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Abstract—Communication between a transmitter and a re-
ceiver using electromagnetic waves does not scale to nano-sizes.
To enable communication between nano-sized devices separated
by a short distance, molecular communication has recently
been proposed as a feasible scheme. The transmitterdisperses
molecules into the medium, which propagate to, and are sensed
by, the receiver. In this paper, we wish to mathematically model
such a system and subsequently characterize the information
theoretic capacity of this channel. We present basic results on
characterizing the mutual information between the transmitter
and the receiver when information is encoded in the time of
release of the molecule. To do so, we model the propagation of
the molecule in this medium as Brownian motion, and derive the
probability density function of the arrival time of the molecule
at the receiver.

I. I NTRODUCTION

Communications research has largely focused on systems
based on electromagnetic propagation. However, at scales con-
sidered in nano-technology it is not clear that these concepts
apply. In this paper we consider communication based on
molecules [1]. Specifically, we consider the propagation of
individual molecules between closely spaced transmittersand
receivers embedded in a fluid medium. The transmitter en-
codes information in the pattern of release of the moleculesit
disperses into the fluid medium. These molecules then propa-
gate to the receiver, where they are detected. The receiver then
tries to decode the information from the pattern of received
molecules. For a comprehensive overview of the molecular
communication system, refer to [2] and the references therein.

As in any communication system, the potential rate of
communication is determined by the characteristics of the
channel. Here, propagation is determined by a mean drift
velocity and is uncertain due to the Brownian motion within
the fluid. In this preliminary work, our goal is to analyze
the mutual information between the transmitter and receiver
and hence the capacity of the channel. We would like to
emphasize that, in order to gain insight, and to make the
problem mathematically tractable, we consider a fairly simple
model of a molecular communication system.

In [3], the authors compute information theoretic bounds
to capacity for a general diffusion channel. Our work is
along similar lines, although we lay a greater emphasis on
the mathematical modeling of the system. In [4], the authors
study a system where the receiver chemically “reacts” with the
molecules and forms “complexes”. This is very different from
the system model we consider. We assume that the receiver

absorbs the molecule. Furthermore, we model the diffusion of
the particle in the medium, and incorporate its effect in our
calculations.

This paper is organized as follows. Section II describes the
system under consideration. The propagation of the molecule
in this medium is analyzed in Section III, wherein the prob-
ability distribution function of the absorption time is derived.
The challenges involved in transmission of information in
this media are discussed in Section III-C. In Section IV, we
characterize the maximum information transfer per molecule
for the case where information is encoded in the time of
release of the molecule. We use numerical methods to compute
the maximum mutual information between the transmitter and
the receiver. The results are presented in Section IV-B. We
conclude by presenting a list of interesting research problems
in this area in Section V.

II. SYSTEM MODEL

The system model we consider is shown in Figure 1. The
subsystems which make up the molecular communication
system are:

1) Transmitter: The transmitter is a source of identical
molecules. We assume that the transmitter can control pre-
cisely the time of dispersal of each of these molecules. We
further assume that the transmitter does not influence the
propagation of these molecules once it disperses them.

2) Propagation medium:The medium between the trans-
mitter and the receiver is a fluid medium. The medium is char-
acterized by two parameters, drift velocity, and the diffusion
constant. These in turn depend on the physical properties of
the medium. The propagation of the molecule is assumed to
be one dimensional (Figure 1 shows two dimensional motion
for illustration only).

3) Receiver:The dispersed molecule, when arrives at the
receiver, is absorbed by the receiver and is removed from the
medium. The receiver makes an accurate measurement of the
time when it absorbs the molecule. It uses this information to
decode the information.

4) Transmission of Information:The transmitter can encode
information in either the time of dispersal of the molecules,
or the number of molecules it disperses or both.

