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Simultaneous Time- and
Frequency-Domain Extrapolation

Raviraj S. Adve,Member, IEEE and Tapan K. SarkaFellow, IEEE

Abstract—in this paper, given the early-time response and the of interest. Hence, a broad-band analysis can be very time
low-frequency response of a causal system, we simultaneouslyconsuming. Particularly when the frequency becomes high
extrapolate them in the time and frequency domains. The ap- one needs to solve a large matrix equation, which takes
proach is iterative and is based on a simple discrete Fourier ’
transform. Simultaneous extrapolation in time and frequency an enormous{ amount of computer .resource.s. Also, as the
domains is further enhanced by using the matrix pencil technique frequency of interest increases, the time required for analysis
in the time domain and the Cauchy method in the frequency at each frequency point also increases.
domain. The results are further enhanced through the Hilbert With the increasing Speed and memory of d|g|ta| ComputerS,
transform, hence enforcing the physical constraints of the system o, seattering problems are being performed in the time
and thereby guaranteeing a causal extrapolation in time. It is, . - . .
therefore, possible to generate information over a larger domain domain. There are four basic reasons for time domain mod-
from limited data. It is important to note that through this  eling [2]. In certain electromagnetic problems, a time-domain
extrapolation, no new information is created. The early-time formulation requires fewer arithmetic operations. Second, in
and low-frequency data are complementary and contain all the geeking broad-band information, the time-domain model is
desired information. The key is to extract this information in an intrinsically a better choice. The transient response obtained is

efficient and accurate manner. L . . .
limited only by the bandwidth of the excitation and the spatial
Index Terms—Extrapolation, frequency-domain analysis, time-  giscretization.

domain analysis. Another advantage of time-domain modeling is that prob-

lems involving nonlinear media can usually be modeled easily
I. INTRODUCTION in the time domain. This advantage holds true for time-varying

N most of computational electromagnetics, the solutigfedia. Handling nonlinear media and time-varying media can
I technique assumes a time-harmonic behavior for all fieh§ extremely difficult in the frequency domain. The other
quantities. This implies that the solution is in the frequendp@son for using time-domain analysis is that gating can be
domain. The principal reason for this has been that ti§ed to eliminate unwanted reflections. _
frequency-domain formulations are more tractable analytically, A ime-domain formulation using integral equations usually
Time-domain solutions are then found using an inverse Fourl&Sults in the method of marching on time (MOT). Here, the
transform. value of an unknown at a given time is dependent on the

Frequency-domain formulations use either the integral equkCitation att; and the values of all the unknowns oK #,.
tion (IE) approach or the differential equation (DE) approacBY Properly choosing a time step, an explicit solution for
In using an IE formulation, such as the method of moment8€ unknowns can be obtained. However, MOT algorithms
(MoM), the spatial sampling has to be carried out in oneHffer frpm some serious defe_cts. One main dlsadva_nta_ge is
spatial dimension less than the number of dimensions p(gge persistent presence of Ia'te—t'|me high-frequency oscnlathns.
sessed by the problem. However, frequency-domain Cod'ggesg usually unstable oscillations occur even when t_h_e tm_1e
usually cannot efficiently handle multiple inhomogeneous m&tep is chosen such that the Courant stability condition is
dia. Further, the matrix involved in the solution is full. DESatisfied [3]. Many different approaches have been suggested
formulations, like the finite-element method can treat mediuf Overcome these instabilities [4]-[6]. However, the stability
inhomogeneities and nonlinearities in a more straightforwaRoblems have not been eliminated.
manner. However, the spatial sampling has to be carried out infime-domain formulations using DE's begin with the time-
as many spatial dimensions as possessed by the problem. Agigpendent Maxwell curl equations. These formulations usually
DE techniques are difficult to use in the case of unbound&fuire a “numerically gentle” turning on of the excitation.
regions [1]. Hence, finding an impulse response is impossible from a

