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Abstract 

This paper presents a novel approach for efficient computation of adaptive weights in phased-array antennas. The fun- 
damental philosophical differences between adaptive antennas and adaptive signal-processing methodology are also 
delineated in the introduction. This approach, unlike the conventional statistical techniques, eliminates the requirement for 
an interference covariance matrix, and represents a rethinking of the entire conventional approach to adaptive process- 
ing. This approach provides greater flexibility in solving a wider class of problems, at the expense of a slightly reduced 
number of degrees of freedom. It is important to note that the application of a deterministic approach to address stochas- 
tic problems with an ergodic structure can be seen in the works of Norbert Wiener and A. N. Kolmogorov, as outlined in 
the introduction. This paper presents examples to illustrate the effectiveness and uniqueness of this new pragmatic 
approach. 

Keywords: Adaptive arrays; adaptive signal processing; shaped beam antennas; array signal processing; sidelobe 
cancellation; multipath channels 

1. Introduction 

his paper deals with the application of a direct data-domain T least-squares algorithm to adaptive antennas. The basic differ- 
ence between adaptive antennas and adaptive signal processing is 
that an antenna is a spatial filter, and therefore processing occurs in 
the angular domain, whereas a signal-processing algorithm is 
applied in the temporal domain. To identify whether one is dealing 
with adaptive antennas or adaptive signal processing is to ask the 
question, “Can the adaptive system separate a desired signal from a 
mixture of itself along with its coherent multipath component?’ In 

this case, there is not only signal, but also a multipath component 
that is correlated with the signal and interacts (in either an additive 
or destructive fashion) with the signal. Only an adaptive antenna 
can isolate the signal from its coherent multipath, as the informa- 
tion on how to separate them is available spatially. In a conven- 
tional signal-processing algorithm, this type of coherent multipath 
separation is not a trivial problem, and secondary processing that 
utilizes the electromagnetic spatial concepts is necessary. The point 
here is that purely temporal processing cannot separate signals 
spatially, as the information exists in different domains. The direct- 
domain, least-squares approach is unlike the conventional method- 
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ology, which needs to evaluate second-order statistics (i.e., the 
covariance matrix) of the data. 

This paper has eight sections, followed by a list of references. 
The goal of the references is to provide information as to where 
supplementary materials may be available, which will further 
illustrate the points made in this paper in a more elaborate fashion. 
The second section describes the anatomy of an adaptive process. 
It is seen that to formulate an adaptive methodology, it is abso- 
lutely essential to have some knowledge about the desired signal to 
be estimated from a noisy environment. Historically, statistical 
methods have been used extensively in the adaptive methodology, 
as described in Section 3. In Section 4, it is shown how the analog 
adaptive process was modified with the advent of digital tech- 
niques. However, the shortcomings of a statistical process can be 
overcome by using a deterministic methodology, based on a single 
snapshot. This approach is presented in Section 5 ,  along with some 
numerical examples. It is seen that at least four different determi- 
nistic approaches may be applied simultaneously to solve the same 
adaptive problem, without making any assumptions about the 
underlying process. Hence, the level of confidence in the final 
computed solution can be increased to an extremely high level, by 
comparing the solution obtained by the different direct data- 
domain least-squares procedures. Thus, with this approach, one can 
not only obtain a useful solution, but can also have a high degree 
of confidence in the result. For example, if all the three techniques 
provide similar estimates for the unknown signal, then one can say 
with a high level of confidence that the solution is probably cor- 
rect, although the true solution remains unknown. If properly 
implemented, this procedure can significantly minimize the false- 
alarm probability. 

It is quite easy to demonstrate that in a more scientific 
approach, we apply a deterministic least-squares method to solve 
the problem when the underlying probability density functions are 
not known a-priori. As William A. Gardner points out in his book 
[24], in most cases, a deterministic approach can be applied with- 
out taking recourse to a statistical methodology. 

Gardner points out, in the preface of his other book [22] ,  

The book grew out of an enlightening discovery I made 
a few years ago, as a result of a long term attempt to 
strengthen the tenuous conceptual link between the 
abstract probabilistic theory of cyclostationary stochastic 
processes and empirical methods of signal processing 
that accommodate or exploit periodicity in random data. 
After a period of unsatisfactory progress toward using 
the concept of ergodicity to strengthen this link, it 
occurred to me (perhaps wishfully) that the abstraction 
of the probabilistic framework of the theory might not be 
necessary. As a first step in pursuing this idea, I set out 
to clarify for myself the extent to which the probabilistic 
framework is needed to explain various well-known 
concepts and methods in the theory of stationary sto- 
chastic processes. To my surprise, I discovered that all 
the concepts and methods of empirical spectral analysis 
can be explained in a more straight forward fashion in 
terms of a deterministic theory, that is, a theory based on 
time averages of a single time series rather than ensem- 
ble-averages of hypothetical random samples from an 
abstract probabilistic model. To be more specific, I 
found that the fundamental concepts and methods of 
empirical spectral analysis can be explained without use 

of probability calculus or the concept of probability and 
that probability calculus, which is indeed useful for 
quantification of the notion of degree of randomness or 
variability, can be based on time averages of a single 
time-series without any use of the concept or theory of a 
stochastic process defined on an abstract probability 
space. 

Norbert Weiner’s generalized harmonic analysis, written in 
1930, was entirely devoid of probability theory; and yet there has 
been only one book written since then for engineers and scientists 
that provides more than a brief mention of Wiener’s deterministic 
theory [22]. All other such books emphasize the probabilistic the- 
ory of A. N. Kolmogorov, usually to the complete exclusion of 
Wiener’s deterministic theory. 

Even Kolmogorov, himself, suggested “...way toward the 
future. Side by side with the vigorous pursuit of the theory of sto- 
chastic processes, must coexist a more direct process-free (deter- 
ministic) inquiry of randomness of different classes of functions” 
[22]. T. L. Fine, in the concluding section of his book, Theories of 
Probability, states, “Judging from the present confused status of 
probability theory, the time is at hand for those concemed about 
the characterization of chance and uncertainty in the design of 
incidence and decision making systems to reconsider their long- 
standing dependence on the traditional statistical and probabilistic 
methodology .... why not ignore the complicated and hard to justify 
probability statistics structure and proceed ‘directly’ to those per- 
haps qualitative assumptions that characterize our source of ran- 
dom phenomena, the means at our disposal, and our task?’ [22]. 

These points have further been enhanced by Ronald N. 
Bracewell. As he points out, in the preface of [22], 

“The theory of signal processing, as it has devel- 
oped in electrical and electronics engineering, leans 
heavily toward the random process, defined in terms of 
probability distributions applicable to ensembles of sam- 
ple signal waveforms. But many students who are adapt 
at the useful mathematical techniques of the probabilistic 
approach and are quite at home with joint probability 
distributions are unable to,make even a rough drawing of 
the underlying sample waveforms. The idea that the 
sample waveforms are the deterministic quantities being 
modeled somehow seems to get lost ....” 

The assumption of randomness is an expression of 
ignorance. Progress means the identification of system- 
atic effects which, taken as a whole, may initially give 
the appearance of randomness and unpredictability .... 

