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Abstract— In recent work we introduced the notion of diversity
in distributed radar systems and we evaluated the diversity order
of fully distributed networks. Our long-term goal is to analyze the
trade-off between distributed detection and detection using co-
located antennas. In this paper, we extend our earlier analysis
and we evaluate the diversity of joint detection for symmetric
noise-limited systems. The Neyman-Pearson (NP) statistic for
joint detection is shown to follow a Gamma distribution. We
prove that the diversity order of large networks is on the order of
√

K, thus outperforming the logarithmic diversity order of fully
distributed detection. We finally provide simulations validating
our theoretical analysis.

I. I NTRODUCTION

In a distributed setting, optimal detection requires all the
sensors to transmit exact information (likelihood ratios for
example) to a fusion center which makes the final decision
regarding the presence or absence of a target. However, in
practice this is not possible due to various considerations,
most notable of which is the limited communication bandwidth
available between the sensors and the fusion center. In [1]
Tenneyet al. introduced distributed detection and suggested a
(sub-optimal) detection scheme where sensors generate binary
decisions which they transmit to the fusion center. The fusion
center then combines these local decisions into a final system-
wide decision. In the decade following the publication of this
work, distributed detection became an active area of research,
and researchers studied various optimality criteria, network
topologies, and investigated system performance under various
assumptions regarding the dependence of the received signals
at the sensors [2].

On the other extreme from optimal joint detection lies
fully distributed detection where each sensor transmits a 1-
bit decision indicating the absence or presence of a target.
Within this category, there are three data fusion schemes: the
OR rule wherein a target is declared present if at least one
sensor declares a target present; the AND rule wherein a target
is declared present only if all sensors detect a target; and the
MAJ (or majority) rules where a target is declared present if
somemajority of the sensors detect a target. Note that the OR,
AND and MAJ fusion rules are of the form “n out of K”. At
one extreme, we haven = 1 (OR rule); at the other,n = K

(AND rule) with the MAJ rules in between. We finally note
that despite the fact that we often assume that the fusion rule

is fixed, the fusion center might switch between these “n out
of K” rules depending on channel characteristics, which leads
to better performance.

In between joint and fully distributed detection lies multi-
bit detection. Each sensor transmitsM bits indicating its best
estimate regarding the presence of the target. In [3] and [4],
the authors maximize the efficacy in order to design optimum
quantizers for distributed signal detection. Leeet al. applied
quantization to the distributed detection problem under the
constant false alarm rate criterion [5], and proved that near-
optimal performance can be achieved with a small numberM

of bits transmitted by each sensor.
Consider a radar detection system withK distributed sen-

sors each possessingN antennas. Without a formal measure
of performance, it is unclear what the impact of varyingN

or K is on system performance. In [6] we introduced the
notion of adiversity orderin distributed radar networks. Our
newly introduced definition not only enables the comparisonof
various distributed radar apertures, but also provides intuition
into the design of distributed sensing systems.

The notion of a diversity order was first introduced in
multiple-input multiple-output (MIMO) wireless communica-
tions. The diversity order is defined as the slope, in a log-
log plot, of either the bit error rate or outage probability
versus signal-to-noise ratio (SNR) curve in Rayleigh fading at
asymptotically high SNR [7]. The diversity order captures the
number of independent paths over which the data is received.
Furthermore, even though this is a high-SNR concept, wireless
systems usually reach this asymptotic behavior at practical
SNR levels. The notion of diversity order has played a crucial
role in the development and design of MIMO wireless systems.
On the other hand, radar systems invariably deal with low
levels of SNR and an asymptotic definition is not useful. In [6]
we defined the diversity order of a symmetric system as the
slope of the probability of detection (PD) versus SNR curve at
PD = 0.5. This provides a convenient, consistent and useful
definition for system evaluation and design.

The complexity in analyzing the diversity order of dis-
tributed radar systems arises from the interplay between the
probability of detection and the probability of false alarm, PF .
Unlike wireless communications, and for a fair comparison,
PD must be obtained for a constantPF . However, bothPD



and PF depend on the detection thresholds chosen at each
sensor. As we will see, due to this interplay betweenPD and
PF , both performance and the resulting diversity order are
strongly dependent on the chosen fusion rule.

The work in [6] focuses on the definition of diversity and the
analysis of the diversity order of the OR and AND rules. In this
paper we extend the work of [6] to include a diversity analysis
of joint (optimal) detection, which we prove to be of the form
of maximal ratio combining (MRC). The Neyman-Pearson test
statistic follows a Gamma distribution, and the probabilities of
false alarm and detection are determined accordingly. We show
that for largeK, the diversity order of joint detection is on
the order of

√
K.