The drawback to frequency-domain formulations is thdime-domain DE code. A very popular time domain formu-

the analysis program has to be executed for each frequefR§jon is the finite-difference time-domain (FDTD); here, the
differential operators are approximated by finite differences.
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In summary, modern-day computer programs can easthye Fourier transform
analyze an electromagnetic system in the low-frequency and 00 '
early-time regions. In the low-frequency region, the analysis Y(j2rf) :/ y(t)e I g, @
can be speedily performed with a few unknowns. In the early- 0
time region, instabilities such as the late-time oscillations haveThe Fourier integral starts at zero because the time domain
not set in. For DE programs, an absorbing boundary conditioesponse is causal, i.e,t) = 0, t < 0. As a result of using
is not necessary. Also, since the execution time of a MCAn integral-equation frequency-domain code we have samples
program is directly proportional to the analysis time periodf Y (j2xf) at f = ¢Af,i=0, ---, Ny — 1. On using a time-
the early time-domain analysis is not very time consuming.domain code based on MOT program we have samplgstpf
These drawbacks in current methods create a need for a taol = kA¢, k£ =0, - - - N, — 1. Using this information, we want
that can use information from both the time and frequendy find Y (27 f) up to £ = M;Af andy(t) up toT = M, At.
domains and yield broad-band frequency information and stince we only have samples df(27f) andy(¢) at discrete
ble late-time information. The basic philosophy is as followsoints in¢ and f, instead of using the Fourier transform as
consider that we require wide-band information about certailefined in (1), we use the discrete Fourier transform pair [9].

parameters both in the time and in the frequency domain. We My—1

utilize a frequency-domain technique such that the IE for the Y, ~ Z yio—ITRASLIAL Ay )
finite-element method (FEM) to generate information about pr

the parameter from a low frequengy (close to dc—zero fre- M1

guency) to some frequengg—this problem may be tractable yi ~ Z Yy eI 2TRASIA A £ 3)
for the computer at hand. Next, we use a time-domain code P

like the time-domain IE or FDTD or FEM-TD to generate
information about the same parameter for the same excitatiere, Yz = Y (j2rkAf) andy; = y(iAt). To minimize the
from timet =0to¢ = 7. As long asT’f, > 1 and f; ~ 0, effects of discretization [10], the record length/; and M, )
we have all the necessary information desired from the partfiould be large.
solutions in time and frequency domains. The key is to find In the simplest form, the proposed extrapolation procedure
a method to extract this information. In this paper, a solutidi as follows.
methodology is outlined. 1) Pad the available time domain d&gg, ¢ =0, - -- N;—1)

It is important to point out that the simultaneous extrap-  with zeros to create a sequence of lengih such that
olation in time and frequency domains tacitly assumes a M, > 2N;.
bandlimited system. For example, when solving a frequency-2) Perform ai{, point DFT on this sequence as defined by
domain problem, a spatial discretization of the scatterer by  (2); define the resulting sequence to BEk), £ = 0,

elements whose dimensions are of the order of a tenth of ..., My — 1.
a wavelength in the medium of interest is used. In the 3) Replace the firstV; samples inY”(k) with the known
time domain, the excitation is considered to be effectively  frequency-domain data;, £k = 0, ---, Ny — 1, define

bandlimited. The highest frequency up to which a solution  the resulting sequence to B&.., (k).
can be accurately obtained is limited, again for time-domain4) Perform ai{; point inverse discrete Fourier transform
problems, by the spatial discretization of the structure. Typ-  (DFT) (IDFT) on Y, (k) as defined by (3); define the

ically, as in the frequency domain, this highest frequency is  resulting sequence to bg(i), i =0, ---, My — 1.
such that the spatial discretization is of the order of a tenth5) Replace the firstV; samples iny’(i) with the known
of the wavelength. time-domain datay;, ¢ = 0, ---, N; — 1; define the

In [7], Pereira—Filho and Sarkar present the matrix-pencil  resulting sequence to hg,w (%)

approach for extrapolating the time-domain data without re- 6) Subsequent processing is an iteration on Steps 2-5.

quiring any frequency-domain information. This technique The extrapolated data is Woew(k), k=0, -+, My — 1

works very well if adequate time-domain data is available [8hnd Ynew(i), @ = 0, -+, My — 1.

