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Abstract— In recent work we introduced the notion of diversity is fixed, the fusion center might switch between theseolit
in distributed radar systems and we evaluated the diversity order of K rules depending on channel characteristics, which leads
of fully distributed networks. Our long-term goal is to analyze the to better performance.

trade-off between distril_nuted detection and detection using co- In between joint and fully distributed detection lies mult

located antennas. In this paper, we extend our earlier analysis ] AN

and we evaluate the diversity of joint detection for symmetric Dit detection. Each sensor transmits bits indicating its best

noise-limited systems. The Neyman-Pearson (NP) statistic for estimate regarding the presence of the target. In [3] and [4]

joint detection is shown to follow a Gamma distribution. We the authors maximize the efficacy in order to design optimum

prove that the diversity order of large networks is on the order &, antizers for distributed signal detection. Leteal. applied

V'K, thus outperforming the logarithmic diversity order of fully - L .

distributed detection. We finally provide simulations validating quantization to the d'St”bUt_Ed _detectlon problem under th

our theoretical analysis. constant false alarm rate criterion [5], and proved that-nea
optimal performance can be achieved with a small nunildger

l. INTRODUCTION of bits transmitted by each sensor.

In a distributed setting, optimal detection requires a# th Consider a radar detection system wihdistributed sen-
sensors to transmit exact information (likelihood rati@s f sors each possessing antennas. Without a formal measure
example) to a fusion center which makes the final decisi@f performance, it is unclear what the impact of varyiig
regarding the presence or absence of a target. HoweveroinK is on system performance. In [6] we introduced the
practice this is not possible due to various considerationwtion of adiversity orderin distributed radar networks. Our
most notable of which is the limited communication bandtidtnewly introduced definition not only enables the comparisbn
available between the sensors and the fusion center. In Y&fious distributed radar apertures, but also providastiaoh
Tenneyet al. introduced distributed detection and suggestedimto the design of distributed sensing systems.

(sub-optimal) detection scheme where sensors generagybin The notion of a diversity order was first introduced in
decisions which they transmit to the fusion center. Thediusi multiple-input multiple-output (MIMO) wireless commurtaic
center then combines these local decisions into a final systdaions. The diversity order is defined as the slope, in a log-
wide decision. In the decade following the publication déthlog plot, of either the bit error rate or outage probability
work, distributed detection became an active area of rebgarversus signal-to-noise ratio (SNR) curve in Rayleigh fgdin

and researchers studied various optimality criteria, ngtw asymptotically high SNR [7]. The diversity order capturks t
topologies, and investigated system performance undaugr number of independent paths over which the data is received.
assumptions regarding the dependence of the receivedssigirairthermore, even though this is a high-SNR concept, vésele
at the sensors [2]. systems usually reach this asymptotic behavior at prdctica

On the other extreme from optimal joint detection lieSNR levels. The notion of diversity order has played a ctucia
fully distributed detection where each sensor transmits a rble in the development and design of MIMO wireless systems.
bit decision indicating the absence or presence of a targ@n the other hand, radar systems invariably deal with low
Within this category, there are three data fusion schenmes: tevels of SNR and an asymptotic definition is not useful. h [6
OR rule wherein a target is declared present if at least one defined the diversity order of a symmetric system as the
sensor declares a target present; the AND rule wherein attargjope of the probability of detectiorP() versus SNR curve at
is declared present only if all sensors detect a target; laad P, = 0.5. This provides a convenient, consistent and useful
MAJ (or majority) rules where a target is declared present definition for system evaluation and design.
somemajority of the sensors detect a target. Note that the OR,The complexity in analyzing the diversity order of dis-
AND and MAJ fusion rules are of the forrm“out of K. At tributed radar systems arises from the interplay between th
one extreme, we have = 1 (OR rule); at the othemp = K probability of detection and the probability of false alarfy-.
(AND rule) with the MAJ rules in between. We finally noteUnlike wireless communications, and for a fair comparison,
that despite the fact that we often assume that the fusi@n ritp, must be obtained for a constaRy. However, bothPp



and Pr depend on the detection thresholds chosen at eagsume that the fusion center receives the data from thé loca
sensor. As we will see, due to this interplay betwdgnand sensors without error. The reader is referred to [8] and the
Pr, both performance and the resulting diversity order areferences therein for a summary on channel-aware distdbu
strongly dependent on the chosen fusion rule. detection.

