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I. INTRODUCTION

Combining space division multiple access (SDMA) with
temporal multiple access techniques such as code division
multiple access (CDMA) helps maximize system capacity
without sacrificing bandwidth [1]. However, both forms of
multiple access schemes are interference limited, therefore
using interference suppression techniques can improve system
effectiveness. In this regard, joint domain adaptive processing
that integrates receive beamforming (spatial processing) and
multiuser detection (temporal processing) outperforms all pos-
sible linear processing based on the minimum mean squared
error (MMSE) criterion [2]. Unfortunately, this processor is
also prohibitively computation expensive and data inefficient
in terms of the required number of training symbols.

To overcome the drawbacks of the jointly optimal MMSE
(OMMSE) processor, researchers have recently proposed sub-
optimal schemes with fewer adaptive unknowns [2]. The
authors introduce a constrained optimal MMSE (COMMSE)
processor, with iterative cascaded spatial and temporal pro-
cessing, which only yields additive gains while the OMMSE
processor yields multiplicative gains. Clearly, a data efficient
joint domain processor with reduced computational load would
be a significant advance over the state of the art.

This paper introduces a practical Joint Domain Localized
(JDL) adaptive processing algorithm for uplink CDMA sys-
tems that has extremely low computational load and fast
convergence rate in terms required training symbols. The
algorithm builds on an efficient joint domain technique de-
veloped for radar systems [3], [4]. The algorithm adaptively
processes the joint domain data in the localized region in
beamspace. Simulations in section III show that the new
algorithm performs better than the COMMSE processor with
significantly reduced computational load. The next section
describes the JDL algorithm for the simplest case of a BPSK
data modulation.

II. JOINT DOMAIN LOCALIZED PROCESSING

Consider a system with N linear receive antennas and K

users using random spreading codes with processing gain G.
The received spatial-temporal data signal at the base station
for a symbol period is defined as an NG-dimensional vector
x given by

x =

K∑

i=1

√
pibisi ⊗ hi + n, (1)

where ⊗ denotes the Kronecker product and pi, bi, si, hi are
the received power, data bit, spreading codes and channel of
user i respectively. Received noise, n, is modelled as white
and Gaussian.

The JDL algorithm is a two-stage beamspace-based scheme.
The first stage transforms the spatial-temporal received sig-
nal, x, to spatial-temporal “beamspace” by correlating the
received signals with selected spatial-temporal “beams”. The
spatial-temporal “beamspace” is equivalent to the physical
beamspace in spatial processing with no fading. While the
physical interpretation does not hold in joint domain process-
ing with fading, the approach is nonetheless valid. For each
desired user, spatial-temporal “beams” are constructed by all
combinations of a spatial beam, defined as one of the ηs

most correlated channels (spatial signatures) amongst all K

users, and a temporal “beam”, defined as one of the ηt most
correlated spreading codes (temporal signatures) amongst all
K users. Clearly, the channel and spreading code of the desired
user itself are amongst the most correlated channels/codes.
This first stage provides some interference suppression by
decorrelating the received signals. The localized beamspace
data can be obtained using a transformation matrix, T. The
transformation process is given by

x̃ = T
H
x, (2)

where H is the Hermitian operator and the tilde (˜ ) denotes
the beamspace domain. If ηs = ηt = 3, the localized region
covers the three channels (h1,h2,h3) and three spreading
codes (s1, s2, s3) most correlated to the desired user, the LPR
size is ηs × ηt = 9 and

T = [s1 s2 s3]⊗ [h1 h2 h3] . (3)

The size of the LPR, ηs and ηt beams in the spatial
and temporal dimensions respectively, is an implementation
issue and can be chosen to tradeoff between performance and
computational load.

In the second stage, localized beamspace data x̃ are adap-
tively combined, in terms of MMSE, to produce a decision
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statistic for the information bit. The MMSE weights are found
in beamspace by

w̃ = R̃
−1

ṽ, (4)

R̃ = E{x̃x̃
H}, (5)

ṽ = E{x̃d∗} (6)

where d∗ is the conjugate of the desired information bit and
E denotes the expectation operator. In practice, the MMSE
weights may be obtained by estimating R̃ and ṽ or using a
training-based scheme such as the least mean squares (LMS)
algorithm. The final soft decision statistic to determine the
transmitted bit is

y = w̃
H
x̃. (7)

In terms of computational complexity, the advantage of
the JDL algorithm is clear. The OMMSE processor requires
NG adaptive weights while JDL requires only ηsηt adaptive
weights. The complexity is therefore reduced from the order of
(NG)2 to NG per user. For the same reason, the convergence
rate of the adaptive weights using the LMS algorithm is
also much faster than the OMMSE processor. The COMMSE
processor has order of complexity K(N 2+G2) per user which
is significantly higher than the JDL algorithm.

III. SIMULATION RESULTS

This section compares the performance of OMMSE, JDL,
and COMMSE algorithms in terms of symbol error rate and
convergence time. The example uses N = 11 receive antennas,
K = 20 equal power users and processing gain of G = 16.
The channels are modelled as constant over the time period
used to estimate the covariance matrix R̃ and ṽ.

Figure 1 compares the symbol error rates of OMMSE, two
implementations of JDL (ηs = ηt = 5 and ηs = ηt = 7),
and COMMSE algorithms in slow, flat, uncorrelated Rayleigh
fading channels. The figure shows that, as expected, OMMSE
always outperforms other algorithms. However, at significantly
reduced computational load, JDL processing provides good
performance. An interesting characteristics of this processor
is that increasing the size of the LPR results in approaching
the OMMSE performance at the cost of higher complexity.
Importantly, the JDL algorithm, with lower computational
load, performs better than the COMMSE processor.

When obtaining the adaptive weights by training, the per-
formance discrepancy of JDL and OMMSE can be justified
by the lower computational load and faster convergence rate
of JDL processing. Figure 2 illustrates the significantly faster
convergence rate of the JDL algorithm (ηs = ηt = 5) using
the LMS algorithm with step size of 0.00003. The figure also
shows that the training period is hugely reduced from 8000 to
400 iterations at the expense of slightly higher mean squared
error.
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Fig. 1. Performance comparison of joint domain processing.
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Fig. 2. Convergence time comparison of OMMSE and JDL algorithms
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