However, it suffers from one restriction. In the matrix-pencil The DFT is used over the quicker fast Fourier transform

approach, the required information is the free response of {{fT) because in a DFT there are no restrictions on the fre-

system, i.e., the system response after the excitation has dig@éncy step or the number of samples. In a BFIAtAf =

down. In our current approach, no such restriction applies.MfAtAf = 1. However, there are some hidden problems
with the above extrapolation procedure. As explained by
Brigham [10], a “discontinuity” in the data sequence produces
the discrete equivalent of the Gibbs phenomenon. In our case,

Il. EXTRAPOLATION BASED ON THE such a discontinuity arises because of the replacing the known

DISCRETE FOURIER TRANSFORM dataY;, into Y'(k) [Step 3)] and replacing; into /() [Step
Consider a functiory(¢) that represents the current as &)]. As explained in (2) and (3), even if the entire data
function of time at a particular position on a scatterer. Thsequencesy(é), ¢ = 0, ---, My — 1 and Yy, &£ = 0, -+,

current is the transient response to some known excitatiarl.;—1 were known perfectly, the DFT and IDFT produce only
The associated frequency-domain response is representedjggroximations to the real; andy;. Hence, when replacing
Y (j2n f). The frequency and time domains are related througie known data into these sequences, a discontinuity arises at
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sample numberV; in yn.w(¢) and at sample numbe¥; in C. The Matrix Pencil

Y“e“’,(k)' ) L _ The matrix pencil method models the time-domain sequence
Brigham suggests the use of windows to minimize th

) R > . ' ¥s a sum of complex exponentials
discontinuity. Harris [11] details the use of many windows.
However, the use of a window reduces resolution of the M ot
DFT and IDFT. Nonuniform sampling can be utilized through y(t) = ZRJG o (5)
the use of the DFT technique described in [12]. However, =1
here, the high-frequency Gibbs phenomenon is reduced, buSuch a model is valid because the scatterer can be treated as
not eliminated. Hence, in this work we smooth over tha linear time-invariant (LTI) system. Given thié, samples in
discontinuity to eliminate the Gibbs phenomenon. In thg(:), the problem reduces to estimatig, R; ands;. Once
frequency domain, we use the Hilbert transform [13], [14hese parameters are found:) can be evaluated at the desired
and the Cauchy method [15] to smooth over the discontinuityme pointst = ¢At. In the matrix pencil approach too the
In the time domain, data is smoothed using the matrix pengifoblem is formulated as a matrix equation. Hence, here too,
technique [7], [8]. unnecessarily over determining the system of equations leads
to numerical errors. The details of the matrix pencil algorithm
A The Hilbert Transform and a copy offthe assomgted program can be found in [7].

o o ) We use the5t samples just before sample numbérto get

To maximize the use of the given information and to smooghe estimate of the response at the sample nunile#is1 to
the data in the frequency domain, we use a method basedn, N: Angther estimate is found by using tﬁ; samples
. . . . 10"

the Hilbert transform as described in [13]. The method is @larting at numben, + % +1in a reverse order. A moving

iterative technique to extrapolate/interpolate frequency—domad()erage of these two estimates gives us a smooth data set for
data relying on the fact that the underlying time-domain dajge time domain sequence.

is causal. It then uses the property that if the underlying time-
domain data is causal, the real and imaginary parts of the 1o Extrapolation Procedure
frequency-domain response have to be related through the

Hilbert transform [9]. The details of the method can be found 1he Hilbert transform, the Cauchy method and the matrix
in [13], [14]. pencil method each have a strong physical basis. Therefore,

In this application, the given information is the firat; using these three signal processing tools results in minimizing

frequency-domain samples. Using this and ¥¢k) found in the errors providing a smooth extrapolation. This is crucial

Step 2) as the initial guess, the output is a smoother frequerR§Fause the technique is iterative and the errors would accu-
response. mulate leading to severe instabilities.

On using these tools, the updated iteration procedure is as

follows.
B. The Cauchy Method 1) Pad the available time-domain data with estimates of the
The Cauchy method provides an approximation for a func-  samples using the matrix pencil to create a sequence of

tion by a ratio of two polynomials if the function values and its length A,.
derivatives are available at some, not necessarily equispaced®) Perform aM, point DFT on this sequence; define the
points. The frequency response is modeled as resulting sequence to B€'(k), k=0, ---, My — 1.
3) Use the Hilbert transform to smooth the data and get a
Als) EP_ st better estimate of the frequency response.
Y(s) ~ Bl = ’é—o =) s =FkAf. 4) 4) Replace the firstV; samples inY”(k) with the known
(s) > o Drs frequency domain dat#, k = 0, ---, Ny — 1; define

