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Abstract— An integrated beamforming (spatial processing) and
multiuser detection (temporal processing) scheme is an effective
approach to increase system capacity, but is also impractical
due to the high associated computational costs. The authors
previously proposed the Joint Domain Localized (JDL) processing
which achieves significantly lower computational cost and faster
convergence rate in terms of number of training symbols. This
paper makes justifies the choice of the transformation matrix
that is the basis for the JDL algorithm. Building on the JDL
processing, we also introduce a new processor that combines the
JDL processing and zero forcing for multi-cell uplink CDMA
systems. The simulations show that this approach achieves better
performance and faster convergence rate than the JDL algorithm
as well as the reduced rank and iterative schemes introduced by
other researchers. If restricted by short training sequences, it
even outperforms the theoretically optimal processor.

I. INTRODUCTION

Space division multiple access (SDMA) and temporal mul-
tiple access techniques such as code division multiple access
(CDMA) can be combined to increase system capacity without
sacrificing bandwidth [1]. However, both SDMA and CDMA
are interference limited. Interference suppression is required to
achieve the full potential of these multiple access schemes. In
this regard, joint domain adaptive processing that integrates
receive beamforming (spatial processing) and multiuser de-
tection (temporal processing) in CDMA systems outperforms
all possible linear processing based on the minimum mean
squared error (MMSE) criterion [2], [3]. Unfortunately, this
jointly optimal processor is impractical due to its high com-
putational cost and data inefficient in terms of the required
training symbols.

To overcome the drawbacks of the jointly optimal MMSE
(OMMSE) processor, researchers have proposed sub-optimal
schemes with fewer adaptive unknowns [4]–[6]. However,
these schemes remain computationally intensive and complex.
Recently, more practical reduced rank filters have been in-
troduced, such as the Multistage Weiner filter (MSWF) [7],
[8] and the iterative constrained optimal MMSE (COMMSE)
processor [2]. The MSWF obtains the adaptive weights by a
multistage decomposition. It provides satisfactory results but
with relatively high complexity and slow convergence rate.
With iterative cascaded spatial and temporal processing, the
COMMSE filter only yields additive gains while the OMMSE
processor yields multiplicative gains. In [9], a joint domain
localized (JDL) processor with multiplicative gains, but low
computational load and fast convergence was proposed. If

restricted by short training sequences, this processor also
achieves better performance than the theoretically optimal
processor.

The JDL scheme in [9] transforms the data received at an
antenna array to a “beamspace”. However, there the transfor-
mation is chosen in an ad hoc manner. This paper justifies
the choice of transformation matrix. This choice is a crucial
aspect of the algorithm and the justification presented here
strengthens its theoretical foundations.

The original JDL algorithm also assumes knowledge of
all users’ channels in a single-cell CDMA system. However,
in a more practical multi-cell system, unknown inter-cell
interference reduces the performance gains arising from joint
domain processing. To deal with inter-cell interference, we
introduce a new adaptive processing scheme, designated JDL-
Z, that integrates JDL processing with zero forcing. The JDL-
Z algorithm assumes knowledge of channels and spreading
codes of intra-cell users only. In multi-cell scenarios, this
new processor has better performance and faster convergence
rate compared to the original JDL, MSWF and COMMSE
processors. The JDL-Z scheme retains most of the benefits of
the JDL approach, especially its excellent performance with
short training sequences. This scheme also serves to introduce
a framework wherein adaptive processing (zero-forcing) is
followed by another stage of adaptive processing (MMSE in
a transform domain).

Section II presents the background required for the JDL-Z
algorithm, including the model for the direct sequence (DS)
CDMA system used in this paper. It also briefly reviews the
original JDL algorithm, followed by an analysis of the choices
of the transformation matrix in Section III. Section IV presents
a detailed description of the JDL-Z algorithm. Section V
presents simulations to illustrate the efficacy of the new algo-
rithm. The paper ends with some conclusions in Section VI.