We now proceed to derive the probability distribution func-
tion (pdf) of the absorption time of the molecule. We then use
the pdf of the absorption time to characterize the information
conveyed per molecule.
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Fig. 1. System Model

III. C HARACTERIZING THE DIFFUSION PROCESS

The diffusion process is probabilistic. The motion of the
dispersed molecule is effected by Brownian motion and hence,
the propagation time to the receiver is random. In this work,we
try to study the effect of this limitation, assuming everything
else is perfect. This is because we expect the resulting uncer-
tainty to be the dominant limiting factor to the information
transfer per molecule. We now characterize the propagation
of the molecule in a fluid medium, a key aspect of this
communication system.

Assume that a molecule is released in a static fluid medium
at positionxo and timeto. Let X(t) denote the position of
the particle at timet. Let PX(x, t;xo, to) characterize the pdf
of the position of the particle. If the fluid medium is static,
the particle disperses in either of the directions with equal
probability. The pdf of the position of the particle can thenbe
characterized by the diffusion equation [5]

∂

∂t
PX(x, t;xo, to) = D

∂2

∂x2
PX(x, t;xo, to), (1)

whereD is the diffusion constant, whose value is dependent
on the viscosity of the fluid medium.

A. Diffusion with drift

Equation (1) characterizes the pdf of the position of the
particle in a static medium. Now suppose that the fluid is
flowing with a constant drift velocityv, v > 0. We now derive
the diffusion equation in this medium.

Consider a frame of reference which is moving with the
same velocity velocityv. In this frame, the fluid medium is
static and hence the diffusion of the particle obeys (1). Let

x
′

= x + vt, t
′

= t

be the new coordinate system, and without loss of generality,
assumeto = 0. Also, without loss of generality, assume
that the particle is dispersed at origin, i.e.,xo = 0. This
assumption is made to simplify the notation, letP (x, t)
representPX(x, t; 0, 0). This is equivalent to working in a
new frame of reference with origin atxo. Let

PX(x, t) = P
′

X
′ (x

′

, t
′

),

then
∂

∂t′
P

′

X
′ (x

′

, t
′

) = D
∂2

∂x′2
P

′

X
′ (x

′

, t
′

).
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The mean of the pdf translates in the direction of the flow of the medium,
the variance of the pdf increases wiht time.
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Fig. 2. This figure plots the diffusion of the particle as a function of time

In the static frame of reference, the differential equationcan
be written as

∂

∂t
PX(x, t) =

(

D
∂2

∂x2
+ v

∂

∂x

)

PX(x, t) (2)

Assume that there is no absorbing boundary (receiver)
and that the fluid medium extends from−∞ to +∞. The
probability density function of the location of the particle
can be obtained by solving the differential equation (2), with
boundary conditionsPX(x, 0) = δ(x) andPX(±∞, t) = 0.

For the sake of brevity, we do not give the details about
solving the differential equation. The solution to the differen-
tial equation is

P (x, t) =
1√

4πDt
exp

(

− (x − vt)2

4Dt

)

. (3)

The pdf of the position of the particle, for everyt, has a
Gaussian distribution. The mean of the distribution driftsalong
the direction of flow of the fluid medium asvt, the variance
increases as2Dt. Figure 2 plotsP (x, t), the units for velocity,
diffusion and time are arbitrary.

If the particle were to be released atx = −ζ instead of
origin, and if it were to be released at timeto, then the pdf
of the position of the particle is given by

PX(x, t;−ζ, to) =

1√
4πD(t−to)

exp
(

− (x+ζ−v(t−to))2

4D(t−to)

)

. (4)

B. Solution to the diffusion equation in the presence of an
absorbing boundary

Consider (4) forto = 0, and assume that the particle is
released atx0 = −ζ. Assume that there exists an absorb-
ing boundary atx = 0. For such a system, to solve for
PX(x, t;−ζ, 0), we need to solve the differential equation (2)
with the following boundary conditions.

• For x < 0, PX(x, 0;−ζ, 0) = δ(x+ζ). The probability
density function has a physical interpretation only for



x < 0. In this region, we require it to be a delta function
at t = 0 centered atx = −ζ.

• PX(−∞, t;−ζ, 0) = 0, ∀t.
• PX(0, t;−ζ, 0) = 0, ∀t. Condition imposed by the

absorbing boundary.

