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Abstract— We introduce the notion of diversity order in
distributed radar networks. Our long-term goal is to analyze the
trade-off between distributed detection and centralized detection
using co-located antennas. In contrast with the asymptotically
high Signal-to-Noise Ratio (SNR) definition in wireless commu-
nications, we define the diversity order of a distributed radar
network as the slope of the probability of detection (PD) versus
SNR curve at PD = 0.5. In this paper we restrict our analysis
to noise-limited systems. We evaluate the diversity order of fully
distributed systems, and prove that for the OR rule, the gain
in diversity is only logarithmic in the number of distributed
sensors, denoted K. The AND rule does not lead to any gain
in diversity order. We finally present some recent results, and
provide preliminary analysis regarding the characterization of a
Diversity-Multiplexing tradeoff in distributed radar detection.

I. INTRODUCTION

Distributed detection is receiving renewed attention with
the advent of waveform diversity and MIMO radars. This
had been a rich area of research after its introduction by
Tenney et al. in [1]. The main motivation behind this work
was to alleviate the excessive bandwidth requirement of joint
detection, which requires all the sensors to transmit exact
information (likelihood ratios for example) to a fusion center
which makes the final decision regarding the presence or
absence of a target. In [1], the sensors are required to trans-
mit binary decisions to the fusion center which ‘optimally’
combines local information into a final system-wide decision.

We denote a system as fully distributed when all the sensors
transmit binary decisions to the fusion center. The fusion
center then adopts an “n out of K” fusion rule. This allows
the system three possible data fusion schemes: the OR rule
(n = 1) wherein a target is declared present if at least one
sensor declares it present; the AND rule (n = K) wherein a
target is declared present only if detected by all sensors; and
the MAJ (or majority) rules where a target is declared present
if some majority of the sensors declare it present. A fixed
fusion rule is often assumed due to its simplicity; however,
varying the fusion rule depending on channel characteristics
provides significant enhancements in performance. Finally,
Multi-bit detection, where each sensor transmits an M -bit
quantization of its information, lies in between joint and fully
distributed detection.

The literature relating to distributed detection lacks any

formal measure of performance as a function of various system
parameters such as the number of sensors, the antenna array
size and the transmission bandwidth requirement. We therefore
introduce the notion of diversity order as a simple measure to
study the behavior of large detection networks.

Diversity was first introduced in Multiple-Input Multiple-
Output (MIMO) wireless communications where the diversity
order is defined as the slope, in a log-log plot, of either
the bit error rate or outage probability versus SNR curve
in Rayleigh fading at asymptotically high SNR [2]. This
notion paved the path for developing a Diversity-Multiplexing
tradeoff between rate and reliability, and it played a crucial role
in the development and design of MIMO wireless systems. In
addition, even though this is a high-SNR concept, wireless
systems usually achieve this asymptotic behavior at practical
SNR levels, while radar systems invariably deal with low
levels of SNR and an asymptotic definition is not useful.

We define the diversity order of a distributed system as the
slope of the probability of detection (PD) versus SNR curve at
PD = 0.5. This provides a convenient, consistent and useful
definition for system evaluation and design. We also perform
a diversity analysis on fully distributed systems, and we prove
that the OR rule, however best fitted for our analysis, only
achieves a logarithmic growth in diversity order.

This paper is organized as follows: Section II introduces the
system model and presents some background on distributed
detection. We then define diversity for distributed detection in
Section III, before we analyze the diversity of fully distributed
systems in Section IV. Due to space limitations, we have
omitted the analysis pertaining to joint detection and ‘optimal’
binary detection, and the corresponding results are included in
Section V. We conclude the paper by some discussions and
projections for future work in Section VI

II. SYSTEM MODEL AND BACKGROUND

In this section we introduce the system model adopted along
this paper, in addition to the various assumptions regarding
target model and channel characteristics. We also present an
overview of distributed detection under the Constant False
Alarm Rate (CFAR) criterion.



A. System Model

The system comprises K distributed sensors attempting to
locate a target within a certain region of space. Each sensor
k is equipped with an antenna array of N elements, and its
corresponding received vector is of the form:

zk =
{

αksk + nk, if target is present
nk, if target is absent , (1)

where sk is the space-time target steering vector corresponding
to the target look direction and velocity, αk is the complex
amplitude, and nk is the additive interference and noise vector.

