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Abstract—Inspired by biological communication systems,
molecular communication has been proposed as a viable scheme
to communicate between nano-sized devices separated by a very
short distance. Here, molecules are released by the transmitter
into the medium, which are then sensed by the receiver. This
paper develops a preliminary version of such a communication
system focusing on the release of either one or two molecules into
a fluid medium with drift. We analyze the mutual information
between transmitter and the receiver when information is encoded
in the time of release of the molecule. Simplifying assumptions
are required in order to calculate the mutual information, and
theoretical results are provided to show that these calculations
are upper bounds on the true mutual information. Furthermore,
optimized degree distributions are provided, which suggest trans-
mission strategies for a variety of drift velocities.

Index Terms—Brownian motion, molecular communication,
mutual information.

I. INTRODUCTION

OMMUNICATIONS research has almost exclusively fo-
C cused on systems based on electromagnetic propagation.
However, at scales considered in nanotechnology, it is not clear
that these methods are viable. Inspired by the chemical-ex-
change communication performed by biological cells, this
paper considers molecular communication [1], in which infor-
mation is transmitted by an exchange of molecules. Specifically
we consider the propagation of individual molecules between
closely spaced transmitters and receivers, both immersed in a
fluid medium. The transmitter encodes a message in the pattern
of release of the molecules into the medium; these molecules
then propagate to the receiver where they are sensed. The
receiver then attempts to recover the message by observing the
pattern of the received molecules.
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It is well known that microorganisms exchange information
by molecular communication, with quorum sensing [2] as but
one example, where bacteria exchange chemical messages to
estimate the local population of their species. The biological
literature on molecular communication is vast, but there has
been much recent work concerning these systems as engineered
forms of communication. Several recent papers have described
the design and implementation of engineered molecular com-
munication systems, using methods such as: exchanging arbi-
trary molecules using Brownian motion in free space [3]; ex-
ploiting gap junctions between cells to exchange calcium ions
[4], [5]; and using microtubules and molecular motors to ac-
tively drive molecules to their destination [6], [7]. A compre-
hensive overview of the molecular communication system is
also given by [8], [9] and the references therein.

Given this engineering interest, it is useful to explore the
theoretical capabilities of molecular communication systems.
To the authors’ knowledge, the earliest effort towards infor-
mation-theoretic analysis of these channels was given in [10],
which examined information flow in continuous diffusion.
In [11], [12], physical models and achievable bounds on in-
formation rate were provided for diffusion-based systems.
Information rates were provided in [13], [14] for the case where
the receiver chemically “reacts” with the molecules and form
“complexes.” In [15], it was shown that the additive white
Gaussian noise (AWGN) is appropriate for diffusion-based
counting channels. Information-theoretic results have also
been obtained for specific systems, such as propagation along
microtubules [16], [17] and continuous diffusion [18]. All
these studies indicate that useful information rates can be
obtained, although much lower per unit time than in electrical
communication; this is not surprising, since chemical processes
are far slower than electrical processes. It is worth pointing
out that these results build on theoretical work in Poisson and
queue-timing channels [19], [20], which is an active area of
research in information theory.

In any communication system, the potential rate of commu-
nication is determined by the characteristics of the channel. We
consider molecular propagation in a fluid medium, governed
by Brownian motion and, potentially, a mean drift velocity.
Our model is therefore applicable to communications in, e.g.,
a blood vessel. This drift velocity is a key difference between
our work and [11], [12], which considered a purely diffusion
channel. Furthermore, we consider two cases — a single and
two molecules being released. In this regard, it is worth empha-
sizing the preliminary and conceptual nature of this work. The
long-term goal of this work is to understand the role of both
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timing and the number of molecules (“amplitude”). Thus, the
contributions of this paper include:

 calculation and optimization, under some simplifying as-

sumptions, of mutual information in Brownian motion with
drift, where the transmitter uses pulse-position modulation;

* optimization of the degree distributions related to two

transmit molecules; and

* demonstration (via theoretical results) that our simplified

mutual information calculation is an upper bound on the
true mutual information of any practical implementation
of this system.
Our optimized degree distributions reveal interesting features
of these channels, suggesting transmission strategies for system
designers.

The paper is organized as follows. In Section II we describe
the system under consideration, in which the propagation of the
molecule is analyzed and the probability distribution function
of the absorption time is derived. In Section III, we characterize
the maximum information transfer per molecule, for the case
where information is encoded in the time of release of the mol-
ecule, and the case of two molecules. In Section IV, numerical
and theoretical results arising from these models (including op-
timized degree distributions) are presented.

II. SYSTEM MODEL

A. Communication Model

The communication model we consider is shown in Fig. 1.
The subsystems which make up the molecular communication
system are:

1) Transmitter. The transmitter is a source of identical
molecules. It encodes a message in the time of dispersal of
these molecules. We will assume that the transmitter can
control precisely the time of dispersal of these molecules
but does not influence the propagation of these molecules
once dispersed.

2) Propagation medium. The molecules propagate between
transmitter and receiver in a fluid medium. Propagation is
modeled as Brownian motion, and is characterized by two
parameters: drift velocity and diffusion constant. These in
turn depend on the physical properties of the fluid medium.
The trajectories of different molecules are assumed to be
independent of one another.

