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Abstract—We introduce the notion of random radar networks  variable. We first determine the distribution of the SINRdan
to analyze the effect of geometry in distributed radar systms. We e then determine its corresponding mean and variance. We

first analyze unistatic_ systems with a single _receiver se_ltm_;l at begin by analyzing a unistatic system with a single sensor
random from the available group. We approximate the distribu- h domlv f ilabl f

tion of the individual Signal-to-Interference-Plus-Nois (SINR) at chosen randomly rom -an available group of sensors. o
the sensors and find the corresponding mean and variance. We ~ For random multistatic networks, we recur to the definition

then analyze multistatic systems and provide an upper bound of diversity that we first introduced in [1]. We show the
on performance. We show that in order to exploit the spatial exjstence of a tradeoff: the sensors should be large enaugh t
diversity available to the system, the sensors should be lae o0 the interference, and at the same time, a larger mumbe
enough to effectively cancel interfering sources. We undéne ! o ! . .
a design tradeoff between spatial diversity and interferene of Sensors enablgs the exploitation of spgtlal diversitl an
cancellation for multistatic radar networks. We finally provide achieves higher diversity order. System designers shoutl fi
the results of simulations to validate our analysis. the proper balance between the size and the number of sensors
to conform to resource limitations and abide to performance
requirements. We finally provide results of simulationsi-val

Recently, detection using distributed radar apertures hdating our theoretical analysis. We show the results famtjoi
received renewed attention. Such a system avails the benedjitimal detection and for fully distributed systems usihg t
of spatial diversity. However, there has been little theoreticaDR rule.
analysis to understand the trade-offs involved in distiitsi  This paper is organized as follows: Section Il introduces
sensors. In our previous work [1], we introduced the notibn ¢he system model under consideration and provides a brief
the diversity order of a noise-limited distributed radar systembackground on distributed detection and the Neyman-Pearso
This notion allows a system designer to evaluate the trdfde-(NP) test. In Section Ill we analyze a unistatic system, and
between co-located and distributed sensors. We proved thative the characteristics of the SINR for a single sensor.
larger antenna arrays are preferable for noise-limitetesys, In Section IV we analyze multistatic systems and provide
and that most of the performance can be achieved withaaalytical and empirical evaluations of spatial diversity
limited communication bandwidth between the sensors aditributed STAP systems. The paper is concludes with some
the fusion center. However, more practical systems includaggestions for future work in Section V.
interference, which is, generally, a function of the geamet
of the system. Il. SYSTEM MODEL AND BACKGROUND

In [2], Goodmanet. al. initiated the work on geometry. |n this section we present our system model and a brief
They proved empirically that networks with certain geonestr overview of the available literature on distributed deitatt
are able to combat interference more effectively that othgnd interference cancellation.
geometries. The drawback is that the available literatesdsd
with systems with fixed geometries. The main contributioff- System Model
of this paper is the introduction of the notion ofrandom Detection is performed witti distributed sensors attempt-
network. This model is relevant because the relative directiongg to detect the presence of a target in a certain region in
and velocities of the target cannot be knowpriori. Fur- space. Each sensor possessesollocated antennas. Theth
thermore, even the locations of the sensors are generdly 8&nsor receives a data vector of the form:
regular. In this work we propose a formal approach to tackle

Z), = {

|I. INTRODUCTION

agSk + ng, if target is present,
Ng, if target is absent,

this inherent randomness of the network. Q)
Specifically, in this paper, our objective is to determine
the interaction between spatial diversity and the requiretheres; is the target spatial steering vector corresponding to
number of antennas at each sensor for effective interferenie target look directiony; is the complex-valued amplitude,
cancellation. Here, we use the output signal-to-interfeee and n;. is the additive interference and noise. The target is
plus-noise ratio (SINR) as the metric for system perforneananodeled as a Swerling type-Il and, consequertly,} =, are

The network being random, the SINR is in turn a randoindependent and identically distributed (i.i.d.) draworfr a



m— Sensor assume that the sensor is randomly chosen without resorting
N Jammer to any pre-processing scheme that might assist the network
T Target in choosing the sensor that is best-fitted for detection. The
I QT ! general setting with an arbitrary number of interfererseapp
to be intractable for any significant analysis; we will tHere
7 analyze a theoretical scenario where the system is limited b
noise and a singlatrong jammer. We will derive the mean
and variance of the output SINR. Sinéé = 1 in this case,
in this section we drop the indekx
zero-mean complex Gaussian random variable whose varianctn the case of a single jammer, the noise-plus-interference