The target is modeled as a Swerling type-II and conse-
quently, {αk}K

k=1 are independent and identically distributed
(i.i.d.) drawn from a zero mean complex Gaussian random
variable. The corresponding average received signal power
is A2 = E{|αk|2} where E{·} represents the statistical
expectation operator. We will restrict our analysis to a noise
limited scenario where the noise is assumed to follow a
complex Gaussian distribution whose covariance matrix is of
the form:

Rn = σ2IN (2)

IN being the N×N identity matrix. Interference and adaptive
suppression of interference is briefly discussed in section VI.

We assume in this paper that the observations at the sensors
are statistically independent given the hypothesis. We also
assume that the noise statistics are known, and the correspond-
ing Receiver Operating Characteristics (ROC) can be derived
accordingly.

Finally we describe the decision-making procedure. Each
sensor k transmits a decision uk to a fusion center, which
makes the final decision u0 indicating the presence (hypothesis
H1) or absence (hypothesis H0) of a target in the region of
space monitored by the sensors. We will adopt the convention
that 1 symbolizes H1 and 0 symbolizes H0. u is the length-
K vector of the decisions at the sensors. We assume that the
fusion center receives the data from the local sensors without
error. The reader is referred to [3] and the references therein
for a summary on channel-aware distributed detection.

B. Distributed Detection

In [1], Tenney et al. analyzed the problem of distributed
detection under the Bayesian criterion. In radar applications,
we are particularly interested in preserving CFAR. In [4] the
authors prove that the optimal detection rule under CFAR is
a Neyman-Pearson test at both the fusion center and the local
sensors. At the fusion center, the NP test is of the form:

u0 =
{

1, if Pr(u|H1) ≥ t0 Pr(u|H0)
0, if Pr(u|H1) < t0 Pr(u|H0)

, (3)

where t0 is a global threshold to be determined according
to the required false alarm probability (PF ), u0 and u were
previously defined. By the monotonicity of the optimum fusion
rule established in [5], and knowing that the NP test is the most

powerful test [6], the local tests at the sensors are also NP tests
of the form:

uk =
{

1, if Pr(yk|H1) ≥ tk Pr(yk|H0)
0, if Pr(yk|H1) < tk Pr(yk|H0)

, (4)

where yk and uk are respectively the output of the processor
and the corresponding local decision at sensor k, and {tk}K

k=1

are the local thresholds to be determined in order to maintain
a desired probability of false alarm at this particular sensor.

The problem is reduced to maximizing the global probabil-
ity of detection PD = Pr(u0 = 1|H1) under the constraint that
the global probability of false alarm PF = Pr(u0 = 1|H0) is
held constant. This problem in non-convex in general and no
global optima are guaranteed by the optimization process. We
will not dwell into the details of the optimization problem,
and the reader is referred to [7] for more details.

C. Neyman-Pearson Test for Distributed Detection
We will now present the NP test for distributed systems. In

the derivation below we assume an arbitrary Gaussian noise
covariance matrix denoted by Rn. The covariance matrix of
the signal is denoted by

Sk = A2sksH
k . (5)

Given a Swerling type-II target model and under both hypothe-
ses, the received vector is complex Gaussian. Thus, under the
null hypothesis, H0, and due to the independence assumption,

Pr{z1, z2, . . . , zK |H0} =
K∏

k=1

1
πN |Rn|

e−zH
k R−1

n zk . (6)

Similarly, under the target-present hypothesis, H1,

Pr{z1, . . . , zK |H1} =
K∏

k=1

1
πN |Rn + Sk|

e−zH
k (Rn+Sk)−1zk .