3) Receiver. In this paper, the propagation of the molecule is
assumed to be one dimensional. When it arrives at the re-
ceiver, the dispersed molecule is absorbed by the receiver
and is removed from the medium. The receiver makes an
accurate measurement of the time when it absorbs the mol-
ecule. It uses this information to determine the message
sent by the transmitter.

4) Transmission of information. Information can be en-
coded either in the time of dispersal of the molecules, or
the number of molecules it disperses, or both.

The motion of the dispersed molecule is affected by
Brownian motion; the diffusion process is therefore prob-
abilistic and, in turn, the propagation time to the receiver
is random. Even in the absence of any imperfection in the
implementation of a molecular communication system, this
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Fig. 1. An abstract model of the molecular communication system. One or
more molecules are released by the transmitter. These molecules then travel
through the fluid medium to the receiver, which absorbs them upon reception.
If all the molecules are identical, then information is conveyed from transmitter
to the receiver only through the times at which the molecules are released.

uncertainty in the propagation time limits the maximum infor-
mation rate per molecule. In this paper, we study the maximum
information per molecule that the transmitter can convey to
the receiver, for a certain velocity and diffusion in the fluid
medium. Before proceeding to do so, we need to characterize
the propagation of the molecule in the medium.

B. Diffusion via Brownian Motion

Consider the discrete-time, discrete-space propagation model
in Fig. 2(a). Let X (n) denote the position of the particle at time
n. Let Px(x,n;x,,1,) denote the probability mass function
(pmf) of the position of the particle at time 1, given that it was
dispersed in the fluid medium at position x, at time n,. Assume
that the fluid medium is static, and so the particle disperses in
either of the directions with equal probability. If p is the proba-
bility that the particle moves from position « to position & +/ in
one time unit, and ¢ is the probability that it moves from posi-
tion « to 2 — [, then this situation is the case when p = ¢ = 0.5.
It is easy to see that Px (x, n; x,,n,) obeys the equation

Px(z,n+1;x4,n,)
1 1
= §P‘Y(m_l7n;$07n0)+§PX(x+l7n;morno)7 (1)

which states that if a particle at time » + 1 is at position =, then
at time n, it should have been at position # — [ or x + [, where
[ is the distance between two slices of space. This formulation
of Brownian motion is analogous to a Wiener process, where
distinct increments of the motion are independent from each
other.

Equation (1) can be rewritten as

Px(z,n+ Lixe,ne) — Px{x,n;20,m0)

(Px(z — U,ny2zo,n0) — Px(z,m520,1,))

2
1
+ E(PX('(I" + 1777';'7:0177'0) - PX('T'/W';-T;O:HO)) (2)
12 (1( Px(z—1,n;20,n0)—Px(z,1;7,,7,)
=3\ ! - 0)

When n > 1 and « > [, the difference equation becomes
a continuous time differential equation, yielding a probability
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Fig. 2. If the size of the receiver is several orders greater than the size of the
molecule, and if the velocity of the fluid in the “y axis” is negligible compared
to the velocity of the fluid along “x axis” (refer Fig. 1), then, one can ignore
the y-coordinate of the position of the molecule and consider only the x-coor-
dinate. The position of the molecule along the x axis is modeled as a Markov
chain, specifically, as a one dimensional random walk. The bias of the walk
(the values of p and ¢) depend on the velocity of the fluid medium along the
x-axis. (a) Modeling the motion of the particle as a one dimensional random
walk. (b) Sample paths of six particles in the same fluid medium, three released
att = 0, three att = 400.

1000

distribution function (pdf) for the position of the particle, given
by
0 2 o2

—Px(x,n;x,, = —=

o (@, e, M) 5 B2
Now, considering a continuous time Brownian motion X (%), the
probability density function of the position of the particle can be
modeled by the diffusion equation

Px(x,n;x0,m). 4

c 52
%PX(:L‘vt;"l"Osto) :D;?P‘Y(:Eat;xoyto)v (%)
where D = /2 /2 is the diffusion constant, whose value is depen-
dent on the viscosity of the fluid medium. Note that the above
equation characterizes only the ’xz-coordinate’ of the position of
the molecule. Solutions to this equation are well known.
Equation (5) characterizes the motion X (¢) of the particle in
a macroscopically static medium. The more general and useful
case is that of a fluid medium is in motion with a mean drift
velocity v. Consider a frame of reference which is moving with

the same velocity. In this frame, the fluid medium is static and

hence the diffusion of the particle should obey (5). Let
¥=x+ut, =t

be the new coordinate system, and without loss of generality,

assume £, = 0. Let

Px(l’,t;.’lio,o) = P)/(’(wlat/;woao):

then

32

vzt x,,0)

o D Pyt 2,,0).