the resulting sequence to B&.., (k).
Given Yyew (k) at samples: = 0, - -+, My — 1, the problem 5) Use the Cauchy method to smooth the data around
reduces to finding the order of the polynomials and the sample numberV;.
coefficients that define them. The algorithm converts the aboves) Perform al; point IDFT on Y. (k); define the

equation to a matrix equation to estimate the polynomial orders ~ resulting sequence to hg(i), ¢ =0, - -, M, — 1.
and the coefficients. In practice, the polynomial orders are7) Replace the firstV, samples iny/(i) with the known
not large (usually<10) and so the information required to time-domain datay;, « = 0, ---, Ny — 1; define the

estimate the orders and the coefficients is not as much as is resulting sequence to bgew(?).
available. Indeed, unnecessarily over determining the systen) Smooth the time-domain data around sample number
of equations leads to numerical errors. The details of the [V, using the matrix pencil.

Cauchy method are available in [15]-[17]. 9) Subsequent processing is an iteration on Steps 2)-8).
To smooth the data arourid= s, we use thej\‘Q—f samples
before sample numbeiN; and % samples starting from ll. NUMERICAL EXAMPLES

sample numbetV; + %f. Using this information and the To validate this iterative technique and to evaluate its
Cauchy method, we estimate the samples from numger1  usefulness, the above algorithm is tested on five examples. A
to Ny + ATf — 1. This results in a smoother data set. program to evaluate the currents on an arbitrary shaped closed
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or open body using the electric field integral equation (EFIE)
and triangular patching is used [18]. The rational is that we use
the EFIE in both the time [3] and in frequency domains [18], /N\
using the same surface patching scheme for both domains. A0 N
This approach eliminates some of the effects of discretization \;
from this study. The triangular patching approximates the /
surface of the scatterer with a set of adjacent triangles. Fig. 1 r
shows an example of the triangulation scheme used. The flgurq \\LL
shows a disk being approximated by 128 triangles and 208~ /. N )
edges. The current perpendicular to each nonboundary edgeﬁs ‘\\Jf h </ ™~ y P e BRI -
an unknown. The frequency-domain data has been generated |
using the program described in [18]. The spatial discretization p’__\;
limits the highest frequency to which the solution can be %, 7%
accurately computed. \/ VA
Although the program can be used with an arbitrary excita- 7 .
tion, we use a linearly polarized plane wave with a Gaussian \/:l*j
profile in time. The excitation has the form A )

. 42 .
E™ = wEoe™ = (6)
where —
Y= (t— toa— r-k) ) Fig. 1. Triangle patching of a disk.

Example 1—Square PlateThe first example we present is
square plate of zero thickness and side 1 m, centered at the
origin. The plate is located in they plane. Eight divisions
. are made in the: direction and nine in the direction. By
o controls the W'dth of the pulse; . (}omlngthe diagonals of each resulting rectangle, 144 triangular
to a delay ?”d Is used s0 the pulse_ rlsgs smoothly fr S&tches with 199 unknowns are obtained. This division scheme
Zero for_ time? < 0to s value_ at timer; . allows us to evaluate the current at the center of the plate.
’ tEe po;mon of an ar?;trfqry po;]nt ('jn space, f arrival f'I'he excitation arrives from the directich= 0, ¢ = 0, i.e.,
k the l.m't.(;Nave V?Ctor efining the direction of arriva 0along the negative direction.u; is along ther axis. In this
the incident pulse example,c = 2 ns andty = 10 ns. The time step used in the

The spectrum of this Gaussian plane wave is given by o1 program is 92.59 ps.
- tiwt In this example, the MOT program evaluates the current
\/—ae =R o w=2rf P prog

Pjw) = ’ at the center for the first 1500 time steps (fram= 0 to

To obtain the response to the above Gaussian plane walves 0.138 us). The MoM program evaluated the frequency
the frequency response of the system is multiplied by ttigsponse at 501 samples (frofn= 0 to f = 1 GHz). The
Gaussian spectrum. first 233 time samples (upto = 21.48 ns) and the first 37

The bodies chosen are a plate, a disk, a sphere, a cubeguency samples (up t = 72 MHz) have been used as
and a cone-hemisphere combination. All bodies are assuniig@ut to the computer program. In this casgl” = 1.55
to be perfectly conducting. In all computatio% is chosen Using this data, the program extrapolated the time-domain
to be 377 V/Im. The program uses five iterations and ti#&ta up to 1500 sample§V, = 1500) and the frequency
smoothing procedure based on the Hilbert transform uségmain data upto 501 sampléd/; = 501). The results of
twenty iterations. To yield an explicit solution for the unknowrihe extrapolation in the time domain can be seen in Fig. 2. As
currents, the time stefAt) is determined by the spatialcan be seen the reconstruction is indistinguishable from the
discretization used in each example. The frequency tefy output of the MOT program.
is 2 MHz. The frequency response of the system is shown in Fig. 3.