Many authors have been troubled by the standard 
information theory approach via the random process or 
the probability distribution because it seems to put the 
cart before the horse. Some sample parameters such as 
mean amplitudes or powers may be known to precision 
of measurement but if we are to go beyond pure mathe- 
matical deduction and make advances in the realm of 
phenomena, theory should start from the data. To do 
otherwise risks failure to discover that which is now 
built into the model .... Problems on the forefront of 
development are often ones where the probability distri- 
butions of neither signal nor noise is known; and such 
distributions may be essentially unknowable because 
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repetition is impossible. Thus, any account of measure- 
ment, data processing, and interpretation of data that is 
restricted to probabilistic models leaves something to be 
desired. A nonprobabilistic model demonstrates a con- 
sistent approach from data, those things which in fact are 
given, and shows that analysis need not proceed from 
assumed probability distributions of random process. 
This is a healthy approach and one that can be recom- 
mended to any reader.” 

- 
Controller 

In addition, Haykin [9] points out that a stochastic methodol- 
ogy leads to the design of an adaptive filter that will operate in a 
probabilistic sense on average for all the operational environments, 
assumed to be wide-sense stationary. On the other hand, a determi- 
nistic approach provides the solution for the given data at hand, 
and without invoking any of the stochastic methodology and with- 
out assuming the nature of the probability density functions. For 
example, if one takes a normal coin, when tossed up, on the aver- 
age it will fall with the “head” facing up 50% of the time, and the 
“tail” up the other 50%. However, it is not known a priori what is 
going to happen on a single toss. A deterministic approach pro- 
vides the solution for that single realization, which operates on the 
given data for one snapshot only. This philosophy has been further 
amplified by Hofstetter and Gardner [ 23 ] .  

Section 6 describes the prevention of signal cancellation in an 
adaptive process by performing adaptive processing with con- 
straints across the beamwidth (3  dB points). In Section 7, a novel 
method is presented to estimate the accuracy of the assumed direc- 
tion of arrival of the desired signal, based on the norm of the adap- 
tive weights. This is followed by the conclusion in Section 8, and 
references. 

Error signal 
4 

2. Anatomy of an Adaptive Algorithm 

Basically, in an adaptive methodology, the goal is to estimate 
the desired response in an adaptive fashion, using a model transfer 
function. Historically, the first method to be developed was the 
Wiener filter. Below, it is shown how this methodology has pro- 
gressed over the years, and its relationship to new spatially-based 
adaptive techniques, as opposed to the time-based methodology. 

The anatomy of an adaptive technique is shown in Figure 1. 
The input signal, x ( t ) ,  is used to trackhipproximate a desired sig- 

nal, d ( t )  , through a linear filter, h ( t ) .  The characteristics of the 
linear filter are changed by a controller. The controller, in tum, is 
affected by the error signal that is generated by taking the instanta- 
neous difference between the desired signal, d ( t )  , and the output, 

y ( t ) ,  from the linear filtef. Historically, this problem of finding 

the linear filter h ( t )  was solved by Kolmogorov [I ,  21,‘ in the 
analysis of stationary time series, and, simultaneously, by Wiener 
[ 3 ] ,  in the control of antiaircraft guns. 

The approaches by Kolmogorov and Wiener are very similar. 
The methodology starts by defining the error signal, e ( t )  , as 

e ( f )  = d ( t )  - Y ( t )  
= d ( t )  - X ( t )  8 ” ( t ) ,  

where 8 represents a convolution, and, therefore, 

Next, the expected value of the squared error is taken, to yield 

E = & [  e ( t )  e*( t )  ]=I[  l e ( t ) f  1, ( 2 )  

where I [*]  is the expectation operator, and * represents the com- 
plex conjugate. 

To find the optimum filter h ( t ) ,  the error, E, needs to be dif- 
ferentiated with respect to h, and this leads to the orthogonality of 
the error with the input x ( f )  . In other words, 

If we define 

Then, one obtains 

( 3 )  

(4) 

( 5 )  

This integral equation provides the filter h ( t )  that is going to 

match d ( t )  for a given input ~ ( t )  in an optimum fashion [4]. 

The basic principles of an adaptive technique thus illustrate 
that there must be something known about the desired signal in 
order to define the adaptive process. This knowledge could be 
about the constant amplitude (as in a digital signal), or some hid- 
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den structure in the spectral characteristics (like cyclostationarity 
and so on). An adaptive procedure cannot be completely defined 
without some knowledge of the desired signal. What that informa- 
tion is may change from problem to problem, but it has to exist. 

In adaptive-antenna problems, it is not enough to assume 
there exists a signal d ( t )  , or to match the output to a desired sig- 
nal. We need to know more about the signal. Such information 
may be related to the angle of arrival of the desired signal. Or, it 
may be associated with the modulation technique used. In many 
digital-communications applications, the binary signal may be of 
constant magnitude, and what needs to be solved for is the sign of 
the signal. Altemately, for other types of signals used in mobile 
communications, the spectrum of the signal may have conjugate- 
transpose symmetry-namely, the spectrum may be cyclostationary. 
This may be equivalent, in some cases, to saying that the autocor- 
relation function of the desired signal may have periodic proper- 
ties. 

To further explain the situation, for most adaptive-antenna 
problems we know the Doppler and direction of arrival of the sig- 
nal, and the goal is to estimate its strength in the presence of jam- 
mers, clutter, and noise. An important class of jammers are mul- 
tipath signals, which may be coherent with the signal of interest. 
Sometimes, we will also deal with jammers that may be in the 
main lobe of the antenna, and could be intermittent (i.e., blinking 
jammers). In mobile communications, the direction of amval is not 
known, a priori. There, we know that for digitally transmitted sig- 
nals, in many cases, the signal has a constant magnitude only, and 
its sign needs to be estimated. This leads to the class of constant- 
modulus algorithms. 

In some other applications-like, for example, BPSK or 
QPSK transmission-we know that the spectrum has some conju- 
gate symmetric property, or, equivalently, that the autocorrelation 
function of the signal of interest may be periodic or cyclostation- 
ary. We exploit this information to extract the signal in the pres- 
ence of jammers, clutter, and noise. In the literature, these algo- 
rithms are called blind-equalization techniques. However, in this 
paper we will focus on the situation where the direction of arrival 
of the signal is known a priori. 

In summary, all adaptive techniques require some knowledge 
about the signal of interest, in order to estimate it in the presence of 
interference and thermal noise. Without such information, an 
adaptive procedure is not defined. 

3. Historical Backgro’und 

We now illustrate how the Wiener filter was modified to deal 
with digital data. In antenna theory, adaptive techniques were first 
developed by Applebaum [5], at Syracuse, for application in a 
sidelobe canceler. Simultaneously, Widrow [6] developed the LMS 
(least-mean-square) algorithm for adaptively canceling interferers 
in the presence of signals of interest. Both of these techniques were 
applied to analog signals for continuous operation and iteratively 
canceling interferers in the presence of signals of interest. They 
were based on statistical methodologies because, in those years, it 
was not easy to quantify the analog signals of interest. 

With the advent of digital technology, these techniques were 
re-employed, this time dealing with digitally sampled data. How- 

ever, with the design of faster processors, the Wiener-filter theory, 
developed in the previous section, also became available for the 
enhancement of signals in a noisy environment. With the avail- 
ability of high-speed signal processors and analog-to-digital con- 
verters, these techniques were essentially employed in the digital 
domain. It can be seen [7, 201 that the speed of the adaptive proc- 
esses were greatly enhanced by replacing the LMS algorithm by a 
conjugate-gradient method, saving several orders-of-magnitude of 
CPU time. Also, the method can be used to improve the reliability 
of the estimate [21] while performing adaptive processing. How- 
ever, these methods were basically applications of the same proce- 
dure for calculating the instantaneous error signal and then apply- 
ing a “forgetting factor” to decimate the old data as new data 
arrived. 

