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Abstract—We introduce the notion of random radar networks
to analyze the effect of geometry in distributed radar systems. We
first analyze unistatic systems with a single receiver selected at
random from the available group. We approximate the distribu-
tion of the individual Signal-to-Interference-Plus-Noise (SINR) at
the sensors and find the corresponding mean and variance. We
then analyze multistatic systems and provide an upper bound
on performance. We show that in order to exploit the spatial
diversity available to the system, the sensors should be large
enough to effectively cancel interfering sources. We underline
a design tradeoff between spatial diversity and interference
cancellation for multistatic radar networks. We finally pro vide
the results of simulations to validate our analysis.

I. I NTRODUCTION

Recently, detection using distributed radar apertures has
received renewed attention. Such a system avails the benefits
of spatial diversity. However, there has been little theoretical
analysis to understand the trade-offs involved in distributing
sensors. In our previous work [1], we introduced the notion of
the diversity order of a noise-limited distributed radar system.
This notion allows a system designer to evaluate the trade-off
between co-located and distributed sensors. We proved that
larger antenna arrays are preferable for noise-limited systems,
and that most of the performance can be achieved with a
limited communication bandwidth between the sensors and
the fusion center. However, more practical systems include
interference, which is, generally, a function of the geometry
of the system.

In [2], Goodmanet. al. initiated the work on geometry.
They proved empirically that networks with certain geometries
are able to combat interference more effectively that other
geometries. The drawback is that the available literature deals
with systems with fixed geometries. The main contribution
of this paper is the introduction of the notion of arandom
network. This model is relevant because the relative directions
and velocities of the target cannot be knowna-priori. Fur-
thermore, even the locations of the sensors are generally not
regular. In this work we propose a formal approach to tackle
this inherent randomness of the network.

Specifically, in this paper, our objective is to determine
the interaction between spatial diversity and the required
number of antennas at each sensor for effective interference
cancellation. Here, we use the output signal-to-interference-
plus-noise ratio (SINR) as the metric for system performance.
The network being random, the SINR is in turn a random

variable. We first determine the distribution of the SINR, and
we then determine its corresponding mean and variance. We
begin by analyzing a unistatic system with a single sensor
chosen randomly from an available group of sensors.

For random multistatic networks, we recur to the definition
of diversity that we first introduced in [1]. We show the
existence of a tradeoff: the sensors should be large enough to
cancel the interference, and at the same time, a larger number
of sensors enables the exploitation of spatial diversity and
achieves higher diversity order. System designers should find
the proper balance between the size and the number of sensors
to conform to resource limitations and abide to performance
requirements. We finally provide results of simulations vali-
dating our theoretical analysis. We show the results for joint
optimal detection and for fully distributed systems using the
OR rule.

This paper is organized as follows: Section II introduces
the system model under consideration and provides a brief
background on distributed detection and the Neyman-Pearson
(NP) test. In Section III we analyze a unistatic system, and
derive the characteristics of the SINR for a single sensor.
In Section IV we analyze multistatic systems and provide
analytical and empirical evaluations of spatial diversityin
distributed STAP systems. The paper is concludes with some
suggestions for future work in Section V.

II. SYSTEM MODEL AND BACKGROUND

In this section we present our system model and a brief
overview of the available literature on distributed detection
and interference cancellation.

A. System Model

Detection is performed withK distributed sensors attempt-
ing to detect the presence of a target in a certain region in
space. Each sensor possessesN collocated antennas. Thek-th
sensor receives a data vector of the form:

zk =

{
αksk + nk, if target is present,
nk, if target is absent,

(1)

wheresk is the target spatial steering vector corresponding to
the target look direction,αk is the complex-valued amplitude,
and nk is the additive interference and noise. The target is
modeled as a Swerling type-II and, consequently,{αk}K

k=1 are
independent and identically distributed (i.i.d.) drawn from a
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Fig. 1. Generic Model.

zero-mean complex Gaussian random variable whose variance
determines the received signal-to-noise ratio (SNR).

In this work, we assume that, given the hypothesis, the
observations at the sensors are statistically independent. Each
sensork transmits a decisionuk to a fusion center, which
makes the final decisionu0 indicating the presence (hypothesis
H1) or absence (hypothesisH0) of a target in the region of
space monitored by the sensors.u is the length-K vector of
the decisions of the sensors. We also assume that the noise
statistics are known, and that fusion center receives the data
from the local sensors without error.

Finally, we introduce our model of arandom distributed
network, a system where the relative positions and velocities of
the sensors, target, jammers and clutter are all random. Forrea-
sons of practicality, we introduce ageneric model (Figure 1)
which assumes that the look region is at the center of the area
monitored by the sensors, which in turn arerandomly placed
on a circle centered at the potential target; the jammers are
randomly distributed inside this circle. A jammer is modeled
as an interfering source originating from a single point in
space. Note that this generic model is a special case of a
random network where the restriction to a circle allows for
the convenient symmetry assumption that the sensors receive
equal SNR.