The work in [6] focuses on the definition of diversity and th o :
analysis of the diversity order of the OR and AND rules. IrsthipB' Distributed Detection
paper we extend the work of [6] to include a diversity analysi Tenneyet al. analyzed the problem of distributed detection
of joint (optimal) detection, which we prove to be of the forntinder the Bayesian criterion [1]. In radar applications,ase
of maximal ratio combining (MRC). The Neyman-Pearson teB@ticularly interested in preserving a constant falsenaliate
statistic follows a Gamma distribution, and the probaiesitof (CFAR). In [9] the authors prove that the optimal detection

false alarm and detection are determined accordingly. \bey shrule under CFAR is a Neyman-Pearson test at both the fusion
that for large K, the diversity order of joint detection is oncenter and the local sensors. At the fusion center, the NP tes

the order ofVK. is of the form:
This paper is organized as follows: Section Il introduces 1, i Pr(u|H:) > to Pr(u|Hoy) @
the system model under consideration and provides a brief 0 0, if Pr(ulHy) < toPr(u|Hy) ’

background on distributed detection including the NP test a

the corresponding receiver operating CharaCterIStICSQRche required false alarm probability’f). By the monotonicity

S.e‘t:t.'gnt I(Ijl brldefly revt|ews trlle gotlgn orvdlversny (Iarder. Nof the optimum fusion rule established in [10], and knowing
IStributed radar systems. In -section we analyze JOIggat the NP test is the most powerful test [2], the local tests

wheret, is a global threshold to be determined according to

detection and we _evaluate its dlverglty order in Sect_lon t the sensors are also NP tests defined as:
The paper ends with some conclusions and suggestions for )
1, if  Pr(yx|H1) > tx Pr(yx|Ho)

future work in Section VI. up = . , 3
0, if Pr(yg|H1) < tx Pr(yx|Ho)

where y; is the output of the processor at tlieth sensor

In this section we present our system model and a brigfid {t,}/  are the local thresholds to be determined. The
overview of the available literature regarding distrilwige- problem is reduced to maximizing the probability of deteti
tection. We will also recall the main results of [6]. We begilP, = Pr(up = 1|/H;) under the constraint that the global

II. SYSTEM MODEL AND BACKGROUND

with our system model. probability of false alarmPr = Pr(ug = 1|Hp) is held
constant. This problem in non-convex in general and no g¢loba
A. System Model optima are guaranteed by the optimization process. We will

The overall system compriseK distributed sensors at- not dwell into the details of the optimization problem, ahd t
tempting to detect the presence of a target in a certain megi®ader is referred to [11] for more details.
in space. Each sensor posses3eso-located antennas. The On the other hand, optimal detection systems jointly pro-
model focuses on a noise-limited scenario; interferenak acess the signals received at &l sensors, a scheme which
adaptive suppression of interference is briefly discussed dan regarded as maximal ratio combining (MRC) [12]. The
section VI. Thek-th sensor receives a data vector of the forndiversity order of such a system will be the main subject for

S { arSk + Ny, if target is present @) this paper.
» N, if target is absent ’ C. Neyman-Pearson Test for Distributed Detection

wheres;, is the space-time target steering vector correspondingWe will now develop the NP test for distributed systems.
to the target look direction and velocity,, is the complex- Given the Swerling type-ll target model, under both hy-
valued amplitude, andy, is the additive interference andpotheses, the received vector is complex Gaussian [13]. The
noise vector. The target is modelled as a Swerling typederivation below uses an arbitrary Gaussian noise covegian
and consequently{a;,} | are independent and identicallymatrix denoted a&,,; and the covariance matrix of the signal
distributed (i.i.d.) drawn from a zero mean complex Gaussiés denoted by
random process whose variance determines the SNR. S _ A& @)
Each sensok transmits a decisiom;, to a fusion center, k k%
which makes the final decision, indicating the presence where A? = E{|ay|?} is the mean target power ang, is the
(hypothesisH;) or absence (hypothesiH,) of a target in complex amplitude of the received signal space-time sigeri
the region of space monitored by the sensors. We will adoggctor s;,. Here E{-} represents the statistical expectation
the convention that symbolizesH; and0 symbolizesHy. u  operator.