II. PRELIMINARIES

A. System Model

Consider a multi-cell synchronous CDMA uplink system
where each base station is equipped with N receive antennas.
Within the cell of interest, the base station receives K users’
signals including M intra-cell and P inter-cell users. Each user
is assigned a random short spreading code with processing
gain G. Assuming the channels are slow and flat, the uplink
signal within a single symbol period, 0 < t ≤ Ts, at the



receive antenna array is an N -dimensional vector given by

x(t) =
K∑

k=1

G−1∑
j=0

akbks
j
kψ(t− jTc)hk + n(t), (1)

where ak, bk and hk are the received amplitude, data symbol
and an N -dimensional channel of user k respectively. The
sequence {sj

k = ±1, j = 0, . . . , G− 1} represents the length-
G spreading code sk of user k with chip waveform ψ(t),
lasting chip period Tc. Both temporal and spatial signatures of
the users are assumed to have unit energy, i.e.,

∫ Tc

0
|ψ(t)|2dt =

1/G and E
{
hH

k hk

}
= 1 for ∀k, where the superscript H

denotes the Hermitian and E the expectation operators. The
receiver noise, n(t), is modelled as white and Gaussian.

After chip matched-filtering x(t), the received spatio-
temporal data signal at the base station for a symbol period is
an NG-dimensional vector x, given by

x =
K∑

i=1

akbk(sk ⊗ hk) + n =
K∑

k=1

akbkzk + n, (2)

where ⊗ denotes the Kronecker product and zk is the spatio-
temporal channel (spatio-temporal signature) of user k. In this
paper, the processor is assumed to have knowledge of the
spatial and temporal channels, hk and sk, of all M intra-
cell users, but have no knowledge of the channels of the P
inter-cell (interfering) users.

B. Joint Domain Localized Processing

Since the JDL algorithm is designed for single-cell sys-
tems, the channels for all K users are assumed known. The
JDL algorithm is a two-stage beamspace-based scheme. The
first stage transforms the spatio-temporal received signal, x,
to spatio-temporal “beamspace” by correlating the received
signals with η selected spatio-temporal “beams”. We define the
amplitude-weighted correlation between the spatio-temporal
channels of user i and j as

ρi,j = a∗i ajzH
i zj , (3)

where ∗ denotes complex conjugation.
In the original JDL algorithm [9], the η spatio-temporal

“beams” are formed by correlating the received signal with
its own spatio-temporal signature and (η − 1) signatures of
the most interfering users - the (η − 1) users with the largest
correlation as defined in (3). Note that the receiver requires
an estimate of the amplitudes of the received signals. If these
amplitudes are not available, the correlation is defined using
the spatio-temporal channels zi and zj only.

This first JDL stage provides some interference suppression
by decorrelating the signals of the interferers. The beamspace
data can be obtained using a transformation matrix, T. The
transformation process is given by

x̃ = THx, (4)

where the tilde (˜) denotes the beamspace domain.
In the second stage, localized beamspace data x̃ are adap-

tively combined, in terms of MMSE, to produce a soft decision

statistic for the information symbol. The residual interference
and noise are further suppressed in this stage. The MMSE
weights are found in beamspace by

w̃ = R̃−1ṽ, (5)

R̃ = E{x̃x̃H}, (6)

ṽ = E{x̃d∗}, (7)

where d is the desired information symbol. The final soft
decision statistic to determine the transmitted symbol is

y = w̃H x̃. (8)

III. CHOICE OF TRANSFORMATION MATRIX

The most important issue with the JDL algorithm is the
choice of transformation matrix. In [9] this matrix is chosen
in an ad hoc manner, based on decreasing values of the
correlation in (3). Here we justify this choice.

A. Optimal method based on MMSE

The optimal choice of η spatio-temporal channels would
minimize the final mean squared error (MSE). Since [6]

MSE = 1 − w̃HR̃w̃ = 1 − ṽHR̃−1ṽ, (9)

the η spatio-temporal channels should be chosen such that
ṽHR̃−1ṽ is maximized. However, this would entail evaluating
ṽHR̃−1ṽ for all KCη = K!/(K−η)!η! possible combinations
of η spatio-temporal channels. Clearly this brute force method
is highly computationally intensive and impractical.