In all the examples, the extrapolated time-domain responble extrapolation is shown up to 500 MHz (the first 251
is compared to the output of the MOT program. In the figuresamples) since for frequencies higher than 500 MHz the
the extrapolated time response is labeled “reconstructed tinesponse is very close to zero. Fig. 3 shows the comparison of
response,” while the output of the MOT program is labeleithe magnitudes of the frequency responses. The reconstruction
“response from MOT.” The extrapolated frequency-domaiis nearly perfect and is visually indistinguishable from the
response is compared to the frequency response obtainesllts of the MoM program.
from the MoM program. The figures compare magnitudes of Example 2—Disk:The next example is a disk of zero
the frequency-domain responses. The extrapolated respongaigkness, as shown in Fig. 1. The disk lies in the plane
labeled “reconstructed response” while the output of the Molhd is centered at the origin. It has a radius of 0.3 m. The
program is labeled “response from MoM.” triangulation uses 128 triangles resulting in 208 edges. 32 of

u; the unit vector that defines the polarization of thg
incoming plane wave;
Ey the amplitude of the incoming wave;

2
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Fig. 2. Time-domain response of the plate.
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Fig. 3. Frequency-domain response of the plate.

the edges are boundary edges yielding 176 unknowns. Thesponses and the reconstructed responses both in the time

excitation arrives fron® = 0, ¢ = 0, i.e., along the negative and frequency domains appears to be reasonable.

z direction. u; is along thex axis. Here,c = 1 ns andtg = Example 3—SphereThe next example is a sphere of radius

10 ns . The time step used is 47.76 ps. 0.5 m. The sphere is centered at the origin. The “top” half of
In this example, the MOT program evaluated the curretite sphergf = 0to 6 = 7) has six divisions in thé direction.

at the center for the first 1500 time steps (fram= 0 to The first “ring” extends fron®¥ = 0 to § = . The other five

t = 71.59 ns). The MoM evaluated the frequency responsengs are equispaced i from ¢ = 7% to 6§ = 5. Each ring,

at 501 frequency points (fronf = 0 to f = 1 GHz). The starting from the top has 6, 16, 20, 24, 28, and 32 triangular

first 334 time samples (up to= 15.90 ns) and the first 95 patches. The sphere is symmetric with respect tacghplane.

frequency points (up tg = 188 MHz) are used as input to This scheme is chosen so all triangles as close to equilateral

the extrapolation program, i.e., for this exampfel’ = 2.99. as possible. If thep direction were also divided uniformly,

Using this data, the program extrapolated in the time domadime triangles would be skewed. Also, this scheme allows us to

up to 1500 samples and in the frequency upto 501 samplesaluate the current at the point@.5, 0.0, 0.0).

The results of the time-domain extrapolation are shown inThe excitation arrives fron¥ = 7, ¢ = , i.e., along

Fig. 4. the z direction. u; is along the > axis. In this example
The frequency response of this system is shown in Fig. .= 3 ns andt, = 22 ns. The time step used in the MOT

The extrapolation is shown up to 600 MHz above which tharogram is 0.19943 ns.

response is very close to zero. Fig. 5 compares the magnitud@he MOT program evaluated the current at the poird.5,

of the reconstructed frequency response with the output @D, 0.0) for the first 500 time steps (frotn= 0 to ¢ = 99.515

the MoM program. The agreement between the computed). The MoM program evaluated the current for the first
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Fig. 4. Time-domain response of the disk.
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Fig. 5. Frequency-domain response of the disk.