- D&'L"2 ‘

In the static frame of reference, the differential equation can
be written as

O b ot g o 0 b o 9
atPX/(‘L ,t,;LO,O)at, + apr/(L ,t,lro,o)at,

g dr 0O dt o
=D— _— - Plr, ! + o,
! ((01" x| o 0t> o (@B o,
which simplifies to

9 2 9
9 pelmting,0) = (D 442
gr X (@210, 0) ( 252 Vos

0). ©

> Px(z.1;2,,0). (7)

Assume that there is no absorbing boundary (receiver) and
that the fluid medium extends from —oc to +oc. The proba-
bility density function of the location of the particle can be ob-
tained by solving the differential (7) with boundary conditions
Px(z,0;2,,0) = 8(x — z,) and Px(+oc, t;2,,0) = 0. The
solution to (7) is given by [21]

®)

)2
Px(7,t:0,0) = M)

1

Equation (8) states that, for every ¢, the probability density func-
tion (pdf) is a Gaussian centered at vf with variance 2D¢. As
expected, the expected location of the particle drifts along the
direction of flow of the fluid medium with velocity vf. Fig. 3
plots P(x,t) for the case when v = 3 and D = 0.3. Further-
more, for any transmitter point ¢ and transmit time ¢y, we have
that

PX(ILJ’,’, C7t0)

B 1 ot _((.7:—()—7)(1‘,—1‘,0))2
B \/ 47['D(t — t()) P ( 4D(t - t()) ) ' (9)

As expected, Brownian motion X (¢) satisfying (8)—(9) is a
Wiener process with drift.

Now, consider the case when there is an absorbing surface
(receiver) at x = 0. The particle is absorbed and is removed
from the system when it hits the absorbing surface. For such a
system, to solve for Px(x,%; —(,0)), we need to solve the dif-
ferential equation in (7) with the following boundary conditions.

e Forz <0, Px(z,0;—(,0)=6§(x+¢). The probability

density function has a physical interpretation only for z <
0. In this region, we require it to be a delta functionatt = 0
centered at x = —(.

e Px(—o00,t—-(,0) =0, V&
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Simulation parameters: —T=0.25
Velocity, v=3 .
Diffusion constant, D=0.3
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Fig. 3. The pdf of the position of the molecule P(:x. t) for different values of
t, when it is released at time ¢ = () at position * = (). Because of positive drift
velocity, the mean of the pdf travels in the positive direction, and because of the
diffusion, the variance of the pdf grows with time.

e Px(0,4;—-¢,0) = 0,
sorbing surface.
The solution to the differential equation can be computed
using the method of images, it is given by

)
( T

_—_Ut)) exp (%) . (10

C. Distribution of Absorption Time

Vt. Condition imposed by the ab-

Px(z,4;-¢,0) =

\/ 47TD

Recall from Section II that the receiver senses the particles
only when they arrive, at which time they are absorbed and re-
moved from the system. Thus, for the purposes of this paper,
the most important feature of the Brownian motion X (#) ex-
pressed in (7)—(9) is the first passage time at the destination. For
a Brownian motion X (%), and an absorbing boundary located at
position , the first passage time 7(() at the barrier is defined as

T(¢) = mtin{X(t) : X () = ¢} 1)

In Fig. 2(b), the simulated trajectories of six particles, modeled
as a random walk, through a medium are plotted. The particles
were all released at + = 0, three at time 0 and three at time
400, into a fluid medium that had a positive drift velocity. The
receiver is located at z = 30. Notice the large variation in the
absorption times. Among the particles released at £ = 0, one
gets absorbed at? ~ 360, other at# = 500, and another does not
get absorbed even by £ = 1000. Furthermore, this plot shows
how particles can get absorbed in an order different from the
order in which they were released. It is therefore important to
understand the variation in the propagation times of the particle.

The derivation of the first passage time for our case is given in
[22]. Here, we repeat briefly the steps involved. At a given time
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Fig. 4. The time at which the molecule gets absorbed by the receiver, given that
it was released at time 0, is a random variable. This is a result of the diffusion
of the fluid medium. Here, we plot the probability distribution function of the

absorption time for different sets of velocity and diffusion. For this plot, the
distance between the transmitter and the receiver is set at 1 unit.

t, the probability that the particle has not yet been absorbed is
given by

o= |
(2 + ¢ — vt)?

0
1
———exp| — dx
) Vit ¥ ( 1Dt )
e v( /O 1 . 7(37—(—1)75)2
\D)) o ViDt ¥ D7

) dx
"0 1 2
1-— / e " 2y
( J—(vt—¢)/v2Dt V2T )

v( °e 1 o2
— exp (—> 1—/ dr | .
D ( w4y 3DE VI

F(t) is the probability that the particle has not been absorbed
until time £. The probability that the particle has been absorbed
before ¢ is given by F'(#) = 1 — F(¢). Hence, the probability
density function of the absorption time is f(¢) = F'(t) =
—F'(1).

f@)

dF d /ﬁoo 1 w2y
_ " - —¢ d:L'
dt dt . —('z,vtfg)/\/ 2Dt \/27{‘

— exp (UC) /‘oo 1 o520
dt | (urrey/vem Wors

Px(x,1;—¢,0)dx

= - \/12—77 xp (—(1Zl;t4)2) (\/;Uﬁ ' gj;%>
—(Wt4+0)?\ (v

(vt+¢)
* 24/ 2Dt3>

(12)

+exp (%) \/%exp ( 4Dt ) (\/m
—(vt — C)2> .
4Dt

¢
= Varpe P

To summarize, (12) gives the probability density function of
the absorption time of a particle released in a fluid medium with
diffusion constant D, at a distance { from the receiver, when
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the fluid has a constant velocity ». Note that this equation is
valid only for positive drift velocities, i.e., when the receiver is
downstream from the transmitter. Since our communication is
based largely on the time of transmission (and reception), this
pdf characterizes the uncertainty in the channel, and plays a
role similar to that of the noise distribution in an additive noise
channel. Some example plots of this function are given in Fig. 4.