Fig. 1. Generic Model.

determines the received signal-to-noise ratio (SNR). covariance matrix is
In this work, we assume that, given the hypothesis, the
: SO R, =02 (I +;a;.a) )
observations at the sensors are statistically indepenBewh n 3%-%5 )

sensork transmits a decision,, to a fusion center, which where ~; is the jammer-to-noise ratio (JNR) arg is the
makes the final decisiom, indicating the presence (hyp°the‘°‘i]°’ammerjsteering vector. Using the matrix inversion lemma:
H,) or absence (hypothesid;) of a target in the region of

space monitored by the sensousis the length/ vector of 4,1 ;8.8

the decisions of the sensors. We also assume that the noise R, = =) - m : (®)
statistics are known, and that fusion center receives th@& da R

from the local sensors without error. Note thatal’a; = s’s = N whereN is the number of antenna

Finally, we introduce our model of aandom distributed elements. The output SINR becomes:
network, a system where the relative positions and vetxcaf
the sensors, target, jammers and clutter are all randomreBer Yo = laf*s"R, s
sons of practicality, we introduce generic model (Figure 1) |2 ;18" a;?
which assumes that the look region is at the center of the area ~ 2~ ( - W)
monlto_red by the sensors, which in turn a{amdomly placed o2 | ZN,l gin(cos(00)—cos(0,) 2
on a circle centered at the potential target; the jammers are _ ! (N _ il Zim=0 ) . (8)

o2

randomly distributed inside this circle. A jammer is modkle o? 1+ Nv;

as an interfering source orlglnatmg fr.om a smgle point Tn this scenario, the SINR is a function of two independent
space. Note that this generic model is a special case of a .
random variablesee andu = [cos(6;) — cos(6;)]. Under the

random network where the restriction to a circle allows foéwerlin tvpe-ll target assumption is complex Gaussian
the convenient symmetry assumption that the sensors eecelv, 9 p 9 prom P

2 _ 2 .
equal SNR. with average powerd? = &{|al?}. The SINR expression

The optimal weight vector at receivérthat maximizes the simplifies using the fact that.

output SINR is [3]: N-1 2 N-1 2 N-1 2
we — R-ls @ G(u) = Z T = (Z cos(mru)) + (Z sin(mru))
k= Pk >k n=0 n=0 n=0
where R, is the interference-plus-noise covariance matrix, P . .
leading to the Neyman-Pearson statistic of = [cos(nmu) cos(mmu) + sin(nu) sin(mmu)]
n=0 m=0
K _
A2|SHR 12k|2 N—-1N-1
(= Z : oI 3) = cos[(n — m)mu). (7
o 1 ATSR, s n=0 m=0

Performance greatly depends on the geometry of the systegw define the all-ones vectd(N) of length N' and define

For example, if the target is close in direction to a stronge |ength(2 N —1) vectorA as the linear convolution df( V)

jammer, the target will be nulled. However, system designej;ith jtself. In the sum of Eqn. (7), each terjn= (n—m) =
have no control over this geometry. The main contributionof 5y 1 1 N 1 s repeated\(j + N) times. Therefore,

this paper, therefore, is an analysis of radar networks with

random geometry. In the following section we will discuss NoIN-T
unistatic random networks, and we will extend this analysis G(u) = Z Z cos[(n —m)mul
to multistatic systems in Section IV. n=0 mj\il
[1l. RANDOM UNISTATIC SYSTEMS =N+2) " A(j)cos(jmu), (8)

. . . . =1
When a certain range is monitored lay single sensor !

that is randomly chosen from the set of available sensovehere A(N) = N by virtue of the linear convolution.
we refer to the system as a random unistaystem. We



A. Mean and Variance of the SNR

Let Z = s”R_'s so thaty, = |a|?Z. We assume without

We now derive the mean and variance of the SINR. W@SS Zf generality tha1422:. £{|e|?} = 1 and consequently,
first assume that the random variableis uniform over the £{le|*} = 2 becausda|” is exponentially distributed. This
range[—2,2], i.e. u ~ U{—2,2}. The range is chosen someans that the input SNR is determined by the receiver noise

as to conform to the difference of 2 cosines. This is simpNariances?. We first use Eqn. (6) to state that:

a tractable model to develop an understanding about the

behavior of the mean and variance of the SINR.
1) Mean:: We start with the mean:

E{G(u)} = / ()

1 2
-1/,

N-1
N +2> " A(j)cos(jmu) | du = N,
j=1

©)
Using Eqn. (9) in Egn. (6) we get:
A? Nv;
E{ro} = ) <N - m) ) (10)
which for large JNR, reduces to:
A2
E{rot = — (N -1), (11)

2

(o

thus providing a theoretical explanation for the intuitresult

that nulling a single jammer costs the systemaverage one
degree of freedom.

var{Z} = L ( B )2var{y}

ot \1+ Nv;

2 Vi ’
= — N_l .
0'4 <1+N’7j) S{ }

Simple computations using Eqgns. (10) and (17) leads to:

(17)

1 [4S{IN—1)y2 uN Y
var{yo} = — A+ Ny)? (N_ m) ] .
(18)
For high JNR,
var{~o} ~ % [% (V- 1)2} ’
1 [(N=1)(N+1)(N -2)
ey,

We note that the variance increases on the orde¥ divhile
the expectation is on the order &f. Clearly, therefore, aingle
receiver does not provide any gains in reliability

2) Variance: To obtain the variance of the SINR, denot% Numerical Results

the second term of Eqn. (8) as:

N-1
y=2 Z A(F) cos(jmu). (12)
j=1

Note thaté{Y} = 0 and vaf)y} = var{G(u)} sinceN is a
constant. We now derive the variance f

N-1N-1
var{)} = 5{4 Z Z A(n)A(m) x cos(nmu) cos(mwu)}

n=1 m=1
N—-1N-1

=4 Z Z A(n)A(m) x 5{ cos(nmu) cos(mwu)}.

Recalling thatu ~ U{—2,2} we get:

5{ cos(nmu) cos(mﬂ'u)} = % /22 cos(nmu) cos(mmu)du

RN
0, if

N-1
var{Y} =2 ) " A’(n).

In what follows, we will denote the summation above by:

; (13)

and therefore

(14)

M
S{M}=>"A*n)=1"+4+2+.--+ M?>, M<N
n=1

(15)

~ M(M +1)(2M +1) (16)
- : .

This section presents the results of simulations to test the
theory developed above. Figure 2(a) presents the averaife Sl
for the generic model when the number of jamméis varied.

On the same graph, we also plot the straight line N — J.
Figure 2(a) shows the mean SINR value when the number of
interfering sources grows large, fof = 12, 24. In fact, when

the sensor is not able to null the interference, the SINR per
sensor drops to zero, and the system turns futile. For lower
values ofJ, the SINR follows the linear curve predicted by
Eqgn. (11) extended to multiple jammers.

Figure 2(b) presents the variance for the same scenario.
It shows that the variance is inversely proportional to the
number of jammers. We note however that the mean also
decreases and hence the reduction in the variance does not
imply better performance. On the other hand, we notice a
significant difference in the variance betwedh = 12 and
N = 24; and the twofold difference inV is translated
faithfully into a fourfold difference in the variance foreh
lowest values of/ corroborating the analysis above.

IV. RANDOM MULTISTATIC SYSTEMS

The previous section focused on a single sensor With
collocated antennas. This sensor was picked randomly from a
set of available sensors. We now analyze multistatic random
radar networks. In such systents, randomly located sensors
detect the presence of a target at a certain range. There are
two main system design problems: 1) how many sensors
does reliable detection require?, and 2) how many antennas
should each sensor possess?. We will start by stating arr uppe
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Fig. 2. Mean and variance of the SINR with increasing numtbgarmmers.

bound on performance. This upper bound illustrates théaépa{
diversity available due to distributed sensors. We thesge
alternative figures of merit that validate this analysisisit
worth emphasizing that an analytically tractable and cxiast
figure of merit has not yet been formulated for distributed

detection.
A. An Upper Bound on SINR

In a system that adopts joint processing, i.e., when tl%e In j

The numerator is a measure of the average ‘power’ available
in the system; the denominator is the variance, which is a
measure of the uncertainty in the system. The overall metric
is, therefore, a measure of the relative reliability of thistem

As in the previous section, for tractability, we analyze the
case of a single strong jammer. In this case, the metric for th
overall system reduces to:

_ €M) BEN(N-1)
“ V) (N+1)BN-2)

This expression allows one to investigate the tradeoff betw
K andN, i.e., of setting up a large number of smaller sensors
versus having a small number of large sensors. To this end,
let n = KN be fixed. The metric of Eqn. (21) reduces to:
3KE(# -1 Kn— K

(L +1)(32 -2) (n+ K)(3n — 2K)
We first prove thaf” increases with increasing. Assuming,
N > 2 such that the single jammer can be cancelled, hence
K < n/2. Differentiatingl’ with respect toK, we get:

(21)

dr 31 2 2
- = K? —6Kn+3n%). (23
Ik~ xR =2k <! n 3. (29)
term 2
term 1

Term 1 is always positive. We now show that for feasible
values of K, the second term is also positive. The roots of
this polynomial arek; = 7(3 + v/6) andky = 1(3 — v6) ~
0.55n. Knowing that the above polynomial describes a convex
parabola and thak” < n/2 which is in turn smaller than the
smaller rootks, this means that the polynomial evaluates to
positive values for all feasiblé(, hencedl'/dK is positive
andT is strictly increasing withk'.

This result shows thaas long as the interference is can-
celled, increasing the number of distributed sensors improves
performance.

B. Probability of Detection

In what follows, we analyze the probability of detection
or joint detection or maximal ratio combining (MRC) and
he OR rule. Under both hypotheses, the test statistic (3) is
exponentially distributed. For the OR rule, the total pruibity
of detection is

K
Pp=1-J[a-PP), (24)
k=1

WherePék) is the individual probability of detection at sensor

oint detection, each sensor contributes an exponen-

da:ja frc(;m ehach sensor is f;:lly r::wanl:;\ble at_ a fusmrr: cent(ﬁra”y distributed term with mean\, — AQSkHR#Sk/(l N
and under the assumption that the observations at the sens sHR-1s,) underH, and\, = A2SR> s, underf,. The

are independent, the output SINR is equal to the sum of t
individual SINRs, and this is consequently an upper bou
on performance. As a performance measure, we introduce

following metric:

_ 52{%}
= Varfo)

tistic is a linear sum of exponential random variabled an

ri;ﬁiollows a distribution of the form [4]:

e
n ef)‘jc

_ A _ , 0.
fs 5, (©) <Zl:[1 ) ; [Thmt ey N = 29) ¢>
(25)
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Fig. 3. Plots for the averagfp with J =1, 3.

This distribution is used to derive the probability of deiea:
first we invert this expression with the corresponding to

get the global threshold, we then use this threshold into the
same expression, but now witf) ; instead of}; ( in order to

calculate the probability of detection.

to be ‘noise-limited’.

Figure 3(b) shows the averag®, for 3 jammers. The result
is similar for K = 3 sensors. However, we see that for= 6
which corresponds tavV = 4, the sensors are not able to
effectively null the 3 jammers, and the system achieves poor
performance over all input SNR regimes. We note that the OR
rule achieves results that are surprisingly close to optimu
especially when the interference environment become barsh

V. CONCLUSIONS

The main contribution of this paper is the introduction
of the notion of a random sensor network to heipalyze
distributed radar networks. Here we provide and analyze two
theoretical models. For a unistatic system, where a single
sensor is chosen to perform detection, we derive the SINR
distribution, and provide expressions for the mean and the
variance for a specific model. Multistatic detection is tham
subject of this paper, whet€ sensors are randomly chosen to
perform detection. We prove that in order to exploit the ispat
diversity of the system, the sensors should be large enaugh t
null the interference. We prove the existence of a fundaatent
tradeoff between interference cancelation and diversity:
one hand, larger sensors enhance the interference cancelat
capability of the network. On the other hand, the existerfce o
more sensors allows additional independent observatinds a
hence larger diversity.

The work here and in [1] represent an initial attempt to
develop a theory of distributed apertures used for detectio
There has so far been little work on developing effective
transmission and reception protocols coupled with effecti
signal processing algorithms that exploit the availablediity
inherent in the system. In addition, an interesting thecaét
extension to this work would be to formulate an optimization
problem where power consumption is minimized given that
the system achieves a certain diversity order and that aicert
level of mobility is satisfied. Solving this problem will elle
system designers to build efficient systems that both mir@mi
power and maximize performance without sacrificing moilit
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