

3)

4)

5)

The output statistic of each block forms the data and®
steering vectors for the following processing stage. Re-
peat steps 2 and 3 until a single “finadmplex statistic .
is obtained.

Repeat steps 2-4 as many times as computationally *
feasible to form multiple “final” statistics that can be
grouped to form a new data and steering vector. Repeat

JDL: 3 angle bins,3 Doppler bins, 1/(N+v/2) angle
spacing and /(M +/2) Doppler spacing.

Regular FFA: spatial partitioning sequenee[2, 2,2, 2]
and temporal partitioning sequenee[4, 4, 16, 16].
Overlapping FFA: dys [2,8,8,2,16], dy
2,2,2,2,1], sar = [2,8,8,2,16] andsy = [2,2,2,2,1].

Randomized FFANp.r = 16, Niter = 1, i.€., iterations

steps 2 and 3 the truly final statistic is obtained. over random interleavings are not used.

There are two unusual aspects to the randomized FFA alg#re, d (du) is the length of a spatial (temporal) partition
rithm described above: the first is the use of random subs@fdsn (sar) the separation between spatial (temporal) parti-
of the space-time data vector. Essentially, the randonfEed tions, at a certain depth of the FFA tree. Figure 2 plots the
algorithm allows use of random sub-matrices within thedargresults for the JDL and FFA methods. It should be emphasized
NM x N M interference covariance matrix. The second aspdft the abscissa here is the amplitude of the injectedttarge

is that the DoF can besused as many times as necessary b@B and not a signal-to-noise ratio. This is because the noise
re-interleaving and taking different random subsets. evel in the data is unknown as is the scale factors used in the

measurements. In this case roéasured data, the superiority
IV. NUMERICAL EVALUATION of the FFA-based schemes is clear. The JDL scheme is not

In this section we present results of simulations used #&dble to reliably detect all target amplitudes considereue T
test the efficacy of the FFA approaches. The simulationandomized FFA scheme clearly shows the best performance



Regul arFFA P followed by Npor = 9 in the following stagesVjie, = 1,

@I nterl eaveBFA ‘

| -0 - Random zedFA S i.e., DOF are not reused.

o The results of this simulation are shown in Figure 3. There
S L0 are several interesting points to note from this figure; ghil
Sy the performance of all three FFA schemes has worsened
o £ due to the reduced sample support, the performance of the
; JDL method has improved significantly. While this may seem
R counter intuitive, we attribute the behavior of the JDL al-
. gorithm to the non-homogeneity of the ionospheric clutter
0 across wider range spans. Over shorter spans such as 20 range
°r RS ‘ cells, the ionospheric clutter does maintain a certain eegr
LA of homogeneity and as a result leads to a more accurate
o & ‘ ' estimate of the error covariance for the JDL, and, in turrrto

S I improvement in performance. Interestingly, the FFA method
= = 25 30 ‘ ‘ ‘ seem to behave in the opposite manner, i.e., they seems to
Target Amplitude(dB) be less sensitive to the non-homogeneity of the ionospheric
Fig. 2. AMSMI versus target amplitude for the JDL and FFA aIgorithmsClutFer than JDL, and are capal:_JIe of better exploiting the
using K = 93 secondary samples. available sample support. As this plot reveals, the regular

and overlapping FFA methods enter the linear region at a
——» target amplitude of approximatelypdB. The randomized FFA

_ - enters its linear region at approximatelylB, while JDL

251 "2 7 Spaom 2o . enters the linear region at abo@8dB. In the high SNR
' region all three FFA schemes show similar performance for
the reduced sample support scenario, and outperform JDL by
approximatelyl2.5dB. Note that in this case, the randomized
FFA scheme does not reuse adaptive DoF.

Figures 2 and 3 allow some speculation as to the source of
the stability of the FFA algorithms in non-homogeneoustelut
scenarios. While each individual “small” AMF implementati
within the larger FFA scheme is severely impacted by clutter
non-homogeneities, the figures suggest that the several com
binations and recombinations average out this impact.