is the lengthK vector of the decisions of the sensors. Under the null hypothesigd{,, and due to the independence
In this work, we assume that, given the hypothesis, tlessumption,

observations at the sensors are statistically indepentiémt K

also assume that the noise statistics are known, and thep,(; 5, .. z,|H,}= H 1 e ZiRy'2e(5)

corresponding ROC can be derived accordingly. Finally, we Pl ™[R, |



Similarly, under the target-present hypothegis, We consider the theoretical case of a symmetric, noise lim-
% ited system, i.e.R,, = oI, with each sensor receiving equal
Pr{z.,...,25|H1} = H - 1 o2k (RntS:)"'ze  pOWEr on average..The' symmgtry assumpnon follows from
s TV Ry + S the lack of anya-priori information regarding the presence
(6) of a target, and the characteristics (position and velpaify
The likelihood ratio corresponding to the NP test is of ththe target itself. This follows the same lines as the reagpni

form: presented in the study of diversity in wireless communiceti
Az, ... 25) = Prizi,....2x|H1} (7) [71. This assumption is particularly useful as it implieatithe
Pr{zi,... zx[Ho} probabilities of false alarm at the sensors are all assumed t
and it can be shown that the NP test leads to the followilg equal, which significantly simplifies the analysis as bl
test-statistic [13]: shown below.
K A2‘S]€HR—1Zk|2 [1l. DIVERSITY ORDER FORDISTRIBUTED NETWORKS
(= 1; 1+ A28R; s, (8) In [6], we introduced the notion of diversity in distributed

networks and we evaluated the diversity order of fully dis-
Note that the numerator is exponentially distributed undegibuted detection schemes where each sensor sends a 1-bit
both hypotheses and that the denominator is independentyfary decision to the fusion rule. This section briefly esvs
the received vector. Another important observation is thg{e notions and main results of [6].
the numerator is proportional to the output of the adaptive |n [6], we proposed the following definition of diversity in
processor using the optimal weight vecter= R, 's; [14].  distributed networks:
The NP test also implies that each sensor should use theefinition 3.1: The diversity order of a symmetric dis-

most powerful test, which is the NP test itself [2]. Conse&ributed radar system is the slope of tAg curve atPp = 0.5.
guently, each sensor individually performs a test of thenfor

of Eqgn. (8), which in the case of sensbrreduces to: The main intuition behind this definition is that this sloge a
A2|SITR; 17,2 * Pp = 0.5. is most likely to best estimate the slope along the
Gp=—"r "2 >T7,", (9) ‘rising’ part of the Pp versus SNR curve and also captures

- 2cHPR—1
1+ A% R, the behaviour at realistic SNR levels.

whereT*) is a threshold to be determined in order to maintain Without loss of generality, in the following discussion we

the desired probability of false alarm. assume thatl? = 1, and thus the input SNR is
We will drop the subscripts for convenience. Under the null A2 1
hypothesis, the received vectaris the zero-mean complex T2 T g2 (15)
tG_fk;\)utss(;an _tnh0|se ve.ctor, and the statistic is exponentiasly d Given N array elements at each sensor and under the null
ributed with mean: 1 hypothesis,
AR s
X =FE{(|Hy} = ——*—. 10 N~
0= B{lHo} = - agir Ts (10) Yo = (o} = 1o (16)

Consequently, the probability of false alarm at sengor Similarly, under the target-present hypothesis,
becomes: N N .
P™ = Pr(1|Hy) = Pr(¢ > T |Hy) = 020, (1) 1= BiClEL} =Ny (7
. . . Once the probability of false alarm at each senftﬁﬁ), is
S|m|Iar!y, under the target-present hypothesis, the vecki known, Eqgn. (11) can be inverted to obtain the threshold at
vector is of the form: each sensor.

z=as+n, 12 Finally, we gvalua.ted the diversity order of various compin
ing schemes, including the OR rule, AND rule and the various

and the statistic for the Swerling type-Il model is also expaviAJ rules. We proved the following results [6]:

nentially distributed with mean: Theorem 3.2:For a symmetric noise-limited system using

A%SMR s+ A% sPR; g2 13 the “1 out of K" (OR) fusion rule, and for largés, the slope
1+ A2sHR s ’ (13)  at Pp = 0.5 increases a®V In K.
. ) . Theorem 3.3:For a symmetric noise-limited system using
and the probability of detection at each senkas: the “K out of K" (AND) fusion rule, and for largels, there
(k) _ _ (k) _ T /n is no improvement whet is increased.

Fa™ = Pr(1}Hy) = Pr(¢ > T, 7| Hy) = e - (449 We also showed that no generalization can be made regard-
The problem reduces to maximizing the total probability dhg the performance of the MAJ rules. However, our analysis
detection Pp keeping the total false alarm probabilittz showed that the OR rule, with only logarithmic gains, is best
constant. fitted for our theoretical analysis.