This paper is organized as follows: Section II introduces
the system model under consideration and provides a brief
background on distributed detection including the NP test and
the corresponding receiver operating characteristics (ROC).
Section III briefly reviews the notion of diversity order in
distributed radar systems. In Section IV we analyze joint
detection and we evaluate its diversity order in Section V.
The paper ends with some conclusions and suggestions for
future work in Section VI.

II. SYSTEM MODEL AND BACKGROUND

In this section we present our system model and a brief
overview of the available literature regarding distributed de-
tection. We will also recall the main results of [6]. We begin
with our system model.

A. System Model

The overall system comprisesK distributed sensors at-
tempting to detect the presence of a target in a certain region
in space. Each sensor possessesN co-located antennas. The
model focuses on a noise-limited scenario; interference and
adaptive suppression of interference is briefly discussed in
section VI. Thek-th sensor receives a data vector of the form:

zk =

{

αksk + nk, if target is present
nk, if target is absent

, (1)

wheresk is the space-time target steering vector corresponding
to the target look direction and velocity,αk is the complex-
valued amplitude, andnk is the additive interference and
noise vector. The target is modelled as a Swerling type-II
and consequently,{αk}K

k=1 are independent and identically
distributed (i.i.d.) drawn from a zero mean complex Gaussian
random process whose variance determines the SNR.

Each sensork transmits a decisionuk to a fusion center,
which makes the final decisionu0 indicating the presence
(hypothesisH1) or absence (hypothesisH0) of a target in
the region of space monitored by the sensors. We will adopt
the convention that1 symbolizesH1 and0 symbolizesH0. u
is the length-K vector of the decisions of the sensors.

In this work, we assume that, given the hypothesis, the
observations at the sensors are statistically independent. We
also assume that the noise statistics are known, and the
corresponding ROC can be derived accordingly. Finally, we

assume that the fusion center receives the data from the local
sensors without error. The reader is referred to [8] and the
references therein for a summary on channel-aware distributed
detection.

B. Distributed Detection

Tenneyet al. analyzed the problem of distributed detection
under the Bayesian criterion [1]. In radar applications, weare
particularly interested in preserving a constant false alarm rate
(CFAR). In [9] the authors prove that the optimal detection
rule under CFAR is a Neyman-Pearson test at both the fusion
center and the local sensors. At the fusion center, the NP test
is of the form:

u0 =

{

1, if Pr(u|H1) ≥ t0 Pr(u|H0)
0, if Pr(u|H1) < t0 Pr(u|H0)

, (2)

wheret0 is a global threshold to be determined according to
the required false alarm probability (PF ). By the monotonicity
of the optimum fusion rule established in [10], and knowing
that the NP test is the most powerful test [2], the local tests
at the sensors are also NP tests defined as:

uk =

{

1, if Pr(yk|H1) ≥ tk Pr(yk|H0)
0, if Pr(yk|H1) < tk Pr(yk|H0)

, (3)

where yk is the output of the processor at thek-th sensor
and {tk}K

k=1 are the local thresholds to be determined. The
problem is reduced to maximizing the probability of detection
PD = Pr(u0 = 1|H1) under the constraint that the global
probability of false alarmPF = Pr(u0 = 1|H0) is held
constant. This problem in non-convex in general and no global
optima are guaranteed by the optimization process. We will
not dwell into the details of the optimization problem, and the
reader is referred to [11] for more details.

On the other hand, optimal detection systems jointly pro-
cess the signals received at allK sensors, a scheme which
can regarded as maximal ratio combining (MRC) [12]. The
diversity order of such a system will be the main subject for
this paper.

C. Neyman-Pearson Test for Distributed Detection

We will now develop the NP test for distributed systems.
Given the Swerling type-II target model, under both hy-
potheses, the received vector is complex Gaussian [13]. The
derivation below uses an arbitrary Gaussian noise covariance
matrix denoted asRn; and the covariance matrix of the signal
is denoted by

Sk = A2sksH
k , (4)

whereA2 = E{|αk|2} is the mean target power andαk is the
complex amplitude of the received signal space-time steering
vector sk. Here E{·} represents the statistical expectation
operator.

Under the null hypothesis,H0, and due to the independence
assumption,

Pr{z1, z2, . . . , zK |H0} =
K
∏

k=1

1

πN |Rn|
e−z

H
k R

−1
n zk . (5)



Similarly, under the target-present hypothesis,H1,

Pr{z1, . . . , zK |H1} =
K
∏

k=1

1

πN |Rn + Sk|
e−z

H
k (Rn+Sk)−1

zk .