B. MSMI vs Range

0 s w0 15 B ey ¥ 0 In previous publications using measured data, e.g., [4], a
popular approach to algorithm testing is plots of the datect
Fig. 3. AMSMI versus target amplitude for the JDL, and FFA algorithmsstatistic versus range. In this section we inject realistigets
reduced sample support scenarids £ 20). occupying multiple range cells (due to the range resolution
of the radar and the chosen sampling rate) at specific ranges
_ ) into the data cube, and attempt to detect the injected target
with about a 4.5 dB gap from the regular and overlapping FFising the algorithms under test. This test is most relevant t
schemes which show similar performance. _ measured data and we focus here on the measured ionospheric
Example 2: The previous example used all 93 ionospherigyter data sets. As in the examples above, the figure oftmeri
range cells to estimate the interference covariance mal® s the ratio of the MSMI statistic at the target range cell to
final example in this section focuses on a reduced samplg, maximum statistic at other range cells or the difference
support with K* = 20. between these two statistics on the dB scale.
The algorithm parameters utilized in this simulation are: The injected target has an absolute amp"tude of 45dB’ an
« JDL: 3 angle bins,3 Doppler bins,1/(N+v/2) angle amplitude at which non-adaptive processing cannot defect t
spacing and /(M+/2) Doppler spacing. target. As before, the target response is obtained via aaepa
« Regular FFA: spatial partitioning sequencélata set with a high-SNR target. The measured target respons
= [2,2,2,2,1,1], temporal partitioning sequenceshows a spread over three range cells. The target is injected
= [4,4,4,4,4,4)]. in range in 223, in the heart of the ionospheric clutter regio
« Overlapping FFA:dy, = [4,3, 10,8], dy = atan angle o85°%, and at a Doppler 06.18Hz.
2,2,2,2,2,2,3,1,1], s;my = [2,2,2,2,2,2,2,3,1] and 1 . ) o
A preliminary analysis of the measured HFSWR datacube<ateli the

SN = [2a _17 1,1,1,1,1,1, 1]- . . presence of a high power external interference source ahgie af35° and
o Randomized FFA:Np,r = 10 in the first two stages spread across all the ranges of interest.
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randomized FFA schemes.

The parameters used are:

« JDL: 3 angle bins,3 Doppler bins,1/(N+v/2) angle
spacing and /(M+/2) Doppler spacing.

« Regular FFA: spatial partitioning sequenee(2, 2,2, 2]

smaller AMF process by accounting for the impact each stage
has on the space-time steering vector.

In this paper the performance of the FFA schemes was tested
using measured HFSWR data. In the case of non-homogeneous
ionospheric clutter, the FFA scheme far outperforms the JDL
scheme. Our explanation is that the FFA process combines the
results of multiple smaller AMF processes thereby aveagin
out the non-homogeneities.

The improved performance of the FFA schemes arises at the
cost of increased computational complexity. This is beeaus
of the multiple, albeit smaller, AMF processes that must be
executed. One could envision a parallel implementation of
these processes to reduce the computational time per look
range cell. It is important to note that the fundamentaltiing
factor in STAP is the limited available training and the FFA
scheme was designed to address this fundamental problem.

The work here could be extended in several directions.
There has not been any attempt here to optimize the paraneter
of the FFA schemes. In this paper the FFA schemes were
developed in the context of the fully-adaptive AMF algomith
In severely non-homogeneous scenarios, researchers bave d
veloped direct data domain approaches [9], [10] which are
generally very computationally intensive. The FFA scheme
could be combined with these approaches to improve their
computational complexity. This is especially true for syss

and temporal partitioning sequenee[4, 4, 16, 16].
o Overlapping FFA: dy, [2,8,8,2,16], dn
2,2,2,2,1], spr = [2,8,8,2,16] and sy = [2,2,2,2,1].
o Randomized FFANp.r = 16, Niter = 1, i.€., iterations [1]
over random interleavings are not used. 2]

The example uses 30 range cells for secondary sample support

Figure 4 plots the results of using four processing schemedﬁ'
the figure plots the MSMI statistic for non-adaptive matche
filtering, the JDL scheme (representing low DoF methods
available in the literature), and the two schemes developéﬁﬂ
here: the regular FFA and the randomized FFA algorithms. The
regular FFA scheme uses partition sizesNdf = 2, M’
at each stage while the randomized FFA uses 10 DoF at ealh
AMF operation.

As is clear from the figure, for these target parameters, both
the non-adaptive and JDL schemes are unable to pick ol
the target. The improved performance using the FFA schemes
is clear. The target for both FFA schemes rises far abov&]
the surrounding clutter range cells. The range spread in the
statistic is due to the radar range resolution. It is worthngp (g
that the improved performance over the JDL algorithm is
achieved with significantly higher computational comptgxi o]
due to the multiple AMF processes that must be executed.

V. CONCLUSIONS [10]

In this paper we introduced the Fast Fully Adaptive (FFA)
approach which uses a divide-and-conquer strategy to sig-
nificantly reduce the computational complexity and sample
support requirements of the fully-adaptive STAP scheme Th
key idea underlying the schemes presented is to adaptively
combine the intermediate statistics output from each idda

with large values ofV and/or M.
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