III. MUTUAL INFORMATION

The transmitter encodes the message in the time of release of
molecules and possibly the number of molecules. Based on the
number and the time of absorption of the molecules, the receiver
decodes the transmitted information. This section develops the
mutual information between the transmitter and receiver for two
cases: with a single transmitted molecule and two molecules
whose release times can be chosen independently. For a given
information transmission strategy at the transmitter (called the
input distribution in the information theoretic literature), the
mutual information is also the maximum rate at which informa-
tion may be conveyed using that strategy. (Mutual information
is related to but distinct from the capacity, which is the max-
imum mutual information over all possible input distributions.)

A. Overview

In a traditional wireline communication system, receiver
noise causes uncertainty in the reception, limiting the rate at
which information can be conveyed. However, as discussed
before, the uncertainty in the propagation time is a major bottle-
neck to the information transfer in molecular communication.
This uncertainty in the propagation time also means that the
order in which molecules are received at the receiver need not
be the order in which they were transmitted. This will result
in “inter-block interference.” This is a serious impairment
in the low velocity regime, where the pdf of the absorption
time decays very slowly, making inter-block interference more
likely.

In this paper, we ignore inter-block interference and assume
that the clocks are synchronized. Developing techniques for
both issues are significant works in themselves and outside the
scope of this paper. So our results are most relevant to system
in a fluid with some significant drift; further, as we show in
Section V, our results can be used to obtain upper bounds on
both mutual information and capacity for any drift velocity.

The channel here falls under a class of timing channels, chan-
nels where the mode of communication is through the timings of
various events. The capacity of such channels are usually more
difficult to characterize. A celebrated result in this field is the
computation of the capacity of a single server queuing system
[20]. The molecular communication channel can be modeled as
a-/G /oo queuing system, i.e., an infinite server queuing system
where the service time of a server is a random variable with dis-
tribution same as the pdf of the absorption time. To our knowl-
edge, the exact capacity of such a channel has not been com-
puted to date.

B. Single Molecule: Pulse Position Modulation

We first analyze the case of the transmitter releasing just a
single molecule. In such a scenario, it can encode information
only in the time of release of the molecule. The transmitter re-
leases the molecule (or not at all) in the beginning of one of N
time slots, each of unit duration (i.e., 75 = 1 in arbitrary units);
this action on the part of the transmitter is called a channel use.
This molecule then propagates through the medium and is ab-
sorbed by the receiver in a later time slot. The receiver then
guesses the time slot in which the molecule was released. This
is a form of pulse-position modulation (PPM).

Given that it has (N + 1) choices, the transmitter can encode
a maximum of log, (N 4 1) bits of information per channel use,
though in practice much less due to the uncertain arrival times
of the molecules. For instance, suppose the velocity of the fluid
medium is high enough so that the particle gets absorbed by the
receiver in M ~ N time slots with very high probability. In this
case, one transmission strategy would be to emit a molecule in
one of N/M time slots (each separated by M slots), since inter-
block interference would thus occur with very low probability,
and the transmitted information would arrive without distortion.
For such an ideal system, we can transmit information at a rate
of log, N/M + 1 bits per channel use. However, more practical
and interesting is the less than ideal case with lower velocities.

In this paper we neglect inter-block interference, i.e., we as-
sume that the receiver waits for enough time slots M, to ensure
that the molecule propagates to the receiver with high proba-
bility. Here M is chosen such that this probability is 0.999. Fur-
ther, we assume that the receiver sampling rate is 7, = T5/5.
This provides both a digital input/output system while main-
taining fairly high accuracy of the received time. Both these pa-
rameters could be changed as required.

C. Mutual Information as an Optimization Problem

Having dealt with preliminaries, we now derive the maximum
possible mutual information, here as an optimization problem.
Define a random variable X to denote the time slot in which the
transmitter releases the molecule. Assume that the transmitter
releases the particle at the beginning of the " slot (1 < i < N)
with probability p;. With probability po = 1 — S.% | p, the
transmitter does not release the particle. Let Y denote the time
slot in which the receiver absorbs the molecule. For the time
being, we allow Y to range between 1 and oo, we will see shortly
that this is not required. Also, let Y = 0 denote the event that
the molecule is never received. Since in our idealized case, the
receiver waits for a sufficiently long time, the event of ¥ = 0
is the same event that the molecule is not transmitted. Assume
that the duration of the time slot is 7.

Let F'(t) denote the probability that the particle gets absorbed
before time ¢ given that it was released at time 0, i.e., '(¢) is the
integral of the pdf'in (12). Denote by «; the probability that the
particle arrives in the 5" time slot, given that it was released at
time 0, whichis equal to F'(j7,.)— F((j—1)T,) ;x; = 0,7 < 0.
Let H(X) denote the entropy of random variable X and let
entr(xr) represent the binary entropy function, where

entr(x) = { —xlogex x>0

0 x =0. (13)
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We now proceed to calculate the mutual information between
the random variables X and Y.