(6)
The likelihood ratio corresponding to the NP test is of the
form:

Λ(z1, . . . , zK) =
Pr{z1, . . . , zK |H1}
Pr{z1, . . . , zK |H0}

(7)

and it can be shown that the NP test leads to the following
test-statistic [13]:

ζ =
K

∑

k=1

A2|sH
k R−1

n zk|2
1 + A2sH

k R−1
n sk

. (8)

Note that the numerator is exponentially distributed under
both hypotheses and that the denominator is independent of
the received vector. Another important observation is that
the numerator is proportional to the output of the adaptive
processor using the optimal weight vectorw = R

−1
n sk [14].

The NP test also implies that each sensor should use the
most powerful test, which is the NP test itself [2]. Conse-
quently, each sensor individually performs a test of the form
of Eqn. (8), which in the case of sensork, reduces to:

ζk =
A2|sH

k R−1
n zk|2

1 + A2sH
k R−1

n sk

≷ T
(k)
h , (9)

whereT
(k)
h is a threshold to be determined in order to maintain

the desired probability of false alarm.
We will drop the subscripts for convenience. Under the null

hypothesis, the received vectorz is the zero-mean complex
Gaussian noise vector, and the statistic is exponentially dis-
tributed with mean:

λ0 = E{ζ|H0} =
A2sHR−1

n s

1 + A2sHR−1
n s

. (10)

Consequently, the probability of false alarm at sensork

becomes:

P
(k)
f = Pr(1|H0) = Pr(ζ > T

(k)
h |H0) = e−T

(k)
h

/λ0 . (11)

Similarly, under the target-present hypothesis, the received
vector is of the form:

z = αs + n, (12)

and the statistic for the Swerling type-II model is also expo-
nentially distributed with mean:

λ1 = E{ζ|H1} =
A2sHR−1

n s+ A4|sHR−1
n s|2

1 + A2sHR−1
n s

, (13)

and the probability of detection at each sensork is:

P
(k)
d = Pr(1|H1) = Pr(ζ > T

(k)
h |H1) = e−T

(k)
h

/λ1 . (14)

The problem reduces to maximizing the total probability of
detectionPD keeping the total false alarm probabilityPF

constant.

We consider the theoretical case of a symmetric, noise lim-
ited system, i.e.,Rn = σ2

I, with each sensor receiving equal
power on average. The symmetry assumption follows from
the lack of anya-priori information regarding the presence
of a target, and the characteristics (position and velocity) of
the target itself. This follows the same lines as the reasoning
presented in the study of diversity in wireless communications
[7]. This assumption is particularly useful as it implies that the
probabilities of false alarm at the sensors are all assumed to
be equal, which significantly simplifies the analysis as willbe
shown below.

III. D IVERSITY ORDER FORDISTRIBUTED NETWORKS

In [6], we introduced the notion of diversity in distributed
networks and we evaluated the diversity order of fully dis-
tributed detection schemes where each sensor sends a 1-bit
binary decision to the fusion rule. This section briefly reviews
the notions and main results of [6].

In [6], we proposed the following definition of diversity in
distributed networks:

Definition 3.1: The diversity order of a symmetric dis-
tributed radar system is the slope of thePD curve atPD = 0.5.

The main intuition behind this definition is that this slope at
PD = 0.5. is most likely to best estimate the slope along the
‘rising’ part of the PD versus SNR curve and also captures
the behaviour at realistic SNR levels.

Without loss of generality, in the following discussion we
assume thatA2 = 1, and thus the input SNR is

γ =
A2

σ2
=

1

σ2
. (15)

Given N array elements at each sensor and under the null
hypothesis,

λ0 = E{ζ|H0} =
Nγ

1 + Nγ
. (16)

Similarly, under the target-present hypothesis,

λ1 = E{ζ|H1} = Nγ. (17)

Once the probability of false alarm at each sensor,P
(k)
f , is

known, Eqn. (11) can be inverted to obtain the threshold at
each sensor.

Finally, we evaluated the diversity order of various combin-
ing schemes, including the OR rule, AND rule and the various
MAJ rules. We proved the following results [6]:

Theorem 3.2:For a symmetric noise-limited system using
the “1 out of K” (OR) fusion rule, and for largeK, the slope
at PD = 0.5 increases asN lnK.

Theorem 3.3:For a symmetric noise-limited system using
the “K out of K” (AND) fusion rule, and for largeK, there
is no improvement whenK is increased.

We also showed that no generalization can be made regard-
ing the performance of the MAJ rules. However, our analysis
showed that the OR rule, with only logarithmic gains, is best
fitted for our theoretical analysis.