Next, the class of algorithms based on the method of least 
squares is discussed. We efficiently use digital signal processors to 
solve adaptive problems. In these procedures, a model-dependent 
procedure, using the method of least squares (without invoking any 
assumptions about the statistics of the signals that are to be 
tracked), is utilized., This gives rise to, the minimum-variance dis- 
tortionless response (MVDR), based on a statistical methodology, 
but using the data in the test cell, only. As pointed out by Gardner 
[22], the stochastic approach has become prevalent because one is 
dealing with analog signals and, secondly, because communica- 
tions engineers want to design systems that will perform well, on 
average, over the ensemble. However, since it is not feasible to 
make measurements over many realizations (systems), the com- 
munications engineers have settled on characterizing system per- 
formance, in practice, by averaging over time for a single system. 
In order to replace the ensemble averages by time averages, one 
needs to assume wide-sense stationarity. Furthermore, since the 
measurement is limited to one system, one has to invoke the con- 
cept of ergodicity. This is equivalent to using stationary stochastic- 
process models that are ergodic, so that the mathematically calcu- 
lated expected values (ensemble averages) will equal the measured 
time averages. 

Hofstetter [23] states that “...unfortunately, however the logic 
seems to have stopped at this point. It apparently was not recog- 
nized (except by too few to make a difference) that once consid- 
eration was restricted to ergodic stationary models, the stochastic 
process and its associated ensemble could be dispensed with 
because a completely equivalent theory of statistical interference 
and decision that is based entirely on time averages over a single 
record of data could be used.” Gardner [22] further points out that 

“Any calculations made using a model based on the time 
average theory could be applied to any one member of 
an ensemble if one so desired because the arguments that 
justify the ergodic stochastic model also guarantee that 
the time-average for one ensemble member will be same 
(with probability one) as the time average for any other 
ensemble member. Whenever transient behavior is of 
interest ergodic models are ruled out, because all tran- 
sient behavior is lost in an infinitely long time-average. 
Thus to counter the conceptual simplicity and realism 
offered by the time-average approach, the stochastic- 
process approach offers the advantage of more general 
applicability.” 

These considerations lead us to apply the direct data-domain 
approach to adaptive processing. Furthermore, we do away with 

42 IEEE Antennas and Propagation Magazine, Vol. 42, No. 2, April 2000 



Z depends on the number of samples used in the computation.” This 
has been implemented by Owsley [ l o ,  1 1 1 .  

Figure 2. A linear array containing N + 1 elements. 

X 

the time averages and focus on spatial averaging. In addition, we 
solve an estimation problem, rather than a detection problem. 

Consider a linear array of ( N  + 1 ) uniformly spaced (iso- 
tropic) receiving elements, separated by a distance d, as shown in 
Figure 2. We have (N + 1 ) sensors in the array. We further assume 
that narrowband signals, consisting of a desired signal and interfer- 
ence with center frequency fO, are impinging on the array from 
various angles B ,  measured from the end-tire direction of the 
array, with the constraint 0 5 0 5 180”. The signal we want to 
estimate is arriving from an a priori known angle, B, , and the vari- 
ous jamming signals are arriving from various angles BJ , includ- 
ing coherentinon-coherent multipaths. The jamming signals may 
be located in the main beam of the array, i.e., 
B, - 0, 5 50.8”/(L//1), where L is the length of the array, 1 is the 

wavelength corresponding to the frequency f (i.e., a =  2zc/ fo  , 
where c is the velocity of light), and, typically, d (the spacing 
between the elements) is chosen to be ;1/2. 

4. M i n i m u m -Va ria n ce Distortion I e ss - 
Response (MVDR) Technique 

The MVDR response is based on the statistical methodology 
of Capon [8], but without invoking the statistics of the underlying 
signal. We assume that the direction of the arrival of the signal is 
known. The goal is to estimate its strength in the presence of jam- 
mers, clutter, and thermal noise. We deal with discrete signals, and 
the linear filter of Figure 1 is now replaced by the weight vectors, 
w ( k ) ,  and the received signal is replaced by x ( k ) .  The goal is to 
estimate the weights, and to use them to find the signal of interest, 
s ( k )  , embedded in the received signals, x ( k )  . The desired signal, 

d ( k )  , is now a function of the input signals. As pointed out by 
Haykin [9], “This methodology may be viewed as an altemate to 
Wiener filter theory. Basically, Wiener filters are derived from 
ensemble averages (which is achieved by taking the expected 
value) with the result that one filter (in a probabilistic sense) is 
obtained for all realizations of the operational environment, 
assumed to be wide-sense stationary. On the other hand, the 
method of least squares is deterministic in approach. Specifically, 
it involves the use of time averages, with the result that the filter 

Consider the case where we have an array of N + 1 sensors. 
The signals received in the N + l  sensors are x ( i ) ,  x ( i - l ) ,  ..., 
x (i - N + 1 )  at the ith time instance. We consider the case where a 
set of N weights is attached to the last N sensors. For the first sen- 
sor, the weight is equal to unity. We then define 

N 
y ( i ) + C w * ( k ) x ( i - k ) = O .  (7) 

k=l  

It is further assumed that we can predict the first sample from the 
next N samples. Hence, 

d (i) = x ( i )  . (8) 

Therefore, in this system we are using the last N samples of 
x ( i - l ) ,  ..., x ( z - N + l )  to predict the ith sample of x ( i ) .  Then, 

the error is defined (with w ( 0 )  = 1 ) to be 

k=O 

where H denotes the conjugate transpose and [a ]  denotes a matrix. 

Without any loss of generality, we no longer assume that w(0)  = 1 ,  
but that it has some value. The goal is to extract the signal of inter- 
est, s ( k ) ,  which is embedded in the received signal, x ( k ) ,  in the 
presence of interferers, jammers, and the like. Next, the objective is 
to find the w ( k )  s by minimizing the sum of the errors e ( ‘ ) .  

i=i, 

where the summation runs over indices from i, to i 2 .  The exact 
values of i, and i2 are determined from the given data. 

However, the information by itself is not sufficient to solve 
the adaptive problem. Additionally, one needs to specify the direc- 
tion of arrival of the signal of interest, s ( k )  . This is achieved by 
maintaining the main-beam gain of the array, 

k = O  

d .  where - IS the inter-element spacing of the sensors in terms of the 

wavelength of the operating frequency, and 8, is the direction of 
arrival of the signal from the end-fire airection of the array (here, 
B = 90” is the broadside direction. Also, note that a linear array 
cannot resolve the ambiguity of + 8 or - 8,  i.e., of from which 
side of the array the signal is coming). Hence, the objective of the 
weights is to minimize the cost function, E,  formed through the 
Lagrange multiplier, A (a complex constant): 

a 
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where I is the total number of time samples available. Here, the 
index i runs from N + 1 to Z because of Equation (9). 

[RI-' [s(40)l 

[ s (40)IH [RI-' [s (4011 ' 
[Wlopt = 

2zd  
a Let do = __ cos$, . Then, and the desired signal, s (i) , is estimated from 

This optimum solution has several interesting properties, as 
originally outlined by Capon [SI and implemented by Owsley [lo, 
111, and summarized by Haykin [9]. Namely, the optimum weights 
are unbiased if the sequence x ( k )  contains noise that is zero mean. 