501 frequency samples (up tp = 1 GHz). The first 183  Example 4—CubeThe fourth example is a cube of side

time samples (up to® = 36.29 ns) and the first 37 frequencyl m centered at the origin. The faces of the cube are lined

samples (up t¢ = 72 MHz) are input to the program resultingalong the three coordinate axes. The faces at 0.5 m and

in f,T = 2.61. Using this information, the extrapolation ist = —0.5 m have five divisions in thg and » direction. Al

carried out withAM; = 500 and M; = 501. other faces have four divisions in one direction and five in the
The results of the extrapolation in the time domain ar@her. This allows us to find the current at the center of the top

shown in Fig. 6. As can be seen, even for only 500 tinf@Ce- The excitation arrives from the directién= 0, ¢ = 0,
samples, the output of the MOT program is quite unstab€" along the-z axis.u; is along ther axis. In this example,

and gives erroneous results. However, the extrapolated resﬁltg 2.357 ns apdto = 20 ns. The time step chosen for the
T program is 0.15713 ns.

are relatively stable. This is an advantage of this metho%I
The Iate-timZz information is mainl obtainged from the low- The MOT program evaluated the current at the center of the
y togg face for the first 500 time steps (frofm= 0 to £ = 78.41

frequency data. This given data is stable and, hence, the Iﬁ\ The MoM program evaluated the frequency response at
time information is stable. In using an integral equation MOE01 samples (fromf = 0 to f = 1 GHz). The first 193

program, the late-time information is frequently unstable. - samples (up té = 30.17 ns) and the first 49 frequency

The frequency-domain extrapolation is shown in Fig. 7. Tr}fbints (up tof = 96 MHz) were used as the given data. For
extrapolation is shown upto 300 MHz since above 300 MRgjs example,f,7 = 2.9. Using this information, the time
the response is close to zero. In Fig. 7 the magnitude of thed frequency domains were extrapolated with parameters
extrapolated frequency response is compared to the respopge= 500 andM; = 501. Fig. 8 shows the results of the time-
obtained from the MoM program. The agreement between themain extrapolation. Here, again, we see that while the MOT
reconstructed response and the response obtained from gi®yram has started to give unstable results, the extrapolated
MoM is reasonable. time-domain response is stable.
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Fig. 6. Time-domain response of the sphere.
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Fig. 7. Frequency-domain response of the sphere.
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Fig. 8. Time-domain response of the cube.

The frequency response of this system, up to 300 MHz isExample 5—Cone-Hemispher&he final example, we
shown in Fig. 9. The reconstructed response and the responaee chosen is a combination of a cone and a hemisphere.
obtained from the MoM are close. The hemisphere is attached to the base of the cone forming
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Fig. 9. Frequency-domain response of the cube.
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Fig. 10. Time-domain response of the cone hemisphere.

one compound three-dimensional object. The base of the caoethe time-frequency extrapolation program. This results in
and hemisphere is centered at the origin. The base of the cgh® = 2.11. Using this information the time-domain response
and hemisphere have a radius of 1 m. The height of the comas extrapolated to 1300 samples and the frequency domain to
is 2 m. The central axis of the combination lies on thaxis. 501 samples. The results of the time-domain extrapolation are
The triangular patch approximation for the cone has sshown in Fig. 10. As seen the data from the MOT program (la-
divisions in thez direction. The planes defining the “rings” arebeled “response from MOT?”) is unstable for late times. How-
atz =2.0,2=1.752=14,2=1.05, 2 =0.7, z = 0.35, ever, the reconstructed time response continues to be stable.
and z = 0. Each ring, starting from the top has 7, 16, 20, 24, The magnitude of the reconstructed frequency-domain re-
28, and 32 triangles, respectively. The hemisphere has thspense is compared with the magnitude of the frequency
divisions in theé direction. The “rings” extend fron# = = response obtained from the MoM. The agreement between the
tof =28, 0=25t06 =27 andd = 2% to § = 5. Each two responses is good.
ring, starting from the bottom, has 13, 28, and 32 triangular
patches, respectively. Such a triangulation scheme allows for
the current at the point+0.1, 0.0, 0.0) to be evaluated. In this paper, we have presented a technique based on the
The excitation arrives fromd = 5, ¢ = =, i.e., along Fourier transform for simultaneous extrapolation in the time
the x direction. u; is along thez axis. In this example, and frequency domains. Because the required information is
o = 6 ns andtp = 25 ns. The time step used is 90.39 psonly the early-time response and the low-frequency response,
The frequency step used is 2 MHz. the technique yields major savings in program execution time.
The MOT program evaluated the first 1300 time sampl&ypically, for good reconstruction it appears that one needs a
(from¢ =0 to ¢t = 117.42 ns). The MoM program evaluatedtime-bandwidth product of the order of 1.5-3.0. However, this
the first 501 frequency samples (frofn=0to f = 1 GHz). factor is dependent on the quality of the time and frequency-
The first 482 time samples (upto= 43.97 ns) and the first domain data. Since two smaller problems are solved, the
25 frequency samples (up Jo= 48 MHz) were used as input computer resources required are modest. Even though the