(7)
The NP test is a likelihood ratio of the form:

Λ(z1, . . . , zK) =
Pr{z1, . . . , zK |H1}
Pr{z1, . . . , zK |H0}

(8)

and it can be shown that the NP test leads to the following
test-statistic [8]:

ζ =
K∑

k=1

A2|sH
k R−1

n zk|2

1 + A2sH
k R−1

n sk

. (9)

Note that the numerator is exponentially distributed under
both hypotheses; this is due to the fact that it is a scaled
version of the power of a complex Gaussian random variable.
Also note that the denominator is independent of the received
vector. Another interesting observation is that the numerator
is proportional to the output of the adaptive processor using
the optimal weight vector w = R−1

n sk [9].
The NP test also implies that each sensor should use the

most powerful test, which is the NP test itself [6]. Conse-
quently, each sensor individually performs a test of the form
of Eqn. (9), which in the case of sensor k, reduces to:

ζk =
A2|sH

k R−1
n zk|2

1 + A2sH
k R−1

n sk

≷ T
(k)
h , (10)



where T
(k)
h is a threshold to be determined in order to maintain

the desired probability of false alarm at the sensor.
We will drop the subscripts for convenience. Under the null

hypothesis, the received vector z is the zero-mean complex
Gaussian noise vector, and the statistic is exponentially dis-
tributed with mean:

λ0 = E{ζ|H0} =
A2sHR−1

n s
1 + A2sHR−1

n s
. (11)

Consequently, the probability of false alarm at sensor k
becomes:

P
(k)
f = Pr(1|H0) = Pr(ζ > T

(k)
h |H0) = e−T

(k)
h /λ0 . (12)

Similarly, under the target-present hypothesis, the received
vector is of the form:

z = αs + n, (13)

and the statistic for the Swerling type-II model is also expo-
nentially distributed with mean:

λ1 = E{ζ|H1} =
A2sHR−1

n s + A4|sHR−1
n s|2

1 + A2sHR−1
n s

, (14)

and the probability of detection at each sensor k is:

P
(k)
d = Pr(1|H1) = Pr(ζ > T

(k)
h |H1) = e−T

(k)
h /λ1 . (15)

In this paper, and without loss of generality, we assume that
A2 = 1. Furthermore, it can be easily shown that under the
noise-limited assumption and using Eqn. (2) we have:

sHR−1
n s = Nγ. (16)

where γ = σ−2 is the local SNR. Plugging Eqn. (16) into
Eqns. (11) and (14) we have the following identities:

λ0 =
Nγ

1 + Nγ
(17)

λ1 = Nγ (18)

Finally, in this paper we consider the theoretical case of
a symmetric system with each sensor receiving equal power
on average. This symmetry assumption follows from the lack
of any a-priori knowledge regarding the presence of a target,
and the characteristics (position and velocity) of the target
itself. This follows the same lines as the reasoning presented
in the study of diversity in wireless communications [2].
This assumption is particularly useful as it implies that the
probabilities of false alarm at the sensors are all assumed to
be equal, which significantly simplifies the analysis as will be
shown below.

III. DIVERSITY FOR DISTRIBUTED NETWORKS

Diversity played a monumental role in the development
of current MIMO wireless communications systems. In this
context, diversity is defined as the slope in a log-log scale of
the probability of error (Pe) versus SNR curve for asymptot-
ically high SNR. We note that wireless systems do achieve
this behavior at reasonable SNR levels. From its definition,
diversity order captures performance gains for incremental

gains in SNR. In addition, it reflects the number of independent
paths in the systems. This lead to the characterization of a
Diversity-Multiplexing tradeoff which is a tradeoff between
rate and reliability: we can either send more data streams or
send data more reliably.

A similar definition for diversity in distributed networks is
hindered by three main considerations. First, radar systems
invariably deal with SNR levels that are much lower than
acceptable SNR ranges in wireless communications, hence an
asymptotic definition might not be convenient. In addition,
while Pe ranges of 10−3 to 10−6 are usually required in
wireless systems in order to guarantee a certain Quality of
Service, such ranges (for the probability of miss) are rarely
of interest in the radar context. Finally, and proceeding with
the latter idea, radar engineers are mainly interested in the
‘rising’ portion of the PD curve as the steepness of this portion
shows how fast the radar system goes from the low PD to
the high PD regime. This being stated, the need arises for a
more convenient definition for diversity in distributed radar
networks. We chose the following definition:

Definition 3.1: The diversity order of a distributed radar
system is the slope of the PD curve at PD = 0.5.

Fig. 1. Diversity as in Definition 3.1.