In addition, this least-squares estimate, wopr, is the best linear 

unbiased estimate. Finally, when the additive noise in x ( k )  is 
white and Gaussian with zero mean, the least-squares estimate 
achieves the Cramer-Rao lower bound for unbiased estimates. In 
addition to these advantages, there are some drawbacks, which are 
as follows: 

By minimizing the cost function E in terms of the weights, one 
obtains 

I 
-- 8E - 2  C x ( i - k ) y * ( k ) + i l e - J k C o  
aw*(k) r=N+I 

(14) 
I 

' 2 5 W ( k )  c x ( i  - k )  x ( i  - v )  + a e-Jk+o. 
f=o i=N+I 

Since at the minimum, the first derivative is zero, this yields 

where 

! 

i=N+l  
R ( v , k ) =  x ( i - k ) x ( i - v ) .  

Or, utilizing a matrix notation, 

(i) Computation of the matrix [RI ,  used in the evaluation of the 

optimum weights in Equation (21), is an ( N  + l)2*(Z - N + 1) pro- 
cess, which is difficult to carry out in real time. 

(15) 

where 

and T denotes the transpose of a matrix. The optimum weight vec- 
tors are given by 

(ii) Computation of [RI-' can also be expensive, and computation- 
ally unstable. For example, evaluation of the inverse requires an 

O ( N  + 1)3 process, as the dimension of [RI is N + 1. In addition, 

in the absence of noise, [RI is singular. The presence of additive 
noise may make it nonsingular, but this could be numerically 
unstable. 

(16) 

If H represents the conjugate transpose of a matrix, then from 
Equation (1 l), 

Utilization of Equation (19) in Equation (18) results in 

(iii) In the evaluation of the elements of matrix [RI, a time aver- 
aging is carried out, as shown in Equation (I 6). Hence, if there are 
intermittent (blinking) jammers or a coherent multipath then this 
method cannot eliminate them. Coherent multipath depicts a signal 
s ( t )  in terms of the multipath, g s ( f )  . If g is -1, then (complete) 
fading occurs and the signal is cancelled and, hence, the adaptive 
technique cannot reconstitute the signal, as the multipath can only 
be detected in the spatial domain of the arrays. 

(iv) Inherent in this development is the assumption that the signal 
of interest is amving from an angle 6,. However, due to mis- 
adjustment or for some other reasons, the signal may he arriving 
from an angle 8, + A $ ,  and not exactly at 8,. In this case, the 
adaptive processor considers the actual signal at 8, + A$ as a 
jammer, and cancels it. This issue results in a problem of signal 
cancellation due to mismatch. A possible solution is to have a 
number of constraints, instead of a single constraint as given by 
Equation (1  1). This is equivalent to defining the number of con- 
straints required to characterize the 3 dB beamwidth of the adap- 
tive array. This would require modifying Equation (13) with a 
number of Lagrange multipliers for a number of points as con- 
straints defining the 3 dB beamwidth. 

In the next section, an alternate methodology is presented 
where many of these problems can be mitigated. This new method Therefore, the final result for the optimum weights is given by 
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is based on spatial analysis of the data, rather than dealing with the 
time variable. Therefore, we are proccssing the data on a snapshot- 
by-snapshot basis. A snapshot is defined as consisting of the volt- 
ages induccd in the N + 1 elements of the array at a particular timc 
instancc t = 7;) (say, for cxamplc). 

... 

5. Spatial-Domain Least-Squares 
Approach 

(24)  In thc convcntional adaptivc-beam-forming methodology, we 
havc assumed that thc wcights arc applicd to cach of the antenna 
clcmcnts, and thc proccssing information is gcncratcd over time, as 
thc corrclation matrix, [ R I ,  of thc data nccds to be formed [as rep- 
rcscntcd by Equations ( I  6 )  and ( 1  s)]. Wc havc sccn, in the previ- 
ous scction, that this may havc some shortcomings, which wc 
would likc to countcract. Hcncc, in thc current dcvclopment we 
dcal with a singlc framc or a singlc snapshot. A single snapshot is 
dcfincd as thc complcx voltagcs, V,, mcasurcd at cach one of thc 
( N  + 1 ) antcnna clcmcnts at a particular instant of timc. These 
mcasurcd voltagcs, V,, n = O , l ,  ..., N , contain thc desired signal, 
jammcr, cluttcr, and thcrmal noisc componcnts. Hcncc, in this 
dcvclopmcnt, onc can allow for blinking jammcrs, time-varying 
cluttcr, and cohcrent multipath components. Thc pricc one pays Tor 
dcaling with a snapshot/frame is that thc dcgrccs of frccdom arc 
limitcd to N / 2 ,  as opposed to N + 1 in the prcvious covariance- 
matrix-bascd approach. l-lowcvcr, this serious limitation will bc 
allcviatcd latcr on, whcrc we show that wc can csscntially doublc 
thc data-sct s i x  via proccssing. ‘rhc numhcr ofwcights incrcasc by 
50%, thcrcby achicving closc to thc samc numbcr or  dcgrccs of 
frccdom as outlincd bcforc, without sacrificing thc flcxibility of 
spatial proccssing on a snapshot-by-snapshot basis. In this ncw 
approach, wc utilizc thc idca of Frost [12] by forming a matrix 
gcncratcd by taking thc wcightcd diffcrcnccs bctwccn neighboring 
mcasurcd voltagcs. Thc wcights arc rclatcd to thc dircction of arri- 
val of thc signal, and arc quitc scparatc from thc adaptive wcights, 
w ( k ) ,  uscd in bcam-forming. 

5.1 Direct Method Based on Solution 
of an Eigenvalue Equation [13, 14, 171 

Considcr thc same lincar array of N + 1 uniformly spaced 
clcmcnts as shown in Figure 2. Lct us assumc that thc signal is 
coming from qs ,  and our objcctivc is to cstimatc its amplitudc. Let 
us tlcfinc by S I ,  thc complcx voltagc rccciycd at thc nth clcmcnt of 
thc lincar array duc to a signal of unity amplitude coming from a 
tlircction U,y . [For notational convcnicnce and to differentiate thc 
methodology from thc MVDR tcchniquc, wc use thc subscript n to 
rcprcscnt a voltagc at an clement, whcreas the index within the 
brackct rcprcsents thc time instancc. Thus, S,, is rcally SI, ( k ) ,  

where SI, is thc voltagc at thc nth sensor mcasurcd at the kth 
instancc oftime. Sincc wc arc going to dcal with a single snapshot, 
i.e., all thc valucs arc mcasurcd at thc Mh instancc oftime, the tcrm 
( k )  has bccn droppcd from all thc variablcs]. The signal-induced 
voltagcs arc under the assumcd array geomctry and narrowband 
signal, a complcx sinusoid. Lct X,, be the complex voltages that 
arc mcasured at thc nth clement duc to the actual signal of complex 

amplitude a, jammers which may include multipaths of the actual 
signal, clutter (which is the reflected electromagnetic energy from 
the surrounding environment), and thermal noise. If we now form 
the matrix pencil consisting of matrices of dimension (A4 + 1 ), we 
have 

[ X ]  - a[S] > 

where 

[XI = 

Xo XI 

XI x2 

xM xM+ 

XM 

”‘ X M + l  

... 