IV. CONCLUSION
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Fig. 11. Frequency response of the cone hemisphere.

starting information is obtained from techniques that have thg] O. M. Pereira-Filho and T. K. Sarkar, “Using the Matrix Pencil method

potential to become unstable in late times, the extrapolation to estimate the parameters of a sum of complex exponentid&E
h d t hibit h behavi Antennas Propaga. Magvol. 37, pp. 48-55, 1995.
scheme does not exnibit such behavior. [8] T. K. Sarkar, R. S. Adve, O. M. Pereira-Filho, and S. M. Rao,

It is important to note that the early time-domain data and *“Extrapolation of time domain responses from three dimensional objects

low-frequency domain data are complementarv. The extrap- utilizing the matrix pencil technique/EEE Trans. Antennas Propagat.
requency omplementary TP~ o, 45, pp. 147-156, Jan. 1997.
olation does not create any new information. The early-timgg; A v. Oppenheim and R. W. Schafebjscrete-Time Signal Processing

data provides the missing high-frequency information and the Englewood Cliffs, NJ: Prentice-Hall, 1989.

low-frequency data provides the late-time information. ThE® E'reﬂﬁcBer.'ﬂgﬁmig?i Fast Fourier Transform Englewood Cliffs, NJ:

Hilbert and Fourier transforms are utilized to combine thgi) F. J. Harris, “On the use of windows for harmonic analysis with the

complementary data and perform extrapolation. discrete Fourier transformProc. IEEE vol. 66, pp. 51-83, 1978.
As the E ier t f the Hilbert t f the C 12] F. J. Sulkowski, “A program to calculate inverse Fourier transforms,”
S the Fourier transtorm, the Hilbert transtorm, the Lauc Tech. Rep. AF 29(601)-7283, Dikewood Corp., Nov. 1966.

and matrix-pencil methods are independent of the electromatg] S. M. Narayana, S. M. Rao, R. S. Adve, T. K. Sarkar, V. Vannicola,

netic issues, the specific application from numerical electro- M. Wicks, and S. A. Scott, “Interpolation/extrapolation of frequency
L. h responses using the Hilbert transforfEEE Trans. Microwave Theory
magnetics is irrelevant. In this paper, we apply the extrapola- tech vol. 44, pp. 1621-1627, Oct. 1996.

tion procedure to the problem of extrapolating the current ] S. M. Narayana, T. K. Sarkar, R. S. Adve, M. Wicks, and V. Vannicola,

; ; ; “A comparision of two techniques for the interpolation/extrapolation of
a scatterer bemg excited by a uniform plane wave. frequency responsedyigital Signal Processingvol. 6, pp. 51-67, 1996.

To test the proposed technique, the algorithm has begg) R. s. Adve, T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R.
tested on five different examples. The number of time-domain Pflug, “Application of the Cauchy method for extrapolating/interpolating

; ; narrowband system responsetfEE Trans. Microwave Theory Tech.
samples to be used by the extrapolation technique was chosen vol. 45, pp. 837-845, May 1997,

such that the response used extends a short time after s R. s. Adve and T. K. Sarkar, “Generation of accurate broadband infor-
excitation has died down. The number of frequency samples mation from narrowband data using the Cauchy methddicrowave

- i Opt. Technol. Lett.vol. 6, pp. 569-573, 1993.
used was chosen such that the first resonance is includ “The effect of noise in the data on the Cauchy method,”

Currently, work is under way to generalize this case to more = Microwave Opt. Technol. Leftvol. 7, pp. 424—247, Apr. 1994.

than one resonance. We have seen that the technique yié’:@ls S. M. Rao, “Electromagnetic Scattering and radiation of arbitrarily
. . . shaped surfaces by triangular patch modeling,” Ph.D. dissertation, Univ.

accurate extrapolated results over a wide dynamic range in Mississippi, University, MS, 1978.

both time and frequency domains. The examples presented

have only one resonance in the frequency domain.
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