Figure 1 illustrates this definition by comparing the diversity
orders of a single sensor and that of a system comprising
5 sensors. As this definition might seem arbitrary, we will
give some reasoning regarding its appropriateness. First, the
required probability of detection (PD = 0.5) should be
achievable (in fact expected) by most radar systems and for
reasonable SNR levels. In addition, since we are mainly
interested in the ‘rising’ portion of the PD curve, the slope
at PD = 0.5 is highly likely to best estimate an average slope
over this portion of the curve, and thus being a simple and
meaningful measure reflecting the effective performance of
the system.



IV. DIVERSITY ORDER OF FULLY DISTRIBUTED SYSTEMS

We call a system fully distributed when each sensor trans-
mits a binary decision to the fusion center. The optimal fusion
rule is an NP test and can be shown to be a summation of K
log-likelihood ratios of the form:

Λ(u) =
nH1∑
i=1

log
Pr(1i|H1)
Pr(1i|H0)

+
nH0∑
i=1

log
Pr(0i|H1)
Pr(0i|H0)

(19)

where Pr(ji|H`) is the probability that sensor i declares
hypothesis Hj given hypothesis H` is true, j, ` = 0, 1. For
example, Pr(1i|H1) is the probability of detection at sensor
i. In addition, nHj

is the number of sensors that declared that
hypothesis Hj is true and clearly, nH0 + nH1 = K.

However sub-optimal, most distributed systems adopt a
fixed fusion rule while optimizing the local rules accordingly.
More specifically, the fusion center adopt one of the “n out of
K” rules, with n = 1 corresponding to the OR rule, n = K
to the AND rule and the MAJ rules lie in between. In this
section we will analyze the diversity order of these detection
schemes.

A. Diversity Order for OR Detection

The fusion center adopts the OR (“1 ouf of K”) rule if it
declares target present when at least 1 sensor detects the target.
Consequently, a target is missed only if all sensors miss, and
the probability of detection is of the form:

PD = 1− (1− P
(k)
d )K (20)

where P
(k)
d is the local probability of detection. We invert

Eqn. (12) to get the threshold:

T
(k)
h = − lnP

(k)
f λ0 = − lnP

(k)
f

(
Nγ

1 + Nγ

)
. (21)

The total probability of detection reduces to:

PD = 1− (1− e
ln P

(k)
f

1+Nγ )K (22)

Since we are interested in the slope of this curve, we differ-
entiate with respect to γ and we get the following expression:

dPD

dγ
=
−K ×N × ln(P (k)

f )e
ln P

(k)
f

1+Nγ (1− e
ln P

(k)
f

1+Nγ )K−1

(1 + Nγ)2
(23)

Theorem 4.1: For a noise-limited system using the “1 out of
K” (OR) fusion rule, and for large K, the slope at PD = 0.5
increases as N lnK.

Proof: For PD = 0.5,

PD = 1− (1− e
ln P

(k)
f

1+Nγ )K = 0.5, (24)

e
ln P

(k)
f

1+Nγ = 1− 0.5
1
K , (25)

Consequently,

1 + Nγ =
lnP

(k)
f

ln(1− 0.5
1
K )

. (26)

Fig. 2. Diversity Order at PD = 0.5 for the OR rule

Using Eqns. (25) and (26) in conjunction with Eqn. (23)
and noting that for the OR fusion rule:

P
(k)
f ≈ PF

K
, (27)

we get the following expression for the slope of the PD curve
at PD = 0.5:

dPD

dγ
=
−NK ln2

(
1− 0.5

1
K

)(
0.51− 1

k − 0.5
)

lnPF − lnK
, (28)

and the limit:

lim
K→∞

dPD

dγ

1
lnK

= N
ln 2
2

. (29)

which is a constant, and the proof is concluded by noting
that the limits of both the numerator and denominator exist at
infinity.

Figure 2 plots the diversity order as a function of K and N .
The figure shows that the logarithmic behavior is also apparent
for low (and thus practical) values of K and not only in the
limit thus validating our theoretical analysis.

B. Diversity Order for AND Detection
At the other extreme from the OR rule, if the fusion

center adopts the “K out of K” (AND) rule, the following
expressions hold:

P
(k)
f = K

√
PF , (30)

P (k)
m = 1− e

ln P
(k)
f

1+Nγ , (31)

PD = (1− P (k)
m )K . (32)

Combining Eqns. (30), (31) and (32) we get:

PD = e
ln PF
1+Nγ = (P (k)

f )
1

1+Nγ . (33)

which is independent of K, and we conclude that for the AND
case, we have no improvement in diversity order when we add
sensors to the network.