Then, the difference at each element. X, - as,, represents the 
contribution due to signal multipaths, jammers, and clutter (i.e., all 
noise components except the signal). It is interesting to observe 
that in this procedure, N = 2 M ,  and the total number of antenna 
elements, N + 1 , is always odd. This is because if there are Pjam- 
mcrs, then we have in total 2P+1  unknowns to deal with. For 
cach jammer, the direction of arrival and its complex amplitude are 
unknown, and that accounts for the 2 P  terms. Now, for the signal, 
we know the direction of arrival, but do not know its strength. 
Hence, the +1 term takes care of the unknown signal strength. 
Therefore, the total number of unknowns is always 2 P  + 1 in this 
procedure, and so N + 1 is an odd number. 

Note that the elements of the matrices in Equation (23)  are of 
the following form. Let S, be the voltage induced in the antenna 
element n due to the incident wave of unit amplitude: 

and let X, be the voltage induced in the antenna element n due to 
the signal, jammers, clutter C, , and thermal noise, z, : 

p=l 

where A,, and Q,, are the amplitude and direction of arrival of the 
pth jammer signal. I t  is assumed that there are P such jammers and 
P i N / 2 ,  and that C, is the contribution due to clutter, and z, is 
the thermal noise at thc antenna elements. 

Now, in an adaptive processing, the weights, [W] , are chosen 
in such a way that the contribution from the jammers, clutter, and 
thermal noise are equated to zero. Hence, if we define the follow- 
ing generalized eigenvalue problem, 

[ 4 ( M + I , M + I )  [ w l ( M + l ) x  I 

= {[XI - [~li(M,,)x ( M + I )  P I ( ,  + I )  x I = O (27) 

then a, which will be equal to s of Equation (26)  (the strength of 
the signal), is given by the generalized eigenvalue, and the weights 
[W] are given by the generalized eigenvector. Since we have 

IEEE Antennas and Propagation Magazine, Vol. 42, No. 2, April 2000 45 



assumed that there is only one signal arriving from e,, the matrix 
is of rank unity, and hence the generalized eigenvalue equation, 
given by Equation (27), has only one eigenvalue, and that eigen- 
value provides the strength of the signal. 

Alternately, one can view the left-hand side of Equation (27) 
as the total noise signal at the output of the adaptive processor due 
to jammer, clutter, and thermal noise. Hence, the total noise is 

Therefore, the total noise power is given by 

Our objective is to set the noise power to zero by selecting [ W ]  for 
a fixed signal strength a. This yields Equation (27). 

From a computational point of view, one could altemately 
look at solving for a by making the determinant of the matrix 

det { [ X ]  - a [ SI}  = 0 (30) 

for a suitable value of a. For lengthy and unstable (as the matrix S 
is of rank one and not positive definite) computational reasons, we 
reformulate the problem in terms of the solution of a matrix equa- 
tion. 

In real-time applications, it may be difficult to solve the gen- 
eralized eigenvalue problem in an efficient way, particularly if the 
dimension, M-the number of weights-is large. Also, when [SI is 
of rank one, it may be numerically unstable to solve the general- 
ized eigenvalue problem. For that reason, we convert the solution 
of a nonlinear eigenvalue problem in Equation (27) to the solution 
of a linear matrix equation. 

5.2 Direct Methods Based on the Solution 
of the Matrix Equations 

5.2.1 Forward Method 

Note that the (1,l) and (1,2) elements of the noise matrix, 
[U], are given by 

where X, and XI are the voltages received at antenna elements 0 
and 1 due to signal, jammer, clutter, and noise, whereas So and SI 
are the values of the signals only, at those elements, due to a signal 
of unit strength. Define 

(33) 

Then, U (1,l) - Z-'U (1,2) contains no components of the signal, 
as 

(34) 

and 

Therefore, one can form a reduced-rank matrix [ T ] ( M - I ) x M ,  gen- 

erated from [U] such that 

[TI = 

In order to restore the signal component in the adaptive processing, 
we fix the gain of the subarray formed by evaluating a weighted 
sum of the voltages CEO w , x i .  Let us say the gain of the subar- 
ray is C in the direction of 0,. This provides an additional equa- 
tion, resulting in 

or, equivalently, 

M + l ) x ( M + I )  

(37) 

Once the weights are solved for by using Equation (37), the signal 
component, a, may be estimated from 

l M  

c l=, 
a= - c wi x i .  (39) 

The proof of Equation (39) is available in [ 141. 

It is also possible to estimate a from any of the following 
M + 1 equations: 
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or by averaging any one of the equations given by the set of M + 1 
equations in Equation (40). However, it is interesting to note that 
because of Equation (36), averaging M + 1 estimates of a obtained 
from Equation (40) is no better than using Equation (39)! 

As noted in [14, 151, Equation (37) can be solved very effi- 
ciently by applying the conjugate-gradient method, which may be 
implemented to operate in real time utilizing a DSP32C signal- 
processing chip [ 15, 161. 

For the solution of [F] [W]= [Y] in Equation (38), the con- 
jugate-gradient method starts with an initial guess, [W], , for the 
solution, and lets [16] 

H 
Po=-b-i[F] [ R o l = - b - ~ [ F ] ~  {[F][Wo]-[Y]}, (41) 

where H denotes the conjugate transpose of a matrix. At the nth 
iteration, the conjugate-gradient method develops the following: 

The norm is defined by 

(45) 

The above equations are applied in a routine fashion until the 

desired error criterion for the residuals, )I [RI, 11, is satisfied. In our 

case, the error criterion is defined as 

The iteration is stopped when the above criterion is satisfied. 

The computational bottleneck in the conjugate-gradient 
method is the computation of the matrix-vector product in 

[F][P],, , and in the computation of [F]" . Typically, 
matrix-vector products in real-time computations can slow down 
the process. However, in our examples, these bottlenecks can be 
streamlined through the utilization of the block-Hankel structure in 
the matrix. The matrix-vector product can be carried out efficiently 
through the use of the fast Fourier transform (FFT) [16]. This is 
accomplished as follows. 

Consider the following matrix-vector product: 

This is usually accomplished in K 2  operations, where K is the 
dimension of the matrix. However, since the matrix has a Hankel 
structure, we can write it as the convolution of two sequences, so 

and considering the last three elements of the convolution, which 
provides the correct matrix-vector product. Hence, the total opera- 
tion, in this case, is FFT-' [FFT{ f) * FFT{w)]. This results in a 

total operation count of 3[2K -l]log[2K -11. For K typically 
greater than 30, this procedure becomes quite advantageous, as the 

operation count is of the order of ( K  log K ), as opposed to K 2  for 
a conventional matrix-vector product. Also, in this new procedure 
there is no need to store an array, and'so time spent in accessing 
the elements of the array on the disk is virtually nonexistent: eve- 
rything is now one-dimensional and can be stored in the main 
memory. This procedure is quite rapid, and easy to implement in 
hardware [ 151. 

that { f } * { w } = { f i  f 2  h f4 f,}*{w3 w2 Y 0 o}, 

5.2.2 Backward Procedure 

It is well-known in the parametric spectral-estimation litera- 
ture that a sampled sequence can be estimated either by observing 
it in the forward direction or in the reverse direction. If we now 
conjugate the data and form the reverse sequence, then one gets an 
equation similar to Equation (37) for the solution of the weights 
W, : 

1 Z ... Z M  

x; - z-'x;-, Xi-' - z-'xi_, . . . x; - Z-'x;-, 

x;+, - z-1x; x; - Z-Ix;-, " '  

... 

or, equivalently, 

The signal strength, a, can again be determined by Equation (39) 
or (40), once Equation (51) is solved for the weights. C is the 
assumed gain of the antenna array along the direction of the amval 
of the signal. There is no loss of generality by assuming C = 1. 
This is because this factor also appears in the evaluation of the sig- 
nal strength, a ,  in Equation (39). 