The solution to this differential equation is the summation
of two terms. The first term is the probability density in the
absence of the absorbing boundary. To have the probability
density at the origin to be zero for all time, themethod of
imagesgives the second term, anegative probability density.
Consider the following equation

PX(x, t;−ζ, 0) =
1√

4πDt
exp

(

− (x + ζ − vt)2

4Dt

)

︸ ︷︷ ︸

first term

− 1√
4πDt

exp

(

− (x − ζ − vt)2

4Dt

)

exp

(
vζ

D

)

︸ ︷︷ ︸

second term

(5)

It can be shown that (5) is the solution to the differential
equation and satisfies all the boundary conditions.

At a given timet, the probability that the particle has not
yet been absorbed is given by

F̄ (t) =

∫ 0

−∞

PX(x, t;−ζ, 0)dx

=

(

1 −
∫ ∞

−(vt−ζ)
√

2Dt

1√
2π

e
−x2

2 dx

)

−

exp

(
vζ

D

)(

1 −
∫ ∞

−(vt+ζ)
√

2Dt

1√
2π

e
−x2

2 dx

)

F̄ (t) is the probability that the particle has not been absorbed
until time t. The probability that the particle has been absorbed
beforet is given byF (t) = 1 − F̄ (t). Hence, the probability
density function of the absorption time isf(t) = F

′
(t).

f(t) = −dF̄

dt

= − 1√
2π

exp
(

−(vt−ζ)2

4Dt

)(
−v√
2Dt

+ (vt−ζ)

2
√

2Dt3

)

+

exp
(

vζ

D

)
1√
2π

exp
(

−(vt+ζ)2

4Dt

)(
−v√
2Dt

+ (vt+ζ)

2
√

2Dt3

)

= ζ√
4πDt3

exp
(

−(vt−ζ)2

4Dt

)

(6)

Equation (6) gives the probability density function of the
absorption time of a particle.

Note that the pdf decays exponentially in the ‘high velocity’
regime and decays only ast−

3
2 in the ‘low velocity’ regime.

Figure 3 plots pdf of the absorption time for different sets of
drift velocities and diffusion constant.

To summarize, we have derived the pdf of the absorption
time of a molecule when released in a fluid medium with
diffusion constantD, at a distanceζ from the absorption
boundary, with the fluid flowing with a constant velocity
v, v > 0.
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Absorption time of the molecule for different sets of velocity and diffusion
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Fig. 3. The probability distribution function of the absorption time for
different sets of velocity and diffusion

C. Communication in fluid media

In this section, we list the differences between a traditional
wireline communication system and a molecular communica-
tion system, and the new challenges involved. In a molecular
communication system, the transmitter encodes the message
in the number of molecules released and the time of release
of these molecules. Based on the number and the time of ab-
sorption of the molecules, the receiver decodes the transmitted
information.

In a traditional wireline communication system, receiver
noise limits the maximum rate at which information can be
conveyed. It may be a similar case with the system model
considered above, where the receiver might record the number
and time of absorption of the molecules incorrectly. However,
as discussed before, the uncertainty in the propagation time is a
major bottleneck to the information transfer. This uncertainty
in the propagation time also means that the order in which
molecules are received at the receiver need not be the order in
which they were transmitted. This will result in ‘inter block
interference’. This is a serious impairment in the low velocity
regime, where the pdf of the absorption time decays only as
t−

3
2 . However, tocancel this interference, we do not have

an equivalent of a negative voltage, the number of molecules
released can only be zero at least.

Achieving time synchronization between the transmitter and
the receiver is not as straightforward as in the case of a
wireline communication system. In a wireline system, the
transmitter sends a known signal to the receiver to mark the
start of transmission. The same principle can obviously not
be used as is. One way to synchronize the clocks is to do so
before installing the transmitter and receiver. If the datarates
are slow enough, the clocks need not be re-synchronized (to
correct for difference in the oscillator frequencies) veryoften.
We assume that that the clocks are synchronized.