Finally, one should not read too much into this notion of di-
versity order. As in wireless communications, our definition of
diversity order does not addresswhere, as a function of SNR,
is the bend in thePD curve. Various systems may achieve the
same diversity order but still have very different performance.
We will draw attention to this later when comparing the OR
rule with optimal joint detection. Furthermore, note that these
results pertain to the Swerling type-II target model, and other
models might lead to different results.

IV. OPTIMAL JOINT DETECTION

The analysis above focused on the various popular schemes
for distributed detection where each sensor communicates
a single binary decision to a fusion center. The other end
of the performance (complexity, and bandwidth requirement)
spectrum would be a perfect joint detection procedure wherein
the signals from all sensors are processed jointly.

A. Joint Detection: An MRC approach

In joint detection, the data fusion center uses the test statistic
described in Eqn. (8) to make the global decision. Note that
this approach is equivalent to Maximum Ratio Combining
(MRC) because each sensor contributes to the statistic pro-
portionately to its received power. Under the Swerling type-
II model and the symmetry assumption, the statistic is a
summation ofK i.i.d. exponential random variables. The sum
follows a Gamma distribution of the form [15]:

f(x;K, θ) = xK−1 e−x/θ

θKΓ(K)
, (18)

whereθ is the common mean of theK random variables and
Γ(K) = (K − 1)! for integerK.

The probability of false alarm is the probability that the
statistic surpasses a thresholdTh to be determined given the
null hypothesis. This is the complement of the cumulative
distribution function (CDF) ofζ given the null hypothesis,
and is given by the upper incomplete Gamma functionΓ(K,x)
defined as follows:

PF = Pr(ζ > Th|H0) = Γ

(

K,
Th

λ0

)

,

=
1

Γ(K)

∫ ∞

Th/λ0

xK−1e−xdx. (19)

Similarly, the probability of detection is defined as follows:

PD = Pr(ζ > Th|H1) = Γ

(

K,
Th

λ1

)

,

=
1

Γ(K)

∫ ∞

Th/λ1

xK−1e−xdx. (20)

A closed form expression to determine the threshold for a
chosen probability of false alarmPF is difficult to obtain and
we are reduced to numerical solutions. Given the desiredPF ,
we perform a line search in order to find the corresponding
threshold,Th using Eqn. (19). We then replace the obtained
value of Th in Eqn. (20) to determine the probability of
detection at a specific SNR.

Figure 1 compares the performance of MRC and the OR
Rule for 3 and 8 sensors. The SNR gap between MRC and the
OR fusion rule increases from around 1.2 dB for 3 sensors to
2.5 dB for 8 sensors. The curves seem parallel and this might
hint that MRC and the OR fusion rule have the same diversity
order. This is mainly caused by the log-scale on the x-axis.
We will show in the following sections that the two schemes
behave differently with increasingK.

Fig. 1. Comparison of MRC and OR Rule

B. A Gaussian Approximation

Finding a closed-form solution for the slope and diversity
order following the analysis above is intractable. However,
when the number of sensors grows large, the central limit
theorem dictates that the test statisticζ follows a Gaussian
distribution. Under the null hypothesis and the symmetry
assumption, each sensor will contribute an exponentially dis-
tributed term with meanµk = λ0 and varianceσ2

k = λ2
0.

Hence, by the independence assumption, the statisticζ will
be Gaussian distributed with meanµζ = Kλ0 and standard
deviationσζ =

√
Kλ0. The probabilities of false alarm and

detection are consequently defined as follows:

PF = Pr(ζ > Th|H0) = Q

(

Th − Kλ0√
Kλ0

)

(21)

PD = Pr(ζ > Th|H1) = Q

(

Th − Kλ1√
Kλ1

)

(22)

whereQ(x) is the upper tail of the standard normal distribution
and is defined by

Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt. (23)

Given the desired probability of false alarmPF , we invert
Eqn. (21) to get the threshold:

Th = Q−1(PF ).
√

K.λ0 + K.λ0 = λ0.
√

K[
√

K + Q−1(PF )].
(24)



We combine Eqn. (22) and Eqn. (24) to get the probability of
detection at a certain SNR.

Figure 2 reflects the accuracy of this approximation, and
shows that when the number of sensors increases, the approx-
imation becomes more accurate. Figure 2 also shows that a
large number of sensors is required to achieve a reasonable
accuracy. However, as will be shown in the following section,
the diversity order of the MRC processing scheme will closely
follow this approximation even for smallK.

Fig. 2. Accuracy of the Gaussian Approximation

V. D IVERSITY ORDER OFOPTIMAL JOINT DETECTION

Proceeding with the analysis presented in the previous
section, we derive the diversity order for MRC joint detection.