Note that in both the two cases, 5.2.1 and 5.2.2, M = N / 2 .  
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5.2.3 Forward-Backward Method 

In the forward-backward model, we double the amount of 
data by not only considering the data in the forward direction, but 
by also conjugating it and reversing the direction of increment of 
the independent variable. This type of processing can be done as 
long as the series to be approximated can be fit by exponential 
functions of purely imaginary argument. This is always true for the 
adaptive-array case. So by considering the data sets x(k) and 

x*(-k) we have essentially doubled the amount of data without 
any penalty, as these two data sets for our problem are linearly 
independent. So in this case, there can be a free lunch, after all!? 

An additional benefit accrues in this case. For both the for- 
ward and the backward method, the maximum number of weights 
we can consider is given by N / 2 ,  where N + 1 is the number of 
antenna elements. Hence, even though all the antenna elements are 
being utilized in the processing, the number of degrees of freedom 
available for the new approach is essentially N / 2 .  For the for- 
ward-backward method, the number of degrees of 'freedom can be 
significantly increased without increasing the number of antenna 
elements. This is accomplished by considering the forward and 
backward versions of the array data. For this case, the number of 
degrees of freedom can reach Nf1.5 + 1. This is approximately 
equal to 50% more weights or degrees of freedom than for the two 
previous cases. The equation that needs to be solved for the 
weights is given by combining Equations (37) and (50) into 

1 Z ... Z M  

xo - z-'x, x, - z-'x, ... x M  - z-'x,+, 

x,-l - 2-'x, x, - z-'xM+l ... x,-, - z- 'x ,  
x;, -z-'x;,-l x;-, -z-'x;-2 .'. x; -Z-'xL-' 

x;+, - z-'x;, x; - z-'xL_, .. . x; - z-'x,* 

5.2.4 Examples 

M +I)x(M+I) 

A set of examples has been chosen where the application of a 
conventional stochastic methodology may not yield satisfactory 
results. 

As a first example, we consider the performance of the vari- 
ous methods due to clutter and thermal noise. For the example, we 
assume a signal of unity amplitude arriving from 8, = 90", 
impinging on a 19-element array, where the elements are assumed 
to be a half wavelength apart. So, the antenna beamwidth in this 
case is approximately 5.5". We consider clutter amving at the array 
from B = 0.1" to 85", and from B = 95" to 179". Here, clutter is 
modeled by a single plane wave with a complex amplitude that is 
random. So, the clutter patches contain many specular electromag- 
netic reflections, which are arriving in azimuth 0.1" apart, with a 
complex amplitude determined by two random-number generators. 
The amplitude is determined by a uniformly distributed random- 
number generator, with values distributed between 0 and 1. The 
phase is also determined by a uniformly distributed random-num- 
ber generator, with values between 0 and 2n. In addition, we intro- 
duce thermal noise at each of the antenna elements, which is 
assumed to be uniformly distributed in magnitude between 0 and I ;  
the phase of the complex signal due to thermal noise is chosen 
between 0 to 2n. The signal-to-total-thermal-noise power is 
+23 dB at the array. Figure 3 provides the output signal-to-noise 
ratio resulting from the various methods, as a function of signal-to- 
clutter ratio, in dB. Figure 3 illustrates that if the input signal-to- 
clutter ratio in the array is -10 dB, and if we use the forward or the 
backward method (namely, if use either Equation (37) or (50)) to 
do the processing, then the processed output signal-to-noise ratio is 
about +5 dB. The eigenvalue method, described by Equation (27), 
also yields a similar value. However, if we utilize the forward- 
backward method to do the processing (namely, by using Equation 
(52)), then the processed output signal-to-noise ratio is +8.2 dB. 
The difference in the processed output signal-to-noise ratio 
between the forward method (FRW) or the eigenvalue method and 
the forwardhackward method (FB) becomes much larger as the 
signal-to-clutter ratio increases. 

The value of M in Equation (52) is now much greater than the 
value of M in Equations (37) and (50), since in Equation (52), the 
total amount of data is now doubled. This has been achieved by 
considering both the forward and the reverse form of the data 
sequence. In summary, in a conventional adaptive technique, 
where there is a weight attached to each element and the process- 
ing is done in time, the number of degrees of freedom is N + 1 ,  
provided the environment is stationary in time. In the proposed 
spatial processing, based on a snapshot-by-snapshot analysis, the 
number of degrees of freedom is N/I .5 + I ,  and the processing is 
very flexible since one can pre-fix the beamwidth of the receiving 
array, as shown later. However, both are least-squares-based 
approaches. The advantage of doing snapshot-by-snapshot proc- 
essing is that the stationarity assumption of the data can be relaxed. 
The disadvantage is that the number of degrees of freedom is 
slightly less. 

2' I 
-14 -12 -10 -8 -6 -4 -2 0 

Figure 3. The output signal-to-noise ratio as a function of the 
input signal in clutter and thermal noise, for the direct-domain 
least-squares approach. 

SignaVClutter (dB) 
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As a second example, consider the same 19-element array, 
arranged in such a way so as to receive a signal of 0 dB from 90". 
In addition, we have a 69-dB jammer coming from 6'=140", a 
SO-dB jammer arriving from 6' = 95", a 60-dB jammer arriving 
from 6' = 85", and a 56.5-dB jammer arriving from 6' = 20". We 
also have two clutter patches. The first clutter patch is located from 
0.1" to 30", and is modeled by discrete scatterers located every 
0.1". The second clutter patch extends from 35" to 59". The com- 
plex amplitudes for the point-source clutter returns are generated 
by two uniformly distributed random-number generators, as out- 
lined before. The total signal-to-clutter ratio is -13.2 dB. In addi- 
tion, we have thermal noise at each of the antenna elements. The 
total signal-to-thermal noise at the array is 23 dB. The beamwidth 
of the antenna is approximately 5.5". If we utilize the fonvard- 
backward (FB) method to do the processing, with the only a priori 
information being that the signal is arriving from B = 90", the 
processed output signal-to-interferencc-plus-noise ratio is 26.6 dB. 
If we use either the forward (FRW) or the backward method, the 
processed output signal-to-noise ratio is 13.4 dB, whereas for the 
eigenvalue method (EIG), it is 13.41 dB. 

As a third example, consider the same 19-element array 
receiving a signal of strength 0 dB from 6' = 95". In addition, we 
have a 50 5-dB jammer coming from B = SO", a 60-dB jammer 
arriving from 6' = 80", a 56.5-dB jammer arriving from B = 70", 
and a 69-dB jammer arriving from B = 20". In addition, we have 
two clutter patches. The first clutter patch is located from B = 15" 
to 50", and is modeled by discrete scatterers separated in azimuth 
by 0.1", with complex amplitudes that are considered random and 
generated by two uniformly distributed random-number generators. 
In addition, we have a clutter patch from 6' = 100" to 130", mod- 
eled by discrete scatterers every 0.1" apart. The total signal-to- 
clutter ratio at the array is -13.2 dB. In addition, we have thermal 
noise at each of the antenna elements, and the total signal-to-ther- 
mal noise at the antenna array is 23 dB. If we utilize the fonvard- 
backward method (FB) to do the processing, then the output signal- 
to-noise ratio at the output is given by 7.4 dB. In contrast, if the 
processing is done by the eigenvalue method (EIG), the processed 
output is 1.01 dB, whcreas for the forward method (FRW) it is 
1.01 dB. 