Given these fundamental differences, designing a reliable
communication system is challenging. We look at a very basic
communication system here and analyze it. We hope that the



framework developed therein can be reused in designing more
sophisticated and better systems.

IV. M ESSAGE ENCODED IN THE TIME OF RELEASE OF THE

MOLECULE

We analyze the case of the transmitter having just a single
molecule. In such a scenario, it can encode information only
in the time of release of the molecule. We discretize time into
slots of durationTs. The transmitter releases the molecule in
the beginning of one of theN time slots. This molecule then
propagates through the medium and is absorbed by the receiver
in a later time slot. The receiver then estimates the time slot
in which the molecule was released.

The transmitter releases the molecule in one of theN time
slots, or can choose not to release the molecule at all. Hence,
it can encode a maximum of log2(N +1) bits of information.
Suppose the velocity of the fluid medium is high enough, so
that the particle gets absorbed by the boundary inM time slots
with very high probability. For such a system, we can transmit
information at a ratelower than log2(N +1)/M bits per time
slot. We study the degradation in the mutual information at
low velocity and for different values for diffusion.

There are various parameters which characterize this
scheme, and which influence the mutual information, and
hence the rate.

• Number of transmit time slots (N ). As stated before,
the information conveyed grows withN as log2(N)
whereas the duration of one block of transmission grows
linearly in N . Therefore, the maximum rate of commu-
nication whenN transmit time slots are used grows as
log2N/(N + W ), whereW is a constant. Depending on
the value ofW , this function is an increasing function of
N for small N and then decreases to zero.

• Duration of a time slot (T ). We have setT to be one unit.
We do not explore the variation of mutual information
with T .

• Waiting time at the receiver (M time slots). Theoretically,
we need to wait for an infinite amount of time to
guarantee that the molecule which has been released gets
absorbed. However, it is impractical to do so for two
reasons. First, this would induce an infinite delay between
encoding and decoding of the message. Second, we would
like to use the same channel repeatedly. On the other
hand, if the receiver only waits for a finite time, it will
lead to molecules from different blocks interfering with
each other. We setM to be long enough to ensure that
all the transmitted molecules in a block get absorbed by
the receiver with a probability greater than 0.999. We do
not consider the effect of inter-block interference.

• Sampling rate at the receiver. We have assumed so far
that the receiver makes an accurate measurement of the
time of absorption of the molecule and uses it to estimate
the time slot in which the molecule was released. We now
relax this assumption. We assume that the receiver only
uses the time slot in which the molecule was absorbed,
and not the exact time. Essentially, the time at the receiver

is discretized. However, the duration of each time slot at
the receiver need not be the same as that at the transmitter.
The receiver could use a smaller duration of the time slot.
For the sake of clarity, we set the duration of a time slot
at the receiver to be the same as that at the transmitter.
It is straightforward to change it to a different value.

In the following section, we derive the mutual information
between the transmitter and the receiver as a convex optimiza-
tion problem.

A. The mutual information as an optimization problem

Define a random variableX to denote the time slot in
which the transmitter releases the molecule. Assume that the
transmitter releases the particle at the beginning of theith slot
(1 ≤ i ≤ N ) with probabilitypi, with

∑N

i=1 pi = 1−p0. With
probability p0, the transmitter does not release any molecule.
Let Y denote the time slot in which the receiver absorbs the
molecule. For the time being, we allowY to range between
1 and∞, though we will see shortly that this is not required.
Also, let Y = 0 denote the event that the molecule is never
received. When we wait for an infinite time at the receiver,
the eventY = 0 occurs only when the molecule is not
transmitted. Assume that the duration of the time slot isT .
From Section III-B, letF (t) denote the probability that the
particle gets absorbed before timet, given that it was released
at the beginning of the first time slot, at time 0. Denote by
αj the probability that the particle arrives in thejth time
slot, given that it was released at time 0, which is equal
to F (jT ) − F ((j − 1)T ), with αj = 0 for j ≤ 0. Let
entr(x) denote−xlog2(x), the binary entropy function. We
now proceed to calculate the mutual information between the
random variablesX andY .