A = E{C|H,} =



Finally, one should not read too much into this notion of di- Figure 1 compares the performance of MRC and the OR
versity order. As in wireless communications, our defimitad Rule for 3 and 8 sensors. The SNR gap between MRC and the
diversity order does not addres$ere as a function of SNR, OR fusion rule increases from around 1.2 dB for 3 sensors to
is the bend in thé’p curve. Various systems may achieve th2.5 dB for 8 sensors. The curves seem parallel and this might
same diversity order but still have very different perfonoa.  hint that MRC and the OR fusion rule have the same diversity
We will draw attention to this later when comparing the ORrder. This is mainly caused by the log-scale on the x-axis.
rule with optimal joint detection. Furthermore, note tHaése We will show in the following sections that the two schemes
results pertain to the Swerling type-Il target model, artteot behave differently with increasing.
models might lead to different results.

IV. OPTIMAL JOINT DETECTION 1

The analysis above focused on the various popular scher ook [ =#=mrcK=3 »*7 7 ]
for distributed detection where each sensor communical ' :
a single binary decision to a fusion center. The other el
of the performance (complexity, and bandwidth requiremer
spectrum would be a perfect joint detection procedure where
the signals from all sensors are processed jointly.

A. Joint Detection: An MRC approach

In joint detection, the data fusion center uses the tessttat
described in Eqn. (8) to make the global decision. Note th
this approach is equivalent to Maximum Ratio Combinin
(MRC) because each sensor contributes to the statistic p
portionately to its received power. Under the Swerling type
Il model and the symmetry assumption, the statistic is
summation ofK i.i.d. exponential random variables. The sun
follows a Gamma distribution of the form [15]:

_, e/ Fig. 1. Comparison of MRC and OR Rul
f2; K, 0) = oK1 QKF(K)’ (18) ig omparison o an ule
whered is the common mean of thE random variables and B. A Gaussian Approximation
I'(K) = (K —1)! for integer K., Finding a closed-form solution for the slope and diversity

The probability of false alarm is the probability that theyrder following the analysis above is intractable. However
statistic surpasses a threshdlg to be determined given thewhen the number of sensors grows large, the central limit
null_hypothesis. This is the complement of the cumulativ@eorem dictates that the test statistidollows a Gaussian
distribution function (CDF) of¢ given the null hypothesis, distribution. Under the null hypothesis and the symmetry
and is given by the upper incomplete Gamma functi¢h’, z)  assumption, each sensor will contribute an exponentiasly d

defined as follows: tributed term with mearnu, = )\ and variances? = A2.
Ty Hence, by the independence assumption, the statjstigll
Pp=Pr(C>TyHo) =T | K, ) be Gaussian distributed with mean = K\, and standard
1 deviationo: = VK \o. The probabilities of false alarm and
_ K—-1 7md 19 . . i
= z" e Mda. (19) detection are consequently defined as follows:
LK) J1, /20 .
Similarly, the probability of detection is defined as follew Pp =Pr(¢ > Th|Hp) =Q (ﬁ) (21)
0
_ _ Th T, — KA
Pp =Pr(¢ > Th|Hy) =T (K, )\—1> ; Pp =Pr(¢ > Th|H)) = Q (ﬁ) (22)
L / o5t g, (20) whereQ(x) is the upper tail of the standard normal distribution
T(EK) J1,/x, and is defined by
A closed form expression to determine the threshold for a R R
chosen probability of false alarix is difficult to obtain and Qr) = / —Qﬂe dt. (23)

we are reduced to numerical solutions. Given the desited .. . . .

we perform a line search in order to find the correspondi Glven Zt;\e deswe(:] prﬁba?"“%_(}f false alarfy, we invert
threshold,T;, using Eqn. (19). We then replace the obtainer%gqn' (21) to get the threshold:

value of T, in Egn. (20) to determine the probability of7}, = Q™ (Pr).VE. Ao + KXo = M. VEK[VK + Q7 '(Pr)).
detection at a specific SNR. (24)



We combine Egn. (22) and Egn. (24) to get the probability &dsing the chain rule and the fundamental theorem of calculus
detection at a certain SNR. we get:
Figure 2 reflects the accuracy of this approximation, and qp, 4P, dt
shows that when the number of sensors increases, the approxw = 7%
imation becomes more accurate. Figure 2 also shows that a . L WEr-1(P) 2
large number of sensors is required to achieve a reasonable _ NVE+Q (PF)]6*5<1+7MF*‘/?)