For all the examples, it is seen that the forward-backward 
equations given by Equation (52) yield a much higher output sig- 
nal-to-noise ratio than the result given by any of the other methods. 
This is to be expected. Now, the problem occurs if we increase the 
number of antenna elements and if we further assume that the 
direction of arrival of the signal is not exactly 6' = 95", but instead 
is from 19, f A @ ,  where A B  is not known a priori. The slight 
deviation in the direction of arrival can also be due to atmospheric 
refraction. The processed result will not be very good, as all the 
methods will not find any signal exactly at e,. There will, in fact, 
be signal cancellation. To alleviate such problems of signal can- 
cellation when there is uncertainty in knowing, a priori, the direc- 
tion of amval, e,, of the signal, we utilize the main-beam con- 
straints as described in the next section. 

6. Main-Beam Constraints for 
Prevention of Signal Cancellation 

. So far, we have addressed the problem of eliminating 
unwanted jammers to extract the signal from an arbitrary look 

direction. However, in practice, the expected signals (target 
returns) can occur over a finite angular extent. For example, in the 
radar case, the angular extent is established by the main beam of 
the transmitted wave (usually between the 3 dB points of the 
transmitted field pattem). Target returns within the angular extent 
must be coherently processed for detection, and estimates must be 
made of target Doppler and angle. Adaptive processing that 
impacts these processes will lead to unacceptable performance. 
Correction for this effect is accomplished in the least-squares pro- 
cedures by establishing look-direction constraints at multiple 
angles within the transmitter main-beam extent. The multiple con- 
straints are established by using a uniformly weighted array pattem 
for the same size array as the adaptive array under consideration. 
Multiple points are chosen on the non-adapted array pattern, and a 
row is implemented in the matrix equations of Equations (37), 
(50), and (52) at each of the desired angles; the corresponding uni- 
form complex antenna gains are placed in the Y vector of Equa- 
tions (37), (SO), and (52). Hence, for this problem, the size of the 
matrix U, for example, is established by the following. Let 

L = the number of look-direction constraints 
M + 1 = the number of weights to be calculated. 

Therefore, A4 - L + 1 = the number of jammers that can be nulled. 
The first canceling equation uses data from the M + 1 elements, 
and each successive canceling equation is shifted by one element. 
Therefore, N - M  equations are required to effectively use the 
data from N + 1 elements. Thus, there are L constraint equations 
and N - M canceling equations for the case of the forward method 
described by Equations (37) and (38). The number of equations 
must equal the number ofweights; therefore, 

M = L + N - M .  ( 5 3 )  

This leads to the relationship among the number of weights, the 
number of constraints. and the number of elements: 

N = 2 M - L .  (54) 

Similar constraints can be applied to the backward method and to 
the forwardhackward method. 

6.1 Examples 

To illustrate the effectiveness of the least-squares approach to 
the adaptive-array problem, we consider an array of N + 1 = 21 
antenna elements, and we employ the forward method. For all the 
examples, the value of N will be fixed. The performance across the 
main beam will be compared for the cases of one, three, and five 
look-direction constraints. This leads to the following relation- 
ships: 

. N + 1 =  21, L = 1 ,  and so M + 1 =  11, and tenjammers can be 
cancelled; 

. N+1=21,  L = 3 ,  and so M + 1 = 1 2 ,  andnine jammers can 
be cancelled; 

. N + 1 = 21, L = 5 ,  and so M + 1 = 13, and eight jammers can 
be nulled. 
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As an example, consider a target at 94", and let the main- 
beam look-direction constraint be placed at 90". It is seen from the 
main-beam array pattem, depicted in Figure 4, that the target at 94" 
has been nulled out. In Figures 5, 6, and 7, the complex array gain 
is shown for one, three, and five main-beam constraints in the same 
sets of random noise generated at the 21 elements. For the three 
cases, the array gain in the target direction (denoted by x in the fig- 
ures) is reduced more in the one-constraint case (Figure 5 )  than for 
the two-constraint case (Figure 6) or the five-constraint case (Fig- 
ure 7). Also, the 10 vectors for the different simulations of noise 
are less randomly distributed for the five-constraint case and, 
hence, some coherent integration gain is possible. For the three- 
constraint case, the constraints are placed at 85", 90", and 95". For 
the five-constraint case, the main-beam constraints are placed at 
85", 87.5", 90", 92.5", and 95". 

-I 

Thus, either the first three or the first five rows of the matrix 
IF] of Equation (37) or the matrix [B] of Equation (51) are,of the 
same form as the first row of the matrices defined above, but with 
the appropriate steering vector. The excitation function, [ Y ]  , 

80 

rn 

82 84 86 88 90 92 94 96 98 10 

Figure 4. The main-beam gain of the array. 

X 

9 .__.__... 1 

-4 -2 0 2 4 6 8 
Real 

Figure 5. The complex array gain: one-constraint case. 
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Real 

Figure 6. The complex array gain: three-constraint case. 
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Figure 7. The complex array gain: five-constraint case. 

would have 1, 3, or 5 nonzero elements, respectively, depending on 
the number of constraints used for the main beam. For the five- 
constraint case, [ Y ]  would be of the form 

[YIT =[13, 7.72+J8.32, 7.72-$3.32, -0.816+j7.149, 
-0.816-j07.149, 0, 0, 0, 0, 0, 0, 0, 01. 

It is seen that for the five-constraint case, there is no loss in array 
gain, and the vectors from the 10 different runs are very nearly 
aligned. The five-constraint approach would permit effective radar 
processing across the main-beam extent with little loss in perform- 
ance. For example, Figure 7 shows the main-beam gain in the pres- 
ence of three jammers, with five constraints in the main beam. 

As the signal strength is increased, the distortion of the main 
beam increases. The above results have been generated, utilizing a 
20 dB signal-to-noise ratio per channel per pulse. This would be a 
strong radar return under most circumstances. Simulation results 
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indicate that the five-constraint approach is still effective at a 
40 dB signal-to-noise ratio, but that it breaks down at a 60 dB sig- 
nal-to-noise ratio. 

In summary, the main-beam constraint allows a look-direc- 
tion constraint to be established over a finite beamwidth, while 
maintaining the ability to adaptively null jammers in the sidelobe 
region. Although the main-beam gain can become degraded if the 
signal becomes very strong, this does not appear to be a serious 
limitation for practical radar-processing cases. 

7. Minimum Norm Property of the 
Optimum Weights 

The optimum weights are obtained as a minimum-nom 
solution of Equation (27) when the assumed direction of arrival 
coincides exactly with the actual direction of arrival. One of the 
open problems is how to exactly estimate the direction of arrival of 
the signal when there is uncertainty associated with the assumed 
direction of arrival. It has been our experience that the norm of the 
weights can be used to accurately estimate the direction of arrival 
of the signal, if that is necessary. Hence, this method can be used 
as a multiple-step approach that can arrive at a good approximation 
to the optimum weights, i.e., the weights that would be obtained if 
the arrival angle of the target return were known exactly. This 
approach will evaluate the weights at multiple values of the angle 
assumed to be the correct value in the canceling equations, but will 
make decisions only on the values of the weights, and will accom- 
plish the detection process only once. 

- \\ \ \ I  
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85 86 87 88 89 SO 91 92 93 94 95 

Assumed Target Location 

Figure 9. The root-mean-square of the weights as a function of 
the assumed target location, for a moderate-strength target at 
91.5", in the presence of jammers and noise. The five curves 
represent five different simulations of the problem (different 
random numbers with the same statistics). 