I(X;Y ) = H(Y ) − H(Y |X)

H(Y |X) = H(Y |X = 0)p0 +
N∑

i=1

H(Y |X = i)pi

= 0 × p0 +

N∑

i=1

pi

∞∑

j=i

entr (P (Y = j|X = i))

=
N∑

i=1

pi

∞∑

j=i

entr (αj−i+1)

= (1 − p0)

∞∑

k=1

entr (αk) , (7)

H(Y ) = entr(P (Y = 0)) +
∞∑

j=1

entr(P (Y = j))

= entr(p0) +

∞∑

j=1

entr

(
N∑

i=1

P (Y = j|X = i)pi

)

= entr(p0) +

∞∑

j=1

entr

(
N∑

i=1

(αj−i) pi

)

(8)



I(X;Y ) = entr(p0) +

∞∑

j=1

entr

(
N∑

i=1

piαj−i

)

−(1 − p0)
∞∑

j=1

entr (αj) (9)

The sequence{αj} is a decreasing sequence. The rate of
decay depends on the values of the drift velocityv and the
diffusion coefficientD. The summations in (9) can therefore
be terminated for some large enoughj.

The expression for mutual information is a non-negative
weighted sum of concave functions plus a constant. Hence,
the mutual information is a concave function of the input dis-
tribution {pi, i = 1, . . . , N}. Standard optimization packages
like CVX [6] can be used to solve for the input probability
distribution which maximizes the mutual information.

Suppose that we were to convey information only in the
time of release of the molecule, that is, we do not allow for the
case of no transmission. The derivation of mutual information
is very similar to the derivation above. Mutual informationcan
then be expressed as

I(X;Y ) =

M∑

j=1

entr

(
N∑

i=1

piαj−i

)

−
M∑

j=1

entr (αj) (10)

B. Simulation Results

Using numerical methods, we find the input distribution that
maximizes (9). In Figure 4, we plot the mutual information
as a function of velocity, for two different sets of diffusion
coefficients, 0.05, representing the low diffusion scenario, and
a high diffusion constant 0.2. We have two sets of plots in
the figure, one for the case where we have two slots in which
we can release the molecule, or choose not to release it, and
another, where we have four time slots. Also, we give the input
distribution(p0, p1, p2, p3, p4) at which the mutual information
is maximized at the two extreme values of velocity.

From the figure, it is evident that the mutual information
increases with an increase in velocity and saturates to a
maximum of log2(N + 1) bits. This trend is expected. The
mutual information maximizing input probability distribution
is the uniform probability distribution. At high velocities, the
receiver can detect error free the slot in which the transmitter
disperses the molecule. Also, because we wait for a sufficiently
long time at the receiver, we can detect error free if a
molecule was transmitted or not. Therefore, a lower limit on
the mutual information is one bit. At lower velocities, the
mutual information is marginally greater than one bit.

The diffusion constant is a measure of the uncertainty in
the propagation time. Hence, we would expect the mutual
information to be lower when the diffusion constant is high.
This is indeed the case at high velocities. However, it is
surprising that higher diffusion constant results in higher
mutual information at low velocities. This is because, at low
velocities, it is the diffusion in the medium which aids the
propagation of the molecule from the transmitter towards the
receiver. This is illustrated in the pdf of the absorption time,
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N = 2, D = 0.05
N = 2, D = 0.2
N = 4, D = 0.05
N = 4, D = 0.2
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(0.2000,0.2000,0.2000,0.2000,0.2000)

Fig. 4. Variation of mutual information with velocity.

shown in Figure 3. Compared to the case when the diffusion in
the medium is low, the probability distribution function ismore
“concentrated” when the diffusion in the medium is higher.

Next, we find the input distribution which maximizes (10).
The mutual information in this case is plotted in Figure 5. The
maximum mutual information is nowlog2(N) bits, which is
achieved at high velocities. However, it is in the low velocity
regime where the mutual information is significantly lower
than the case where the transmitter is allowed to not transmit
the molecule. Figure 6 compares the two scenarios.