N
H(Y|X) =H(Y|X =0)po+ Y _H(Y|X =i)p;
i=1
=0xpy+ Zp1 Z entr (P(Y = j|X = 1))
=1 7=1+1
= Zpi Z entr (o _;)=(1—po) Z entr (ay) ,
i=1 =i+l k=1

(14)
H(Y) =entr(P( ) + Z entr(P(Y = j))
20 N
=entr(py) + Z entr (Z =jlX = i)Pi)

=entr(pg) + Z entr (Z (o) pi>

j=1 i=1

(15)

IX:Y)=H(Y)-

o0 N
=entr(pg) + Z entr (Z p,-aj_i>
i=1 i=1
— (1 = pg) chtr(ak) .
k=1

As seen in Fig. 4, the sequence {w;} is a an eventually de-
creasing sequence. The rate of decay depends on the values of
the drift velocity » and the diffusion coefficient DD. The summa-
tions in (16) can, therefore, be terminated for some large enough
M.

The expression for mutual information is a non-negative
weighted sum of concave functions plus a constant. Hence, the
mutual information is a concave function of the input distri-
bution {p;,¢ = 1,...,N}. Finding the degree distributions,
the values for p;s which maximize the entropy, is therefore a
concave optimization problem. Standard convex optimization
techniques can therefore be used to solve for the input prob-
ability distribution which maximizes the mutual information
efficiently, in particular, the Blahut-Arimoto algorithm [23],
[24].

As a special case, suppose that we were to convey information
only in the time of release of the molecule, i.c., we require the
molecule to be transmitted. The derivation of mutual informa-
tion is very similar to the derivation above. Mutual information
can then be expressed as

H(Y|X)

(16)

N

M
Zentr (Z ptoz,_l> - Zentr(a‘j), (17)
J=1

and, again, the optimal degree distribution can be obtained
through concave optimization.
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D. Two Molecules

In the work so far we have considered only the propagation of
a single molecule and the focus was on PPM-based communi-
cation. We now take a step toward involving amplitude wherein
the transmitter can release two identical molecules. The analysis
is simplified by assuming that the propagation paths of these
two molecules are independent. The transmitter releases each
of these molecules in one of the NV time slots or chooses not to
release it. Based on the arrival times of these molecules at the
receiver, the receiver estimates their release times. However, be-
cause of the nature of the diffusion medium, different molecules
can take different times to propagate to the receiver. Hence, the
molecules can be absorbed in a different order than in which
they were released: a key difference between this channel and
traditional additive noise channels. As a result, the amount of
information that can be conveyed through the medium with two
indistinguishable molecules, as we will shortly see, is less than
twice the amount of the information that can be conveyed using
a single molecule.

To obtain the maximum mutual information, let X; €
{1,2,..., N} be the time slot in which the first particle is
released, X» € {X1, X1 +1,..., N} be the time slot in which
the second particle is released. Let Y7, and Y be the time
slots in which the first and second particles are received. For
notational convenience, if a particle is not released, we denote
it by a release in slot 0. Likewise, if a particle is not received at
the receiver, we denote it by a reception in time slot 0.

The probability mass function of the reception times
(P(Y1,Y3)), and the conditional probability mass func-
tion of the reception times given the transmission times
(P(Y1,Y5|X1, X2)) can be expressed in terms of the condi-
tional probability mass function of the reception time of one
molecule, given its transmission time (P(Y; = 41|X; =
T1) = 0y, ). In the equations presented below, let p¥1%2
represent P(Y1 = y1.Ys = 42|X1 = 21, X2 = z2), let
p¥1¥2 represent P(Y7 = y1, Y2 = y2) and let p,, ., represent
P(X1 = L]Jl,XQ = l‘g).

410

pilo Qg —z7 » 1,91 >0
p;ZlITz =y Oy, L1 2 T2, Y > 0
])leqﬁ =y Qs —my T Qyyy— oy Gy — 1y
r1 22,51 F Y2 >0
p" = poo

N
y10 _ E
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y1 # y2 > 0.

y1 >0

y>0

The term o, —,, vy, —», in the above equations accounts for
the event that the molecule released later gets absorbed before
the molecule which is released earlier. The mutual information
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Fig. 5. Variation of mutual information (which measures in bits, the informa-
tion that can be conveyed from the transmitter to the receiver) with velocity.
There are 2 sets of curves corresponding to the number of slots in which the
molecule is released, N' = 2 and N = 4. For IV = 4, we also list the pmf of
the release times which maximizes the mutual information.

between the variables (X1, X2) and (Y1, Y2 ) can now be written
in terms of these probability mass functions. Note that in the
above derivation, we have assumed that o, for k& < 0 is defined
as zero.

Using these equations, we can frame the mutual informa-
tion maximization as another optimization problem. The opti-
mization is to be done over the upper triangular N x N ma-
trix Px, x,{1,22), where each entry in the matrix is a pos-
itive number and all the entries sum to one. The mutual in-
formation is a concave function of the optimization variables
{Porae 21 €{1,2,..., N} 22 € {&1,51+1,...,N}}. The

exact expression is tedious to write, and is omitted here.

IV. RESULTS

The well known Blahut-Arimoto algorithm [23], [24] is used
to compute, numerically, the input distribution that maximizes
the mutual information in each of the different scenarios. The
distance from the sender to the receiver, { is set to one unit in
all the results presented here.

A. Release of a Single Molecule

When one molecule is to be released, information can be con-
veyed in whether it is released or not, and if released, the slot
number in which it is released.