As a step to further developing this approach, consider the 
data in Figures 8 through 10. Again, the simulation is implemented 
for a 21-element array, and weights are generated for 13 elements 
using the five-constraint algorithm. In each, the simulation is 
repeated for five samples of noise at each element. With the five 

Figure 10. The root-mean-square of weights as a function of 
the assumed target location, for a weak target at 91.5", in the 
presence of jammers and noise. The five curves represent five 
different simulations of the problem (different random num- 
bers with the same statistics). 
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Figure 8. The root-mean-square of the weights as a function of 
the assumed target location, for a strong target at 91.5", in the 
presence of jammers and noise. The five curves represent five 
different simulations of the problem (different random num- 
bers with the same statistics). 
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constraints in place (at 85", 87.5", 90", 92.5", and 95"), the 
assumed location of the target return is varied across the main 
beam of the array, the adaptive process is implemented, and the 
sum of the absolute values of the weights is calculated. The actual 
location of the target is 91.5" in all cases. In these cases (Figures 8 
through lo), in addition to target return and noise, there are three 
jammers present. Figure 8 shows the results for a very strong target 
return (20 dB S/N at each element). The minimum of the sum of 
the weights is obtained very close to the true target direction in all 
five samples of receiver noise. The five different curves in the fig- 
ures represent five different simulations of the problem. The jam- 
mers are effectively nulled in all cases, and the only effect of 
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receiver noise is that the target-retum angle is estimated to be 
between 91.4” and 91.6”, instead of the true 91.5”. The location of 
the minimum of the weights is easy to identify with a ratio of the 
largest sum at any location across the main beam to the minimum 
of about 50. The multiple-constraint approach is thus successful in 
identifying the true target direction, and the detection process 
could be implemented optimally at this angle. 

Figure 9 repeats the process for a moderate target retum 
(10 dB S/N at each element). The effects of receiver noise are more 
significant in this case. The estimates of the target location have 
greater spread (the estimate varies between 91” and 92”). The 
location of the minimum is still easy to identify, but the ratio 
between the maximum and the minimum is now only about 20. 
Figure I O  shows the data for a weak target retum (0 dB S/N). The 
estimated target locations have even greater spread (between 90” 
and 93”). The plots of the sum of weights now has a relatively 
broad null, and the ratio between the maximum and minimum is 
now about 5. 

The existence of a minimum in the sum of the weights can be 
used to estimate the target-retum angle. It could also be used to 
perform the detection process, as well. If there is a large ratio 
between the minimum value and the maximum value of the sum of 
the weights across the main beam, then that is an indication that a 
target is present. The strongest linear progression of the random- 
noise samples sets a lower limit on that detection process. That 
component of the random-noise samples that has a linear progres- 
sion across the array appropriate to a far-field source in a main- 
beam direction will detect a weak target. 

Therefore, the sum of the adaptive weights varies as the value 
of the assumed target direction is varied across the main beam. 
When a strong target is present, the ratio between the largest sum 
of weights and that at the target direction is large. Then, when there 
is no target present, the ratio between the largest sum and the 
smallest sum is small. This could lead to a more-accurate estima- 
tion of the direction of arrival of the signal or to a more-accurate 
detection process when this information is not available a priori. 

8. Conclusions 

A direct data-domain approach, based on the spatial samples 
of the data, has been presented. In this approach, the adaptive 
analysis is done on a snap-shot-by-snap-shot basis, and therefore 
non-stationary environments can be handled quite easily, including 
coherent multipath environments. This is in contrast to conven- 
tional adaptive techniques, where processing is done by taking the 
time averages, as opposed to the spatial averages. Associated with 
adaptive processing is the same a priori knowledge about the 
nature of the signal, which, in this case, is the direction of arrival. 
The assumption that the target signal is coming from an exactly 
known direction will probably never be met in any real array. In 
communications systems, the location of the transmitter may be 
known only approximately, or the propagation of the signal 
through the atmosphere may distort the wavefront such that it 
appears to be coming from a slightly different direction. For exam- 
ple, diffi-action could cause enough of an elevation-angle error to 
be important for some systems. Or, the adaptive receive array may 
be surveyed into location with small errors, and thus the angle to 
the transmitter from the broadside of the array will be in error. 
Other applications of adaptive arrays will also have at least small 
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errors in the direction of arrival of the desired signal. In this paper, 
two methodologies are presented to treat this signal-cancellation 
problem. One is through the main-beam constraint, and the other is 
through the norm of the weight vectors. It has been illustrated that 
the norm of the adapted weights is a monotonically increasing 
function of the separation between the assumed direction of the 
target and the actual direction of the target. It is thus possible to 
find the true angle of amval of the desired signal by minimizing 
the sum of the absolute values of the weights. Once this true angle 
is known, an optimum set of weight vectors could be formed using 
the existing algorithm. 

A number of issues associated with the direct least-squares 
algorithm need further investigation. The assumption of a linear 
wavefront means that effects of mutual coupling between subar- 
rays, and near-field scattering from the structure upon which the 
array is mounted, have not been taken into account in this presen- 
tation. Initial results, however, may be available in [25]. The 
detection process for this algorithm has only been introduced, and 
much more work is required to develop an optimum approach. 

However, the advantage of this direct data-domain least- 
squares approach, based on spatial processing of the array data, 
may provide beneficial over the conventional adaptive techniques, 
utilizing time averaging of the data. This will be quite relevant in a 
non-stationary environment. 
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IEEE Pre-College 
Engineer Training 

Web Site 
The IEEE has announced the opening of the IEEEJEAB 

(Educational Activities Board) Pre-College Engineer Training 
(PET) Web site. PET is dedicated to an alliance of engineers and 
educators for the promotion of science and technology education. 
PET offers specific plans and step-by-step procedures to prepare 
engineers to serve as resources to pre-college educators, both in 
and out of the classroom. This site can be accessed through the 
IEEE Educational Activities Home Page, or at 
http://www.ieee.org/organizations/eab/pet. 

Although open, this site remains under construction. For the 
next six, the EAB will be providing additional information and 
periodic updates. The IEEE Region 1 Worcester County, Massa- 
chusetts, Section has volunteered to field-test PET in September, 
2000. Members will be following the modular step-by-step plan 
and contacting educators in their communities. 

A sample of the material on the site includes the following: 

“The Process?” details various ways of contributing, and 
how to go about it. 

“Success Stories?” are first-person stories by engineers who 
have helped in schools. 

“Initial contact?” tells where to start in the school and 
preparation tips for your first day. 

“Other ways to help?’ gives ways to contribute other than 
in the classroom. 

“Basic tools?’ provides helpful advice, and a way to learn 
about teachers and what they need. 

“Links?’ leads to teaching kits and other valuable sites. 

PET is intended to enable IEEE members to have a positive 
impact on and a mutually valuable experience with students, teach- 
ers, and school boards. 2000 Educational Activities Board Vice 
President Lyle Feisel has said, “PET addresses the growing world- 
wide problem of technological illiteracy, and enables engineers to 
contribute to its solution.” 

Initial funding for PET came from the IEEE President’s Proj- 
ect Fund and the Life Member Committee. Comments and sugges- 
tions for the site can be sent by e-mail to pet@ieee.org, or indi- 
viduals may e-mail Lynn Murison at l.murison@ieee.org. 

[Information for the above item came from an IEEE EAB press 
release.] 
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