accuracy. However, as will be shown in the following section V21 (1 + N~)?
the diversity order of the MRC processing scheme will clpsel (29)
follow this approximation even for smak'. Using Eqgns. (27) and (29), we get:
dPp N.K
——=(Pp =0.5) = (30)
dy ( ) V2r[VK + Q'(Pp)]
which behaves as
NVK (31)
thus concluding the proof. ]
i >
m—— OR, N=2 “,4‘
i e
== MRC:N:d ‘4'-.
¥CI
Fig. 2. Accuracy of the Gaussian Approximation
V. DIVERSITY ORDER OFOPTIMAL JOINT DETECTION
Proceeding with the analysis presented in the previo b
section, we derive the diversity order for MRC joint detenti
Theorem 5.1:For a symmetric noise-limited system using Fig. 3. Comparison of the slope of MRC and ORat = 0.5
joint MRC detection, and witli large, the slope aPp = 0.5 o '
increases a&V VK. Again, this behavior is only proved valid in the limit when
Proof: At Pp = 0.5, K is large. In addition, we note the linear gains in the number
of antennasN, a result analogous to both fully distributed
Ppr=0Q (Th — KAl) — 0.5 (25) detection and MIMO systems. Figure 3 compares the slope
VKN at Pp = 0.5 for joint and distributed detection for various
) ) _ values of the parameté¥. Note that the slope values for MRC
Inverting the Q-function, we get: were calculated numerically from the Gamma distributicst, n
T — K\ from the Gaussian approximation. The slope increases much
ShT A (26) faster for MRC (joint detection) than the OR rule (distribait
VEN detection), and we conclude that the behavior of the diersi

order as approximated using the central limit theorem is

Using Eqn. (24) and with simple algebra accurate even for small values Af.

K P A. Discussion
14 Ny = YEHQ ' (Pr) @7) _ o
VK In wireless communications, as the number of antennas
] approaches infinity, the Rayleigh fading channel is reduced
Let ¢ be defined as: to an AWGN channel and we achieve line-of-sight conditions.

JE . In distributed detection, we have shown that a similar pgsce
_ WK+ Q7 (Pr)] — VK. (28) takes place. For a fully distributed detection system (OR

L T, — KX\
VKX 1+ N~y rule), which can be interpreted as a Selection Combining




(SC) scheme, the slope increase$ndf(). When the number
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orders. This is due to the interplay, in radar systems, batwe

the probability of false alarm and the probability of deimat
The diversity order developed here provides a simple and]

consistent measure of the performance loss arising fromgusi

distributed detection (the OR rule - diversity orderlofK)) 4
instead of joint detection (the MRC - diversity order @f).
Finally, it is interesting to note that neither scheme pdesi [3

a diversity order of NK - which would arise if we had 4
NK co-located antennas, i.e., the diversity order provides a
simple measure of the loss in performance due to distribute[g]
detection, even if optimal processing is used.

VI. CONCLUSIONS ANDFUTURE WORK (6]

In this paper we evaluated the diversity order of joint7]
(optimal) detection in distributed radar networks. We first8]
recalled the main notions and results of our previous wolk [6 4
where we defined the diversity order of a distributed radar
system as the slope of the, curve atPp = 0.5. We also
evaluated the diversity of fully distributed schemes. lis th1°
paper, we extended this analysis to joint detection, whach e [11]
sensor transmits the full likelihood ratio to the fusion t&gn
The central limit theorem enabled us to approximate the NP
test statistic by a Gaussian distributed statistic in otd@rove
that the diversity order of an optimal system is on the order 83l
VK. We finally provided simulations that show that the slope
for MRC systems increases much faster than the logarithmic
increase of the OR rule, which validates our theoreticalltes [14]

One interesting observation, and once again unlike wiselggs;
communications, there is no clear-cut way on how to pass
from the logarithmic increase of fully distributed schentes
the square-root increase of joint detection. Hence it isrehy
interest to analyze the performance of partially distreolut
systems, where local sensors transmit multi-bit likelithoo
ratios to the fusion center. This will be subject to future
investigation.

We will also extend our work to include the more realistic
STAP detection settings where the noise covariance matrix i
of the form:

R,.=R,+R; +R. (32)
where R, ,R; and R, are respectively the additive noise,
jamming and clutter covariance matrices [14].

Finally, and in harmony with our previous analysis in [6],
we emphasize on the fact that our results do not necessarily
characterize d& — /K rate-reliability trade-off in distributed
radar networks. Our main objective for future research is to
delineate such a trade-off similarly to diversity-muléping
in wireless communications. In the radar context, we eonisi
multiplexing to mean the interrogation of multiple look pts
simultaneously.
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