1) Case When the Molecule Can Be Released in One of the
n Slots, Or Not at All: In Fig. 5, we plot the mutual informa-
tion as a function of velocity, for two different sets of diffusion
coefficients, 0.05, representing the low diffusion scenario, and
a high diffusion constant 0.2. We have two sets of plots in the
figure, one for the case where we have two slots in which we
can release the molecule, or choose not to release it, and an-
other, where we have four time slots. Also, we give the input
distribution (po, p1, p2, P3, pa) at which the mutual information
is maximized at the two extreme values of velocity.

From the figure, it is evident that the mutual information in-
creases with an increase in velocity and saturates to a maximum
oflog, (N +1) bits. This trend is as expected. At high velocities,

2.5

1.54

Mutual infomation in bits

Diffusion
Velocity

Fig. 6. A grid plot denoting the mutual information for a range of different
velocities and diffusion constants, for the case when N = 4. Observe that at
lower velocities, more information can be transferred in a medium with higher
diffusion constant.

the optimal, information maximizing, distribution is uniform.
This is because the receiver can detect, without error, the slot
in which the transmitter disperses the molecule. Also, because
the receiver waits for a sufficiently long time, we can detect,
without error, if a molecule was transmitted or not. Therefore,
a lower limit on the mutual information is one bit. At lower ve-
locities, timing information is completely lost and the mutual
information is marginally greater than one bit.
The diffusion constant is a measure of the uncertainty in the
propagation time. Hence, we would expect the mutual informa-
tion to be lower when the diffusion constant is high. This is in-
deed the case at high velocities. However, it is surprising that a
higher diffusion constant results in higher mutual information at
low velocities (Also refer Fig. 6). This is because, at low veloc-
ities, it is the diffusion in the medium which aids the propaga-
tion of the molecule from the transmitter towards the receiver.
This is illustrated in the pdf of the absorption time, shown in
Fig. 4. Compared to the case when the diffusion in the medium
is low, the probability distribution function is more “concen-
trated” (lower uncertainty) when the diffusion in the medium is
higher. Unfortunately, there does not seem to be a single param-
eter that characterizes the resulting interplay between velocity
and diffusion.
2) Case When We Do Not Permit the Transmitter to Not
Transmit the Molecule: The information, in this scenario, is
conveyed only in the time of release of the molecule. We find
the input distribution which maximizes (17). The mutual infor-
mation in this case is plotted in Fig. 7. The maximum mutual
information is now log, (/') bits, which is achieved at high ve-
locities. However, it is in the low velocity regime where the mu-
tual information is significantly lower than the case where the
transmitter is allowed to not transmit the molecule. Fig. 8 com-
pares the two scenarios.
From the results, we see that the velocity-diffusion region can
be roughly classified into three regimes:
+ A diffusion dominated region, where mutual information
is relatively insensitive to the velocity; this corresponds to
v < 1071 in Fig. 5.

* A high-velocity region where the mutual information is
insensitive to the diffusion constant; this corresponds to
v > 3 in Fig. 5.
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Fig.7. Variation of mutual information with velocity when the transmitter must
disperse the molecule (po = 0). The scenario is similar to the one used in
plotting Fig. 5, with the difference being that the transmitter is not permitted
not to transmit a molecule.
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Fig. 8. A comparison of the information bits conveyed in the scenarios when
the transmitter must (po = 0) or may not release the molecule. Plots from
Figs. 5 and 7 are compared here.

* An intermediate regime, where the mutual information is
highly sensitive to the velocity and diffusion constant of
the medium, 107! < v < 3 in Fig. 5.

In the low velocity regime, we see no significant improve-
ment in the mutual information when we increase the number of
time slots in which we can release the molecules. As expected,
very little information can be conveyed in the time of release of
the molecule when there is high uncertainty in the propagation
time. Hence, we need to explore alternative ways of encoding
message in this regime.

B. Release of Multiple Molecules

Here, we present the results of the scenario in which the trans-
mitter is allowed to transmit at most 2 molecules. The results
are presented in Fig. 9. We have two sets of plots, one where
the transmitter can release the molecule in one of two time
slots, other, where the transmitter can release the molecule in
one of four time slots. At low velocities, the mutual informa-
tion is close to log,3 bits. This is because, at low velocities,
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Fig. 9. Variation of mutual information with velocity for the case when the
transmitter is allowed to release at most two molecules. The mutual information
maximizing input distributions at the extreme points of the graph are given in
Tables I-VI.

TABLE I
MUTUAL INFORMATION MAXIMIZING INPUT DISTRIBUTION WHEN TWO
MOLECULES ARE RELEASED IN ONE OF THE TWO POSSIBLE SLOTS OR NOT
RELEASED AT ALL, # = 1072, d = 0.05. IN THE TABLE BELOW, i =1,
2,7 =0,1, 2,15 USED TO DENOTE Pr(X; = j)

p: 5 P4
pl | 0.1424 0 0.1412
Pl 0 0.1939 | 0.1921
Py 0 0 0.3303
TABLE II
v = 10_2,(] =0.2
7 3 D3
pl | 0.1382 0 0.1299
Py 0 02113 | 0.2035
Py 0 0 0.3171
TABLE III
v = 10,d = 0.2 or 0.05
p? p3 5
pl | 0.1667 | 0.1667 | 0.1667
pl 0 0.1667 | 0.1667
Py 0 0 0.1667

any information encoded in the time of release of the mole-
cule is lost. The receiver can however accurately estimate the
number of molecules transmitted. With two molecules, the re-
ceiver can decode if the number of molecules transmitted was
one or two or zero. However, this is because, we wait for infinite
time at the receiver. The probability distribution function which
attains the maximum mutual information at low velocities as-
signs, roughly, a probability of 1/3 to the events of releasing
one or two or no molecules.