B. Suboptimal iterative method based on MMSE

Since the optimal choice of T is impractical, we introduce a
MMSE-based, recursive, suboptimal method which has lower
computation load. The η columns of T are chosen iteratively,
based on the MMSE criterion in (9). The first column of
T is chosen by direct evaluation of ṽHR̃−1ṽ. Since this
corresponds to η = 1, R̃ is only a number. For the other
(η − 1) columns of T, one spatio-temporal channel is chosen
in each iteration based on the previously chosen channels in
the MMSE sense. Without loss of generality, user 1 is the
desired user.
Proposition: Given Tn = [t1, t2, . . . , tn], the best choice
of tn+1, to form Tn+1 = [t1, t2, . . . , tn, tn+1] in MMSE
sense is given by

tn+1 = arg max
zi

|z̃H
1 R̃−1

n TH
n Rzi − ζ1,i|2

zH
i (R − RTnR̃−1

n TH
n R)zi

, (10)

where R = E
{
xxH

}
and ζi,j = zH

i zj . R̃n and z̃1 are the
transformed autocorrelation matrix of the received signal and
transformed z1 with the transformation matrix Tn.
Proof: See Appendix.

The η spatio-temporal channels that form the columns of the
transformation matrix T are therefore found by the following
recursive scheme:

1) Initialization:

t1 = arg max
zi

ṽHR̃−1ṽ, 1 ≤ i ≤M (11)
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Fig. 1. Performance comparison of using different choices of transformation
matrices.

where (˜) represents the transformed domain with T =
zi. Note that at this stage, R̃ is a single number.

2) For n = 1, . . . , η − 1, set Tn+1 = [Tn tn+1] where
tn+1 is chosen using the criterion in (10).

The computational advantage of the iterative method over the
optimal method is clear. The iterative method requires only η
matrix inversions while the optimal method requires KCη =
K!/(K − η)!η! inversions of an η × η matrix. On the other
hand, the iterative method is suboptimal and is not guaranteed
to provide better results than other suboptimal approaches.

There are, therefore, three proposed choices of the transfor-
mation matrix T. The matrix can be chosen optimally using
the technique in Section III-A or sub-optimally using (3) in
Section II-B or (10) in Section III-B. Clearly, the sub-optimal
approach in Section II-B, using the η largest values of (3), has
lowest, almost trivial, computation load.

Fig. 1 illustrates the performance comparison using con-
structions of T by these three methods. The system contains
N=4 receive antennas, K=8 equal power known users and
G=8. The LPR size, η, is set to 5. From the figure it appears
that the simple, though ad-hoc, approach in [9], using the η
largest amplitude-weighted correlations in (3), is a good choice
for T because it achieves a close-to-optimal performance with
much lower computation than the other two methods.

IV. JDL PROCESSING USING ZERO FORCING

This section describes an extension of the JDL algorithm
that includes zero-forcing. The extension is based on the
realization that matched filtering in the first stage effectively
obtains a non-adaptive estimate of the desired signal. The JDL
algorithm then introduces the adaptive second MMSE stage by
combining η non-adaptive estimates to suppress the residual
interference in the non-adaptive estimates. Here, the non-
adaptive first stage is replaced by adaptive zero-forcing [10],
however at the cost of higher computational complexity. The
choice of zero-forcing in the first stage is just one of many pos-

sibilities, used to illustrate the concept of adaptive processing
followed by another stage of adaptive “beamspace” process-
ing to suppress residual interference. Since zero-forcing can
eliminate all known intra-cell interference in the first stage,
this processor performs very well in multi-cell environments.

A multi-cell CDMA system is used with M known intra-
cell and P unknown inter-cell users. In the first stage, the
transformation matrix, T, is constructed using zero forcing to
eliminate the known intra-cell interference. The transformation
matrix consists of η zero forcing weight vectors at which unity
responses are formed at the desired and (η−1) most correlated
intra-cell spatio-temporal channels.