The optimal weight vector at receiverk that maximizes the
output SINR is [3]:

wk = R−1
nk sk, (2)

whereRnk is the interference-plus-noise covariance matrix,
leading to the Neyman-Pearson statistic of

ζ =

K∑

k=1

A2|sH
k R−1

n zk|2
1 + A2sH

k R−1
n sk

. (3)

Performance greatly depends on the geometry of the system.
For example, if the target is close in direction to a strong
jammer, the target will be nulled. However, system designers
have no control over this geometry. The main contribution of
this paper, therefore, is an analysis of radar networks with
random geometry. In the following section we will discuss
unistatic random networks, and we will extend this analysis
to multistatic systems in Section IV.

III. R ANDOM UNISTATIC SYSTEMS

When a certain range is monitored bya single sensor
that is randomly chosen from the set of available sensors,
we refer to the system as a random unistaticsystem. We

assume that the sensor is randomly chosen without resorting
to any pre-processing scheme that might assist the network
in choosing the sensor that is best-fitted for detection. The
general setting with an arbitrary number of interferers appears
to be intractable for any significant analysis; we will therefore
analyze a theoretical scenario where the system is limited by
noise and a singlestrong jammer. We will derive the mean
and variance of the output SINR. SinceK = 1 in this case,
in this section we drop the indexk.

In the case of a single jammer, the noise-plus-interference
covariance matrix is

Rn = σ2
(
I + γjaj .aH

j

)
, (4)

where γj is the jammer-to-noise ratio (JNR) andaj is the
jammer steering vector. Using the matrix inversion lemma:

R−1
n =

1

σ2

(

I −
γjaj .aH

j

1 + γjaH
j aj

)

. (5)

Note thataH
j aj = sHs = N whereN is the number of antenna

elements. The output SINR becomes:

γo = |α|2sHR−1
n s

=
|α|2
σ2

(

N − γj |sHaj|2
1 + Nγj

)

=
|α|2
σ2

(

N − γj |
∑N−1

n=0 einπ(cos(θt)−cos(θj))|2
1 + Nγj

)

. (6)

In this scenario, the SINR is a function of two independent
random variables:α and u = [cos(θt) − cos(θj)]. Under the
Swerling type-II target assumption,α is complex Gaussian
with average powerA2 = E{|α|2}. The SINR expression
simplifies using the fact that:

G(u) =

∣
∣
∣
∣
∣

N−1∑

n=0

einπu

∣
∣
∣
∣
∣

2

=

(
N−1∑

n=0

cos(nπu)

)2

+

(
N−1∑

n=0

sin(nπu)

)2

=

N−1∑

n=0

N−1∑

m=0

[cos(nπu) cos(mπu) + sin(nπu) sin(mπu)]

=

N−1∑

n=0

N−1∑

m=0

cos[(n − m)πu]. (7)

Now define the all-ones vector1(N) of lengthN and define
the length-(2N−1) vector△ as the linear convolution of1(N)
with itself. In the sum of Eqn. (7), each termj = (n−m) =
−N + 1, . . . , N − 1 is repeated△(j + N) times. Therefore,

G(u) =
N−1∑

n=0

N−1∑

m=0

cos[(n − m)πu]

= N + 2
N−1∑

j=1

△(j) cos(jπu), (8)

where△(N) = N by virtue of the linear convolution.



A. Mean and Variance of the SINR

We now derive the mean and variance of the SINR. We
first assume that the random variableu is uniform over the
range [−2, 2], i.e. u ∼ U{−2, 2}. The range is chosen so
as to conform to the difference of 2 cosines. This is simply
a tractable model to develop an understanding about the
behavior of the mean and variance of the SINR.

1) Mean:: We start with the mean:

E{G(u)} =

∫ 2

−2

G(u)fu(u)du

=
1

4

∫ 2

−2



N + 2
N−1∑

j=1

△(j) cos(jπu)



 du = N,

(9)

Using Eqn. (9) in Eqn. (6) we get:

E{γo} =
A2

σ2

(

N − Nγj

1 + Nγj

)

, (10)

which for large JNR, reduces to:

E{γo} ≈ A2

σ2
(N − 1) , (11)

thus providing a theoretical explanation for the intuitiveresult
that nulling a single jammer costs the systemon average one
degree of freedom.