From the results, we see that the velocity-diffusion region
can be roughly classified into two regimes:

• A diffusion dominated region, where mutual information
is relatively insensitive to the velocity. This corresponds
to v < 10−1 andv > 3 in Figure 4.

• A velocity dominated regime, where the mutual informa-
tion is highly sensitive to the velocity of the medium,
10−1 < v < 3 in Figure 4.

In the low velocity regime, we see no significant improve-
ment in the mutual information when we increase the number
of time slots in which we can release the molecules. As
expected, very little information can be conveyed in the time
of release of the molecule when there is high uncertainty in
the propagation time. Hence, we need to explore alternative
ways of encoding message in this regime.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we construct a framework to study data
rates that can be achieved in a molecular communication
system. We start by studying the propagation of the molecule
in a fluid medium. We consider a simple model for the
communication system, consisting of a transmitter and receiver
separated in space, immersed in a fluid medium. We derive
the pdf of the propagation time of the released molecule. This
pdf characterizes the data rate completely. We then proceed
to analyze the rates achieved by a simple communication
protocol, where information is encoded in the time of release
of the molecule.
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N = 2, D = 0.05
N = 2, D = 0.2
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Fig. 5. Variation of mutual information with velocity when thetransmitter
is not allowed to not disperse the molecule.
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N = 2, p

0
 = 0
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0
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Fig. 6. A comparison of the mutual information between the two cases,
when the transmitter is allowed not to transmit the molecule at all, and the
case when it is not.

In the framework constructed here, many interesting prob-
lems arise. We list a few of them.

In this paper, we considered only the case where infor-
mation is encoded in the time of release of the molecule.
We could also potentially encode information in the number
of molecules released in a time slot. Also, in the analysis
so far, we have assumed that we can control very precisely
the number of molecules (one in this paper) we release and
the time of their release. It might not be possible to do so.
Molecules might be generated as a product of a chemical
reaction, in which case, the number of molecules released
might be a random variable with a certain probability dis-
tribution function. Hence, at the transmitter, we might be able
to release only a discreet set of number of molecules, say
0, 100 and 200. Associated with each of these levels will
then be an uncertainty in the number of molecules released,
a signal dependent transmitter noise. It would be interesting
to compute the mutual information and the data rates for this
scenario.

Assuming that the receiver can record the exact time of
absorption of every molecule might also not be valid. We
have avoided one of these two assumptions by quantizing
the absorption time and noting only the time slot in which

a molecule is absorbed. However, we have so far assumed
that the receiver is sensitive enough to detect the absorption
of every molecule. However, it might not be possible to design
such receivers.Receiver quantization, in time, and in the
number of molecules it absorbsneeds to be accounted for.
Also, we have not considered any receiver noise in our model.
The number of molecules that the receiver detects might be
modeled as a random variable and its effect accounted for
when calculating the mutual information.

In this paper, we have assumed that the waiting time is
long enough to ensure that the released molecule is absorbed.
However, in practical systems, this time has to be truncatedto
allow for the reuse of the channel. This will then result in an
inter-block-interference wherein molecules released in earlier
blocks might arrive “late” and confuse the receiver. Also, there
is a probability that the receiver absorbs no molecules even
when the transmitter disperses them. The system model is
equivalent to aZ-channel with memory.It would be interesting
to study capacity of such channels.

We have computed information theoretic bounds for the
maximum data rate. Another interesting research problem
would be to devise “error detection or error correction”
mechanisms for a molecular communication system. In par-
ticular, designing codes with very low encoding and decoding
complexity will be a key challenge.

A complete departure from the framework of releasing
finite number of molecules is to consider the case where
the transmitter controls theconcentration of the molecules
it releases. Concentration being a real number, optimization
has to be done over continuous valued probability distribution
functions.

In conclusion, we believe that the area of molecular com-
munication presents many interesting research problems. Most
of these problems do not arise in the context of wireline
communication, making the problems even more challenging.
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