To illustrate this construction with an example, if η = 3
and user 1 is the desired user, we assume z1, z2 and z3 are
the desired and the (η − 1) most correlated intra-cell spatio-
temporal channels, as defined by (3). The transformation
matrix is then given by,

T = [t1 t2 t3], (12)

where ZH
1:Mti = 0i, i = 1, 2, 3. (13)

The matrix Z1:M = [z1 z2 ... zM ] contains the channels of all
M intra-cell users and 0i is a length-M vector of zeros with a
single one in the i-th position. The weights, ti, therefore have
unity response to the i-th spatio-temporal channel, and null
out all other users’ channels. This stage eliminates all intra-
cell interference. As in (4), the transformed received signal x̃
is defined as

x̃ = THx. (14)

The size of the localized processing region (LPR), η beams
in joint domain, is an implementation issue, representing a
trade-off between computation load and performance illus-
trated in Section V.

In the second stage, the zero-forced beamspace data x̃
is adaptively combined in the sense of MMSE. This stage
of the JDL-Z algorithm is the same as the JDL algorithm
where (5)-(7) are used to obtain adaptive weights in the
transform domain. This stage suppresses residual interference
and noise. The use of a second stage eliminates the problem of
noise enhancement associated with zero forcing. In practice,
the MMSE weights may be obtained using sample matrix
inversion (SMI) [11] by finding the sample-averaged estimate
of R̃ or using a training-based scheme such as the Least Mean
Squares (LMS) algorithm. As in (8), the final soft decision of
the JDL-Z algorithm is

y = w̃H x̃. (15)

At first glance, the JDL-Z algorithm appears to be extremely
computationally intensive. It appears to require η zero-forcing
steps for each user of interest. However, in practice, the overall
computation load is not much greater than that of zero-forcing.
After all, all inter-cell users are “desired” and their zero-
forced estimates would be obtained in any case. The additional
computation load of the JDL-Z algorithm is just that associated
with finding the η adaptive unknowns in w̃. Finally, it must
be noted that the choice of zero-forcing is somewhat arbitrary.
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Fig. 2. Bit error rate of JDL-Z algorithm using SMI with 100, 400 and 1000
training bits.

Any adaptive processing scheme that produces a soft-statistic
may be used. The JDL-Z framework allows for these statistics
to be combined adaptively to further reduce interference.

V. SIMULATION RESULTS

This section analyses the effect of LPR sizes on perfor-
mance of the JDL-Z algorithm. It also compares the per-
formances of JDL-Z, JDL, OMMSE, MSWF and COMMSE
algorithms in terms of bit error rate (BER) and convergence
rate. The first example shows the algorithm performance with
different LPR sizes. The second and third examples illustrate
the performance advantages and faster convergence of JDL-Z
compared to OMMSE and other reduced-rank algorithms.

In all examples presented below, the receiver is assumed to
know the signatures of the intra-cell users only. The weights
w̃ are estimated by SMI. Slow, flat and uncorrelated Rayleigh
fading channels are modelled as constant over the time period
used to estimate the covariance matrix and vector, R̃ and ṽ,
in each simulation. BPSK is used for data modulation.

A. Example 1: Effect of different η

This example shows that JDL-Z algorithm is not very
sensitive to different η sizes. The example simulates a multi-
cell DS-CDMA uplink system with N = 4 receive antennas,
M = 30 intra-cell and P = 80 inter-cell users and processing
gain G = 12. The SNR of the intra-cell users are all 10dB.
30 inter-cell interferers have SNR of -2dB, while the others
have SNR of -10dB. The performance of the JDL-Z algorithm
with varying η is shown in Fig. 2. The estimated weights are
obtained by SMI using L = 100, 400 and 1000 training bits.