2) Variance: To obtain the variance of the SINR, denote
the second term of Eqn. (8) as:

Y = 2

N−1∑

j=1

△(j) cos(jπu). (12)

Note thatE{Y} = 0 and var{Y} = var{G(u)} sinceN is a
constant. We now derive the variance ofY.

var{Y} = E
{

4

N−1∑

n=1

N−1∑

m=1

△(n)△(m) × cos(nπu) cos(mπu)

}

= 4

N−1∑

n=1

N−1∑

m=1

△(n)△(m) × E
{

cos(nπu) cos(mπu)
}

.

Recalling thatu ∼ U{−2, 2} we get:

E
{

cos(nπu) cos(mπu)
}

=
1

4

∫ 2

−2

cos(nπu) cos(mπu)du

=

{
1
2 , if n = m
0, if n 6= m

, (13)

and therefore

var{Y} = 2
N−1∑

n=1

△2(n). (14)

In what follows, we will denote the summation above by:

S{M} =

M∑

n=1

△2(n) = 12 + 22 + · · · + M2, M ≤ N

(15)

=
M(M + 1)(2M + 1)

6
. (16)

Let Z = sHR−1
n s so thatγo = |α|2Z. We assume without

loss of generality thatA2 = E{|α|2} = 1 and consequently,
E{|α|4} = 2 because|α|2 is exponentially distributed. This
means that the input SNR is determined by the receiver noise
varianceσ2. We first use Eqn. (6) to state that:

var{Z} =
1

σ4

(
γj

1 + Nγj

)2

var{Y}

=
2

σ4

(
γj

1 + Nγj

)2

S{N − 1}. (17)

Simple computations using Eqns. (10) and (17) leads to:

var{γo} =
1

σ4

[

4S{N − 1}γ2
j

(1 + Nγj)2
+

(

N − γjN

1 + Nγj

)2
]

.

(18)

For high JNR,

var{γo} ≈ 1

σ4

[
4S{N − 1}

N2
+ (N − 1)2

]

,

=
1

σ4

[
(N − 1)(N + 1)(3N − 2)

3N

]

. (19)

We note that the variance increases on the order ofN2 while
the expectation is on the order ofN . Clearly, therefore, asingle
receiver does not provide any gains in reliability

B. Numerical Results

This section presents the results of simulations to test the
theory developed above. Figure 2(a) presents the average SINR
for the generic model when the number of jammersJ is varied.
On the same graph, we also plot the straight liney = N − J .
Figure 2(a) shows the mean SINR value when the number of
interfering sources grows large, forN = 12, 24. In fact, when
the sensor is not able to null the interference, the SINR per
sensor drops to zero, and the system turns futile. For lower
values ofJ , the SINR follows the linear curve predicted by
Eqn. (11) extended to multiple jammers.

Figure 2(b) presents the variance for the same scenario.
It shows that the variance is inversely proportional to the
number of jammers. We note however that the mean also
decreases and hence the reduction in the variance does not
imply better performance. On the other hand, we notice a
significant difference in the variance betweenN = 12 and
N = 24; and the twofold difference inN is translated
faithfully into a fourfold difference in the variance for the
lowest values ofJ corroborating the analysis above.

IV. RANDOM MULTISTATIC SYSTEMS

The previous section focused on a single sensor withN
collocated antennas. This sensor was picked randomly from a
set of available sensors. We now analyze multistatic random
radar networks. In such systems,K randomly located sensors
detect the presence of a target at a certain range. There are
two main system design problems: 1) how many sensors
does reliable detection require?, and 2) how many antennas
should each sensor possess?. We will start by stating an upper
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Fig. 2. Mean and variance of the SINR with increasing number of jammers.

bound on performance. This upper bound illustrates the spatial
diversity available due to distributed sensors. We then present
alternative figures of merit that validate this analysis. Itis
worth emphasizing that an analytically tractable and consistent
figure of merit has not yet been formulated for distributed
detection.

A. An Upper Bound on SINR

In a system that adopts joint processing, i.e., when the
data from each sensor is fully available at a fusion center,
and under the assumption that the observations at the sensors
are independent, the output SINR is equal to the sum of the
individual SINRs, and this is consequently an upper bound
on performance. As a performance measure, we introduce the
following metric:

Γ =
E2{γo}
var{γo}

. (20)

The numerator is a measure of the average ‘power’ available
in the system; the denominator is the variance, which is a
measure of the uncertainty in the system. The overall metric
is, therefore, a measure of the relative reliability of the system

As in the previous section, for tractability, we analyze the
case of a single strong jammer. In this case, the metric for the
overall system reduces to:

Γ = K
E2{γo}
var{γo}

=
3KN(N − 1)

(N + 1)(3N − 2)
. (21)

This expression allows one to investigate the tradeoff between
K andN , i.e., of setting up a large number of smaller sensors
versus having a small number of large sensors. To this end,
let η = KN be fixed. The metric of Eqn. (21) reduces to:

Γ =
3K η

K
( η

K
− 1)

( η
K

+ 1)(3η
K

− 2)
= 3η

K(η − K)

(η + K)(3η − 2K)
. (22)

We first prove thatΓ increases with increasingK. Assuming,
N ≥ 2 such that the single jammer can be cancelled, hence
K ≤ η/2. DifferentiatingΓ with respect toK, we get:

dΓ

dK
=

3η2

(η + K)2(3η − 2K)2
︸ ︷︷ ︸

term 1

× (K2 − 6Kη + 3η2)
︸ ︷︷ ︸

term 2

. (23)

Term 1 is always positive. We now show that for feasible
values ofK, the second term is also positive. The roots of
this polynomial are:k1 = η(3 +

√
6) andk2 = η(3 −

√
6) ≈

0.55η. Knowing that the above polynomial describes a convex
parabola and thatK ≤ η/2 which is in turn smaller than the
smaller rootk2, this means that the polynomial evaluates to
positive values for all feasibleK, hencedΓ/dK is positive
andΓ is strictly increasing withK.

This result shows thatas long as the interference is can-
celled, increasing the number of distributed sensors improves
performance.

B. Probability of Detection

In what follows, we analyze the probability of detection
for joint detection or maximal ratio combining (MRC) and
the OR rule. Under both hypotheses, the test statistic (3) is
exponentially distributed. For the OR rule, the total probability
of detection is

PD = 1 −
K∏

k=1

(1 − P
(k)
d ), (24)

whereP
(k)
d is the individual probability of detection at sensor

k. In joint detection, each sensor contributes an exponen-
tially distributed term with meanλ0 = A2sH

k R−1
n sk/(1 +

A2sH
k R−1

n sk) underH0 andλ1 = A2sH
k R−1

n sk underH1. The
statistic is a linear sum of exponential random variables and
it follows a distribution of the form [4]:

f∑
Xj

(ζ) =

(
n∏

i=1

λi

)
n∑

j=1

e−λjζ

∏n
k=1,k 6=j(λk − λj)

, ζ > 0.

(25)
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Fig. 3. Plots for the averagePD with J = 1, 3.

This distribution is used to derive the probability of detection:
first we invert this expression with the correspondingλi,0 to
get the global threshold, we then use this threshold into the
same expression, but now withλi,1 instead ofλi,0 in order to
calculate the probability of detection.

Figure 3 shows the averagePD results for a system with
a total of NK = 24 antenna elements. Both MRC and the
fully distributed OR rule are portrayed. Figure 3(a) shows the
averagePD for 1 jammer. We first note that in this case, all
the sensors are able to null the interference. For low input
SNR, the larger sensors achieve better performance thanks to
the array gain. When channel conditions improve, interference
cancellation becomes the bottleneck to performance, and a
larger number of sensors achieves better results. It is inter-
esting to note that in this case the system exploits the spatial
diversity as clearly manifested in theK = 3 andK = 6 cases.
In terms of diversity order [1], the more sensors we have, the
steeper thePD curve is. This comes at the expense of poorer
performance for low input SNR when the system is considered

to be ‘noise-limited’.
Figure 3(b) shows the averagePD for 3 jammers. The result

is similar forK = 3 sensors. However, we see that forK = 6
which corresponds toN = 4, the sensors are not able to
effectively null the 3 jammers, and the system achieves poor
performance over all input SNR regimes. We note that the OR
rule achieves results that are surprisingly close to optimum,
especially when the interference environment become harsher.

V. CONCLUSIONS

The main contribution of this paper is the introduction
of the notion of a random sensor network to helpanalyze
distributed radar networks. Here we provide and analyze two
theoretical models. For a unistatic system, where a single
sensor is chosen to perform detection, we derive the SINR
distribution, and provide expressions for the mean and the
variance for a specific model. Multistatic detection is the main
subject of this paper, whereK sensors are randomly chosen to
perform detection. We prove that in order to exploit the spatial
diversity of the system, the sensors should be large enough to
null the interference. We prove the existence of a fundamental
tradeoff between interference cancelation and diversity:on
one hand, larger sensors enhance the interference cancelation
capability of the network. On the other hand, the existence of
more sensors allows additional independent observations and
hence larger diversity.

The work here and in [1] represent an initial attempt to
develop a theory of distributed apertures used for detection.
There has so far been little work on developing effective
transmission and reception protocols coupled with effective
signal processing algorithms that exploit the available diversity
inherent in the system. In addition, an interesting theoretical
extension to this work would be to formulate an optimization
problem where power consumption is minimized given that
the system achieves a certain diversity order and that a certain
level of mobility is satisfied. Solving this problem will enable
system designers to build efficient systems that both minimize
power and maximize performance without sacrificing mobility.
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