At very high velocities, information encoded in both the time
and number of molecules released is retained through the prop-
agation. Hence, a maximum of log, (N + 1)(N + 2))/2 bits
can be conveyed at high velocities.

In Tables I-Table III we list the mutual information max-
imizing input distributions for the case of release of two
molecules in two time slots. Tables IV-VI list the input distri-
butions for the case of release of two molecules in four time
slots. As expected, at low velocities, the total probability of
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TABLE 1V
MUTUAL INFORMATION MAXIMIZING INPUT DISTRIBUTION WHEN TWO
MOLECULES ARE RELEASED IN ONE OF THE FOUR POSSIBLE SLOTS OR NOT
RELEASED AT ALL, v = 102, d = 0.05. IN THE TABLE BELOW, p},1 = 1,2,
j =0,1,2,3,4,15 USED TO DENOTE Pr(X; = j)

pi | p3 | pi]| pi 5
pl | 01395 ] 0 | 0 0 0.1313
ol 0 0| o0 0 0
ol 0 0| o 0 0
ol 0 0 | 0 | 02094 | 02022
pé 0 0| o0 0 03176
TABLE V
v=10"2,d = 0.2
v? 3 2 P2 P2
Pl [ 0.1345 0 0 0 0.1256
ol 0 0.0305 0 0 0.0122
p% 0 0 0.0129 0 0
Py 0 0 0 0.2052 | 0.1964
pi 0 0 0 0 02827
TABLE VI
v = 10,d = 0.2 0rR 0.05
»i P; 3 vy PG
pl | 0.0667 | 0.0667 | 0.0667 | 0.0667 | 0.0667
ol 0 0.0667 | 0.0667 | 0.0667 | 0.0667
ot 0 0 0.0667 | 0.0667 | 0.0667
ol 0 0 0 0.0667 | 0.0667
p§ 0 0 0 0 0.0667

releasing one, two or zero molecules is roughly one third each.
The molecules, to minimize uncertainty, are transmitted “far
apart.”

It is, however, surprising to note that for reasonable velocities
when two molecules are released, they are both to be released in
the same time slot. This may be explained by the fact that, due
to diffusion, molecules can arrive out of order and the timing
information is lost. Transmitting both molecules at once avoids
this confusion. This is also an important result; if this trend is to
hold true for the release of multiple molecules, then we could
consider only those schemes wherein all the molecules are re-
leased in one of the time slots, and where information is encoded
only in the time slot in which all the molecules are released.

V. RELATIONSHIP TO ACHIEVABLE INFORMATION
RATES AND CAPACITY

When pulse-position modulation is used, symbols are nor-
mally transmitted consecutively. That is, if the duration of a
symbol is 7', then the first symbol is transmitted on the interval
[0,T), the second on the interval [T, 2T'), and so on. However,
for the Brownian motions considered in Section II, molecules
transmitted during a given interval may arrive during a later in-
terval, causing inter-block interference. In this paper, we have
avoided this problem by only considering symbols transmitted
in isolation, disregarding inter-block interference.

In fact, for a fixed input distribution, our information results
lead to an upper bound on the mutual information under con-
secutive symbol transmission. To show this, let X represent
the alphabet of allowed symbols. For simplicity, suppose that

a symbol is composed of the release of a single molecule, al-
though this assumption can be relaxed without changing the ar-
gument. Then we will assume that X’ is a finite, discrete list
of allowed molecule release times on the interval [0, T); the
cardinality |X'| gives the number of allowed release times. Fur-
ther, there exists a discrete input distribution, with pmf px (),
over X. Let ) represent the corresponding set of channel out-
puts, given a single symbol input to the channel, and disre-
garding inter-block interference. Since Y is the arrival time of a
single molecule transmitted on the interval [0, T'), then clearly
Y = [0, ), and nothing changes if ) is quantized.

Letx = [z1,%2,....2,) € X" andy = [y1.92,...,Un] €
Y™ represent vectors of channel inputs and outputs, respec-
tively, for n uses of the channel in isolation; throughout this
section, we will assume that x; is independent and identically
distributed (IID) for each 7. Suppose the symbols in x are trans-
mitted consecutively. Then the resulting sequence of molecule
release times can be written r = [r1,79, .. .|, where

ri=x; + (i — 1)T. (18)
Since z; € [0,T), clearly r; € [(i — 1)T,4T"). Note that the
mutual information per unit time of the channel is given by
I(X;Y)/T, which is calculated for given X and px ().

Let u; represent the arrival corresponding to r;. Since r; is a
time-delayed version of x;, and y; is the arrival corresponding
to x;, from (18) we have

w =y + (@ —1)T. (19)

The corresponding vector is w = [u1, Uz, ..., u,|. However,

the receiver does not observe u directly — instead, it observes
w, where

w = sort(u), (20)

and where the function sort(-) sorts the argument vector in

increasing order. That is, while information symbol z; corre-

sponds to arrival time wu;, it is potentially unclear which element
of x corresponds to arrival time w;.