Fig. 2 shows that the performance of the JDL-Z algo-
rithm depends on η as well as the number of training bits.
As expected, with a large number of training symbols, the
performance improves with larger η. However, with a short
training sequence, the performance can worsen with increasing
η. This occurs because, with few training symbols, the η
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Fig. 3. Performance comparison, N=4, M=30, P =80, G=12.

adaptive weights cannot be properly estimated. Note that, in
this example, using a second stage can potentially halve the
bit error rate as compared to using zero-forcing alone (η = 1).
A simulation such as this may also be used to find the optimal
value of η given the number of training bits.

B. Example 2: Heavily loaded system

The second example simulates a heavily loaded multi-
cell CDMA system with N=4 receive antennas, M=30 equal
power intra-cell and P=80 inter-cell users, each with process-
ing gain G=12. Of the 80 inter-cell interferers, 30 are at a
power level -12dB and 50 are at -20dB with respect to the
desired user. The number of training bits is L = 100. At
each SNR of the desired user, the BER is calculated using
104 simulations with 1000 bits detected in each simulation.
Fig. 3 compares the BER of two implementations of JDL-Z
(η = 1 and 8), JDL (η=8), OMMSE, MSWF (D=8 stages)
and COMMSE algorithms. The figure shows that JDL-Z
processing achieves extremely good performance. Both JDL-
Z and JDL algorithms outperform the OMMSE algorithm as
well as other reduced rank algorithms including MSWF and
COMMSE.

C. Example 3: Convergence rate comparison

This example illustrates the faster convergence of the JDL-
based algorithms compared to OMMSE and other reduced-
rank algorithms. Consider a system with N=4 receive anten-
nas, M=20 equal power and P=60 users, each with processing
gain G=16. Of the 60 inter-cell interferers, 20 are at a power
level of -12dB and 40 at -20dB with respect to the users in the
cell of interest. Fig. 4 plots the output signal-to-interference-
plus-noise ratio (SINR) of the JDL, JDL-Z, MSWF, theoreti-
cally optimal OMMSE and COMMSE algorithms as a function
of the number of training bits used. The JDL and JDL-Z
algorithms use η = 10 while the MSWF uses D = 10 stages.

The figure shows that the JDL-Z, OMMSE and MSWF
algorithms converge to the optimal SINR, but that OMMSE
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scheme has the slowest convergence rate as it has the largest
number of adaptive weights (NG = 64 weights). JDL-Z
also converges faster than the MSWF algorithm. With the
same number of adaptive weights (η = 10), JDL-Z converges
slightly faster than JDL. This comes at the cost of significant
additional computational complexity in the first zero-forcing
stage. Therefore, JDL-Z would be most effective in relatively
fast fading channels.

VI. CONCLUSIONS

This paper builds on the previously developed two-stage
beamspace-based joint domain localized adaptive processing
algorithm [9]. That algorithm depends on a good choice of
transformation matrix; a simple choice is justified here. This
paper then introduces the JDL-Z algorithm, an extension of
JDL which incorporates zero forcing. The non-adaptive first
stage in JDL processing is replaced by adaptive zero-forcing.
Such a two-stage processor is especially useful for multi-
cell CDMA systems effectively suppressing inter and intra-
cell interference. The use of the second stage eliminates the
problem of noise enhancement associated with zero forcing.

The simulations presented show that the new approach
outperforms the JDL and other reduced rank filters such
as the MSWF [7] and COMMSE [2] filters. If limited by
short training sequences, because of a significantly faster
convergence rate, JDL-Z performs even better than the fully
optimal processor.

APPENDIX

The proposition in Section III-B states that the best choice,
in the MMSE sense, to augment the rank-N transformation
matrix Tn is to choose the spatio-temporal signature vector
zi given by

tn+1 = arg max
zi

|z̃1
HR̃−1

n TH
n Rzi − ζ1,i|2

zH
i (R − RTnR̃−1

n TH
n R)zi

, (16)

Proof: We define the following symbols:

R̃k is the transformed autocorrelation matrix of the received
signal with η = k,
ζij = zH

i zj is the correlation between user i and j,
Tk is the transformation matrix with η = k.

