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An innovative way of beam-forming is descr ibed using mutual coupling effects of
parasitic elements in an antenna array. I t is shown that null and mainbeam
placement can be achieved by varying the reactances at the center of the dipoles.

1. Introduction

Traditional beam-forming is achieved by varying the complex gain of an antenna-array
[1]. The electromagnetic waves radiated from different segments of the array combine in-
phase (and out of phase) to form the major lobes (and nulls) at desired directions.
Controlling the complex gain is expensive, as it requires sophisticated RF circuitry for
each element. As a result such antennas are available only for specialized applications
such as in the military. A cost-effective solution for mobile communication is to exploit
the electromagnetic mutual coupling between elements to achieve beam-forming [2].

This paper outlines the design of a five-element wire dipole antenna array. The center
element is fed by a source and the remaining four elements are placed equidistant to each
other on a circle centered around it. Variable impedances on the four parasitic elements
are controlled to place nulls and main beams at desired locations in the far-field radiation
pattern.

2. Theory

The radiation pattern of a single center-fed vertical wire dipole is constant (in all
directions) in the horizontal plane. If another vertical wire dipole (passive) is brought to
its vicinity, altering itscenter impedanceswill change thecurrent pattern in each element.
It is anticipated that by tuning these impedances it will be possible introduce nulls and
main beams at desired locations.

Rigorous formulation of the problem is possible by using Maxwell’s equations to obtain
the tangential electric field on the surface of the dipoles:

where primed quantities denote source points, unprimed ones are field points and R is the
distance between them. This equation may be solved using the method of moments [3].
Rectangular basis and trial functions of unit height and width ∆ are used. The Method of
Moments reduces the integral equation to the matrix equation:

V’ M.N x1 = ZMN x MN I MN x1 (2)

where M is the number of elements in the array and N is the number of subsections per
element. The vector I is the current and V’ is the voltage across each subsection. As the
tangential electric field on the surface of aconductor iszero; V’ isall zerosexcept for the
entries corresponding to the air-gap regions at the center of each dipole. These non zero



terms are of the form Vi-ziI i with the subscript referring to the center of the i’ th dipole in
the array and zi being the variable impedance at that point. For the array described in this
paper, only one element is excited by a source. Hence, only V1, corresponding to the
active element, is non-zero. All of the above, allows equation (2) to be expressed as:

V = (Z+ZL)I or I = (Z+ZL)-1V (3)

where ZL is a diagonal matrix isolating the ziI i terms from V’ leaving V with only one
non-zero term corresponding to V1 – i.e. the single excitation voltage in the array.

Figure 1- Antenna configuration Figure 2 –current magnitude vs. separation

Note that for the antenna configuration shown in figure1, the far-field radiation pattern is
given by:

where ∆ is the width of each subsection, R represents the distance from the far-field point
to the center of the active element. For this array, φ is the azimuthal angle (in the
spherical coordinate system) and φm is the horizontal angle between the x-axis and the
center of the m’ th element. In equation (4) Rm represents the horizontal distance of each
element from the origin and Imn is the current in the n’ th segment of the m’ th element in
the array

From (4), the radiation intensity in any given direction is a function of the current I in the
antenna and from (3) I itself is a function of center impedances ZL. The simulations
outlined in this paper involve varying only the reactance part of zi to maximize/minimize
(4) in a given direction.

This involves a non-linear minimization problem of (M-1) (4 in the case described)
independent variables. The trust-region method [4,5] of non-linear minimization is used
to obtain solutions to the problem. At each iteration, the radiation pattern in (4) can be
represented by a quadratic approximation:
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Eθ(S) = E0 + aTS + ½ STHS (5)

where H is the Hessian Matrix – a symmetric matrix of second derivatives
(Hij=∂2Eθ/∂xi∂xj) defining the curvature of Eθ in the ellipsoidal neighborhood
||CS||< δ where C is a diagonal matrix. In equation (5), S=X-X0 where X is the vector of
center reactances of the elements in the array and X0 is the center of the neighborhood
being approximated. The gradient of the surface in (5) for all S in the ellipsoidal
neighborhood can be computed by

g = a + HS (6)

The problem of optimizing (4) in the region l<X<u, where l and u are lower and upper
bound vectors respectively on the reactance values, is now optimizing (5) in its
neighborhood at each iteration. Equation (5) can be optimized by letting g in (6) equal to
zero to obtain:

S = -H-1a (7)

First, it has to be verified that (7) gives a minimum point (for the minimization problem).
Secondly, it can be chosen if and only if it lies in the region ||CS||< δ. If that is not the
case, then S is chosen from the Boundary points ||CS||=δ such that  Eθ(X0+S)<Eθ(X0).
The current search point X0 is updated X0+S. If it is either impossible to find an S or if it
makes the new X0 exceed the bounds for the reactances, then, δ is decreased. The steps
are repeated until convergence to the local minimum is established.

3. Results

The theory outlined in the previous section was used to simulate a wire dipole array
consisting of 1 active and 4 parasitic elements. All simulations were carried out at a
frequency of 2GHz using dipoles of length λ . The analysis is carried out using
MATLAB®.

Figure 2 shows a magnitudeplot of thecurrent in theactiveelement (m=1) and oneof the
parasitic elements (m=2) due to symmetric loading of the entire array. All parasitic
elements will have identical current distributions due to symmetry in this particular case.
As shown, it seems that the strongest current that can be generated in the parasitic
elements occurs when they are separated from the active one by a distance of λ/2. Hence
when designing the array, all parasitic element were placed a distance λ/2 from the active
dipole. This was done in anticipation of the fact the current in theparasitic elementsmust
be strong enough to generate fields that cancel those of the active element to form the
sharp nulls in the radiation pattern.

Figure 3 shows some of the nulls that were formed at desired locations in the far-field
pattern. Optimization was done by varying the load reactances of the passive elements
and restricting them to lie between 50000Ω and –50000Ω. Note no attempt has been
made to control the mainbeam. Convergence for fig. 3(a) was achieved after 10 iterations
and fig. 3(b) after 5 iterations.



Figure 4. shows maxima obtained at desired locations in far-field. The algorithm used is
identical to that of the minimization problem, except that the negative of (5) was
minimized – which is the equivalent of maximizing the electric field vector. Fig 4 (a)
converged after 22 iterations and Fig 4(b) converged after 24 iterations.

Figure 3 – Nulls at desired locations Figure 4 – Main beam at desired locations

4. Conclusion

As demonstrated, a new type of smart antenna can be implemented with beam steering
and beam forming capabilities using only one active element. By varying the load
impedances of the parasitic elements, nulls and main beams can be placed at desired
directions. The advantage of using such an array is that it ismorecost effectivecompared
to conventional ones requiring sophisticated RF circuitry to handle their complex gain
requirements. The array described in this paper takes advantage of mutual coupling
effects between elements. Further investigation of the variation of the beam-pattern with
load reactances is needed before beams and nulls can be formed more efficiently and
before global optimization can be achieved (over the reactance bounds).
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