C. Diversity Order for MAJ Detection

If “n ouf of K” sensors are required to declare detection,
n = 2, . . . ,K − 1, the probability of detection is a binomial
sum of the form:

PD =
K∑

i=n

(
K

i

)
(P (k)

d )i(1− P
(k)
d )K−i. (34)

Let us denote each element of the summation in Eqn. (34)
by Pd,`. We replace P

(k)
d by its value from Eqn. (15) and

differentiate with respect to γ:

dPd,`

dγ
=− 1

(1 + Nγ)2

(
K

`

)
e

` ln P
(k)
f

1+Nγ (1− e
ln P

(k)
f

1+Nγ )K−`−1×(
(K − `)N lnP

(k)
f + KN lnP

(k)
f e

ln P
(k)
f

1+Nγ

)
, (35)

which is strictly positive for all values of γ. However, even
if we assume that P

(k)
f is asymptotically increasing with n,

dPd,`

dγ is not monotonic in P
(k)
f , and no generalization can be

made regarding the behavior of the system when the parameter
n varies.

We simulated various scenarios to get an idea about the
behavior of the probability of detection curve when n varies.
For example, for K = 4, n = 2 leads to the best performance
for a certain range of input SNR. However, simulations also
show the the OR rule is always a serious competitor, and
it most often leads to the best performance. In addition, we
note that while P

(k)
f can be approximated directly for the OR

rule (Eqn. 27), such procedure requires finding the root of a
degree-K polynomial which falls in the interval [0, 1], which
is not straightforward. In addition, we have proved in recent
work that the OR rule is asymptotically optimal among all
fusion rule that require a local probability of false alarm that
decays as 1

K . Hence, we can assume that the OR rule is best-
fitted for our theoretical analysis.

V. RECENT WORK

Optimal joint detection and ‘optimal’ 1-bit detection have
been the subject for our recent research. For joint optimal
detection, we proved the following main results:
• The NP test statistic follows a Gamma distribution;
• The diversity order grows as N

√
K.

When the fusion center of a fully distributed system uses the
optimal NP test instead of a fixed fusion rule, we proved the
following results:
• The NP test statistic follows a binomial distribution;
• The diversity order grows as N

√
K.

The details of these proofs will be omitted due to space lim-
itations. However, these results show that distributed systems
incur severe performance loss when compared to co-located
antennas. This also proves that there is no diversity gain
achieved by adding the number of bits transmitted by each
sensor.

VI. CONCLUSION AND FUTURE WORK

In this paper we have made two main contributions. First,
we introduced the notion of diversity order for distributed
detection: a simple measure of performance as a function of
various system parameters, of which we cite the number of
sensors, the antenna array size and the processing scheme. We
then analyzed the performance of various distributed detection
schemes. We have proved that the gain is at most logarith-
mic for fully distributed detection. For all optimal detection
schemes, the gain in diversity order grows as

√
K, which

proves that no diversity gain is achieved by enabling the local
sensors to transmit more bits. However, as the transmission
of additional bits improves performance, we are required to
characterize the ‘coding gain’ (as opposed to diversity gain)
achieved by transmitting more bits through the network.

Our results primarily show that most of the gains can be
achieved with a small number of sensors. This underlines
the importance of geometry in STAP detection. In fact, even
in the presence of a large sensor network, choosing a small
number of sensors ‘smartly’ (i.e. with a certain geometry) will
achieve near-optimum performance and will require much less
resources, a result that is in harmony with [8], and which
provides additional motivation for the work on geometry and
mobility [10].

The main subject for our future work will be the charac-
terization of a Diversity-Multiplexing tradeoff in distributed
detection systems. Having defined diversity, we anticipate
multiplexing to be the number of targets or range cells, that can
be interrogated simultaneously by the network. In this setting,
the tradeoff would be to either detect K targets each with
reliability r or detect a single target with reliability r× lnK.
However intuitive, any confirmation of the validity of this
statement is premature, and will be subject to further scrutiny.
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