Without loss of generality, we assume that user 1 is the
desired user and the LPR size is η.
For 1 ≤ n ≤ (η − 1):

Since minimizing mean squared error of the detected sym-
bol is equivalent to maximizing ṽR̃−1

n+1ṽ, the (n+1)th column
of T, zi, is chosen such that ṽR̃−1

n+1ṽ is maximized. We have

R̃−1
n+1 = E

[
Tn+1xxHTH

n+1

]−1
=

(
R̃11 R̃12

R̃H
12 R̃22

)
,

where

R̃11 =
[
R̃n − TH

n Rzi(zH
i Rzi)−1zH

i RTn

]−1

,

R̃12 =
R̃−1

n TH
n Rzi

zH
i RTnR̃−1

n TH
n Rzi − zH

i Rzi

,

R̃22 = [zH
i Rzi − zH

i RTnR̃−1
n TnRzi]−1.

After simplification and using the matrix inversion lemma,

ṽHR̃−1
n+1ṽ

= |a1|2[z̃H
1 (R̃n − TH

n Rzi(zH
i Rzi)−1zH

i RTn)−1z̃1

+
ζ1,izH

i RTnR̃−1
n z̃1 + ζi,1z̃H

1 R̃−1
n TH

n Rzi − |ζ1,i|2
zH

i RTnR̃−1
n TH

n Rzi − zH
i Rzi

]

= |a1|2
[
z̃H
1 R̃−1

n z̃1 +
|z̃H

1 R̃−1
n TH

n Rzi − ζ1,i|2
zH

i (R − RTnR̃−1
n TH

n R)zi

]
.(17)

Since the first term is constant, the best choice of zi is that
given in (16). �

REFERENCES

[1] X. Bernstein and A. M. Haimovich, “Space-time optimum combining
for increased capacity of wireless CDMA,” IEEE Int. Conf. on Comm.,
vol. 1, pp. 597–601, Jun. 1996.

[2] A. Yener, R. D. Yates, and S. Ulukus, “Combined multiuser detection
and beamforming for CDMA systems: Filter structures,” IEEE Trans.
Vehicular Tech., vol. 51, pp. 1087–1093, Sept. 2002.

[3] H. Wang and L. Cai, “On adaptive spatial-temporal processing for
airborne surveillance radar systems,” IEEE Trans. Aerosp. and Electron.
Syst., vol. 30, pp. 660–699, Jul. 1994.

[4] B. D. V. Veen, “Eigenstructure based partially adaptive array design,”
IEEE Trans. Antennas and Prop., vol. 36, pp. 357–362, Mar. 1988.

[5] A. M. Haimovich and Y. Bar-Ness, “An eigenanalysis interference
canceler,” IEEE Trans. Signal Proc., vol. 39, pp. 76–84, Jan. 1991.

[6] J. S. Goldstein and I. S. Reed, “Reduced-rank adaptive filtering,” IEEE
Trans. Signal Proc., vol. 45, pp. 492–496, Feb. 1997.

[7] M. Honig and J. S. Goldstein, “Adaptive reduced-rank interference
suppression based on the multistage wiener filter,” IEEE Trans. Comm.,
vol. 50, pp. 986–994, Jun. 2002.

[8] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representation
of the wiener filter based on orthogonal projections,” IEEE Trans.
Inform. Theory, vol. 44, pp. 2943 – 2959, Nov. 1998.

[9] R. Wong and R. Adve, “Joint domain localized adaptive processing for
CDMA systems,” in IEEE Spring Vehicular Tech. Conf., (Milan, Italy),
May 2004.

[10] L. C. Godara, “Application of antenna arrays to mobile communications,
Part II: Beam-forming and direction-of-arrival considerations,” Proc. of
the IEEE, vol. 85, pp. 1195–1245, Aug. 1997.

[11] L. S. Reed, J. D. Mallet, and L. E. Brennan, “Rapid convergence rate
in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-10,
pp. 853–863, Nov. 1974.