Since the length-n vectors of consecutive input symbols r and
sorted outputs w are random variables, we can write the mutual
information between them as I(R; W'). However, we are more
interested in the mutual information per unit time 7(R; W),
which is given by

I(RW) =

i

1
= lim —TI(R; W) — e,

n—oo 1,

I(R; W)
(21)

where nT represents the total time to transmit n symbols, 6
is the extra time after n7T" required to wait for all remaining
molecules to arrive, and

> I(R;W). (22)

(1 1
“T\aT T +6
We let 6 = log n, so thatlim,, ., 6§ = oc (which is long enough
time for all molecules to arrive with probability 1). With this in
mind, we have the following result:
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Theorem 1:
1
TI(X; Y)>I(R;W). (23)
Proof: From (21), since € is positive,
I(R; W) < i T(R; W).
(; )_nlﬂngonT—i—é( W)
Then we have that

I(X;Y) =1I(R;U) (24)
> I(R; W), (25)

where the first equality follows from (18)—(19), since r and u
are bijective functions of x and y, respectively; and the second
inequality follows from the data processing inequality (e.g., see
[25]) and (20). Finally, since x;, y; and % ;,y; are independent
foranyi # j, I(X;Y) = nl(X;Y), and the theorem follows.
]
Note that the result in Theorem 1 bounds the mutual infor-
mation, and thus applies to each set X' and input pmf px(z);
however, we can also show that the result applied to capacity.
Let C,,, represent the maximum of I(X;Y') where |[X| = m,
ie.,
Cm = I(X;Y).

max 26
px (z):|X]=m ( )
The capacity of the channel uses in isolation is then given by

C = lim C,,.

m—o0

27

It remains to show that this limit exists, which we do in the
following result.

Theorem 2: C' exists, and is finite, if 0 < v, D, (,T < oo.
Furthermore, if max,,  (,) /(12; W) represents the capacity of
I(R; W) under IID inputs, then

C
max [(R; W) < T

px(x)

(28)

Proof: To prove the first part of the theorem, we proceed
in two steps.

1) C,, is a nondecreasing sequence. For each m, either: the
maximizing distribution px («) (or every maximizing dis-
tribution, if not unique) satisfies px («) > 0 forall 2 € X’;
or px{x) = 0 for at least one x € X (in at least one max-
imizing distribution, if not unique). If the former is true,
then Cp, > C; for all j < wn; if the latter is true, then
Cy, = Cp—1. Thus, C,, is nondecreasing in 772.

2) C,, is upper bounded. We can write J(X;Y) = H(Y) —
H(Y|X) = H(Y)— H(N), where H(N) is the entropy
of the first arrival time. We can upper bound H(Y") inde-
pendently of . as follows. If the pdf of ¢ is fy (y), then
H(Y) = Ellog, 1/ fy(y)], where E[] is expectation. If
g(y) is any valid pdf of y, then by a well-known prop-
erty of entropy, H(Y) < E[log, 1/g(y)] (with equality
when g(y) = fy(y)). Pick g(y) = e ¥ (supported on
y = [0, 00)), the exponential distribution with unit mean.
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Then H(Y') < E[y]log, e, which is finite if £[y] is finite.
Finally, Ely] = E[z] + E[n] < T 4+ Eln], and E[n] is
known to be finite if 0 < v, D, { < oc [22].
Since C,,, is a nondecreasing, upper bounded sequence, it must
have a finite limit.
To prove the second part of the theorem, note that Theorem
1 applies to all input distributions px (x); thus, it also applies to
the one maximizing I(R; W'). As a result, since C' exists and is
finite (from the first part of the theorem), it is a nontrivial upper
bound on max,, (. [(R; W). |
In [12], it was shown that the mutual information cannot be
tractably computed in general for “sorting” channels, i.e., those
with outputs given by (20). Since 7(X;Y) can be calculated
relatively easily, the results from Theorems 1-2 give us useful
information about the capacity of a practical system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a framework was constructed to study data rates
that can be achieved in a molecular communication system. A
simple model was considered for the communication system,
consisting of a transmitter and receiver separated in space, im-
mersed in a fluid medium. The rates achieved by a simple pulse-
position modulation protocol were analyzed, where information
is encoded in the time of release of the molecule. These results
were extended to two molecules wherein the optimal distribu-
tion reverted to the PPM protocol. While preliminary, the re-
sults of this work suggest practical data transmission strategies
depending on the value of the drift velocity.

Given the preliminary nature of this work, there are many in-
teresting related problems. For example, it would be useful to
consider the limitations inherent in molecular production and
detection: precise control over release times and amounts, and
precise measurement of arrival times, may not be possible; more
realistic communication models could be produced. Further-
more, the communication architecture of molecular commu-
nication systems may be considered; for instance, in order to
achieve the mutual information results given in this paper, error-
correcting codes must be used; an appropriate modulation and
coding strategy for molecular communication needs to be iden-
tified. Finally, channel estimation techniques need to be derived
in order to cope with unknown parameters, such as an unknown
drift velocity. Much work remains to be done to understand
molecular communication from a theoretical perspective, which
presents many interesting and exciting challenges to communi-
cation researchers.
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