Theorem 5.1:For a symmetric noise-limited system using
joint MRC detection, and withK large, the slope atPD = 0.5
increases asN

√
K.

Proof: At PD = 0.5,

PD = Q

(

Th − Kλ1√
Kλ1

)

= 0.5. (25)

Inverting the Q-function, we get:

Th − Kλ1√
Kλ1

= 0. (26)

Using Eqn. (24) and with simple algebra

1 + Nγ =

√
K + Q−1(PF )√

K
. (27)

Let t be defined as:

t =
Th − Kλ1√

Kλ1

=
[
√

K + Q−1(PF )]

1 + Nγ
−
√

K. (28)

Using the chain rule and the fundamental theorem of calculus
we get:

dPD

dγ
=

dPD

dt

dt

dγ

=
N.[

√
K + Q−1(PF )]√
2π(1 + Nγ)2

e
− 1

2

(

[
√

K+Q−1(PF )]

1+Nγ
−
√

K

)2

(29)

Using Eqns. (27) and (29), we get:

dPD

dγ
(PD = 0.5) =

N.K√
2π[

√
K + Q−1(PF )]

(30)

which behaves as

N
√

K (31)

thus concluding the proof.

Fig. 3. Comparison of the slope of MRC and OR atPD = 0.5

Again, this behavior is only proved valid in the limit when
K is large. In addition, we note the linear gains in the number
of antennasN , a result analogous to both fully distributed
detection and MIMO systems. Figure 3 compares the slope
at PD = 0.5 for joint and distributed detection for various
values of the parameterN . Note that the slope values for MRC
were calculated numerically from the Gamma distribution, not
from the Gaussian approximation. The slope increases much
faster for MRC (joint detection) than the OR rule (distributed
detection), and we conclude that the behavior of the diversity
order as approximated using the central limit theorem is
accurate even for small values ofK.

A. Discussion

In wireless communications, as the number of antennas
approaches infinity, the Rayleigh fading channel is reduced
to an AWGN channel and we achieve line-of-sight conditions.
In distributed detection, we have shown that a similar process
takes place. For a fully distributed detection system (OR
rule), which can be interpreted as a Selection Combining



(SC) scheme, the slope increases atln(K). When the number
of bits per sensor is infinite (MRC), the slope increases
as

√
K. Following the new definitions, and unlike wireless

communications, MRC and SC lead to different diversity
orders. This is due to the interplay, in radar systems, between
the probability of false alarm and the probability of detection.

The diversity order developed here provides a simple and
consistent measure of the performance loss arising from using
distributed detection (the OR rule - diversity order ofln(K))
instead of joint detection (the MRC - diversity order of

√
K).

Finally, it is interesting to note that neither scheme provides
a diversity order ofNK - which would arise if we had
NK co-located antennas, i.e., the diversity order provides a
simple measure of the loss in performance due to distributed
detection, even if optimal processing is used.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we evaluated the diversity order of joint
(optimal) detection in distributed radar networks. We first
recalled the main notions and results of our previous work [6],
where we defined the diversity order of a distributed radar
system as the slope of thePD curve atPD = 0.5. We also
evaluated the diversity of fully distributed schemes. In this
paper, we extended this analysis to joint detection, where each
sensor transmits the full likelihood ratio to the fusion center.
The central limit theorem enabled us to approximate the NP
test statistic by a Gaussian distributed statistic in orderto prove
that the diversity order of an optimal system is on the order of√

K. We finally provided simulations that show that the slope
for MRC systems increases much faster than the logarithmic
increase of the OR rule, which validates our theoretical results.

One interesting observation, and once again unlike wireless
communications, there is no clear-cut way on how to pass
from the logarithmic increase of fully distributed schemesto
the square-root increase of joint detection. Hence it is of great
interest to analyze the performance of partially distributed
systems, where local sensors transmit multi-bit likelihood
ratios to the fusion center. This will be subject to future
investigation.

We will also extend our work to include the more realistic
STAP detection settings where the noise covariance matrix is
of the form:

Rn = Rγ + Rj + Rc (32)

where Rγ ,Rj and Rc are respectively the additive noise,
jamming and clutter covariance matrices [14].

Finally, and in harmony with our previous analysis in [6],
we emphasize on the fact that our results do not necessarily
characterize aK −

√
K rate-reliability trade-off in distributed

radar networks. Our main objective for future research is to
delineate such a trade-off similarly to diversity-multiplexing
in wireless communications. In the radar context, we envision
multiplexing to mean the interrogation of multiple look points
simultaneously.
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