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Abstract—Utilizing early time response and low-frequency
data, the complete electromagnetic response of a three-
dimensional conducting structure is generated. By using
mutually complementary data, simultaneous extrapolation in
time and frequency domains are carried out. This is performed
through the use of the associated Hermite polynomials. The
interesting property of the Hermite polynomials is that they
are the eigenfunctions of the Fourier transform operator. This
implies that if the time-domain response at a point in space
from a three-dimensional conducting object is modeled by an
associated Hermite series expansion, the frequency-domain
response at the same point can be expressed as a scaled version
of the same time-domain representation. Therefore using early
time and low-frequency-domain response data, it is possible to
reproduce the missing response in both of the domains. Examples
are presented to illustrate the application of this methodology.

Index Terms—Broad-band, electromagnetic scattering, extrap-
olation, Hermite polynomials.

I. INTRODUCTION

I N TRADITIONAL computational electromagnetics, analy-
sis is carried out exclusively in either the time or frequency

domains. Some of the popular methods for performing the
analysis in the time domain are, e.g., the finite-difference,
finite-element, or integral-equation approaches. The objective
here is to solve either the integral or differential form of
Maxwell’s equations solely in the time domain. The way to
analyze electrically large problems is to use a bigger and faster
computer. In addition, analytical continuation method can be
used to extrapolate the time-domain data. For example, the
matrix pencil technique [1] can be utilized to extrapolate late
time response from conducting objects. However, in practice,
it is difficult to discriminate between the early and late time
response from an object, e.g., particularly if the structure is
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an elongated cavity. In this case, due to multiple bounces of
the electromagnetic response inside the cavity, it is difficult to
predict what is the late time response.

In the frequency domain, one essentially employs the same
way of thinking. The Maxwell’s equations are solved entirely
in the frequency domain utilizing either the finite-difference,
finite-element, or integral-equation approach. Unlike in the
time domain, here one needs to solve a matrix equation that
becomes large as the electrical dimension of the structure in-
creases. The methodology to perform electromagnetic analysis
of a large complex structure is to use a super computer as
one needs to solve a large matrix equation at each frequency
point of interest. Even though extrapolation techniques [2]
have been developed utilizing the Cauchy method, one may
still be performing data extrapolation to generate a wide-band
response.

Extrapolation in either the time or frequency domains is
sometimes a numerically unstable process, and its accuracy
often cannot be guaranteed. Hence, the desire to perform
accurate extrapolation in either the time or frequency domains
leads to the idea of simultaneous extrapolation in the time
and frequency domains. In this methodology, the goal is
not so much on extrapolation of data, but how to generate
the missing data. The use of early time response and low-
frequency information provides all the information that is
required, but it is in the mutually complementary domain. The
low frequency provides the late time information, whereas the
early time provides the high-frequency information. Therefore,
by using such a hybrid methodology, one is not creating new
information by performing extrapolation carried out exclu-
sively in one domain, but simply extracting the information
that already exists in the mutually complementary data sets.

In this paper, the hybrid technique utilizing early time and
low-frequency information is used to generate the information
for all time and frequency. Hence, one uses a time-domain
code and generates the early time information. Next, one uses
a frequency-domain code and generates the low-frequency
information. The generation of this information is quite simple
and not very computation intensive. Next, the associate Her-
mite (AH) polynomials are used to extrapolate the information
simultaneously in both domains. This is in contrast to the fast-
Fourier-transform-based techniques presented earlier [3] or by
using the Hilbert transform [4].
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II. AH POLYNOMIALS

The AH polynomials are defined in terms of the
Hermite polynomials . They are

(1)

The Hermite polynomials are generated recursively through

for

(2)

The AH functions are, therefore, computed from

(3)

and

for

In addition, the AH polynomials are orthogonal to each other
and form a complete set in the interval as

(4)

where the delta function is defined by

for

otherwise
(5)

In addition, the AH polynomials of even order are even, and
of odd orders are odd, i.e.,

(6)

for any value of . Therefore, it follows that

(7)

where the gamma function is defined through

with
(8)

Therefore, if is a piecewise smooth function in every
finite interval and

(9)

then the AH series

for (10)

with

(11)

converges pointwise to at every continuity point and
converges to at the points of discontinuity.

In addition, the AH functions are eigenfunctions of the
Fourier transform operator. If we define to be the
Fourier transform of , then with

(12)

Therefore, if we consider to be the Fourier transform of
, then it appears

(13)

The existence of (10) and (13) indicates that the same
functions cannot only be used to approximate the
time-domain functions, but a scaled version of it can be
simultaneously used to represent its transform. Therefore, we
can use the same functional representation to approximate
the time-domain and the frequency-domain electromagnetic
responses. However, for ease of manipulations, we will be
using a slightly modified versions of (10) and (13).

III. T HE MATHEMATICAL FORMULATION

Let represent the electromagnetic response at a spatial
location due to an applied stimulus . We then have

(14)

where is a scale factor that scales the time variable. In
practice, the summation in (10) cannot go to infinity and,
therefore, for practical computational reasons, it is only up to
some value . Thus, we are basically representing the early
time response at a point in space by (14).

Next, we consider the frequency-domain response. By virtue
of (13), one can write

(15)
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Here, is the scale factor in dealing with the frequency
variable. The quantities and have been introduced to
make the computation of the AH functions within a certain
interval for stable numerical computation.

A word of caution: since time-domain signals in real life
are causal, i.e.,

for (16)

it is necessary to approximate not in (14), but .
Here, we prefer to center the expansion of the Hermite
polynomials not at , but rather at , where is
roughly around half the time support of . This is because
the AH functions provide equal support on either side of the
center of the expansion. Thus, centering the expansion about

would require fewer terms in the expansion. Therefore,
we now work with the transform pair

.
The choice of the scaling factor is crucial because it

also affects . Also, and decide the amount of support
given by the AH functions to the time- and frequency-domain
responses, respectively. Given about 50%–60% of initial time-
domain data and an equal amount of low-frequency data, with
a proper choice of , the order of the expansion, and, the
scaling factor, it is possible to extrapolate in both domains.

In all the examples, a choice of is made such that the-
and -axes are roughly scaled to the same range. The order
of expansion is obtained by first using a large value,
then, depending on a threshold criterion, the expansion is
truncated. The value of can be decided by choosing a cutoff
for the magnitude of the coefficients, i.e., discarding the ones
that die out. More specifically, in all the examples presented,
the expansion was truncated if three consecutive coefficients
were less than 0.5% of the largest coefficient. Choosing
an unnecessarily large will introduce oscillations in the
extrapolation region. The coefficients are obtained by solving
a least-squares problem, using singular value decomposition
(SVD) [8].

Let and be the number of time- and frequency-
domain samples that are given. The matrix representation of

time-domain data, from (10), would then be

...
...

...
...

...
...

(17)

The real part of , from (15), can be represented by
the even-order functions, as shown in (18), at the bottom of
this page. The imaginary part of , from (15), can be
represented, by the odd-order functions, as shown in (19), at
the bottom of this page. Combining the three matrix equations,
we get (20), shown at the bottom of the following page.
The coefficients of the expansion are obtained by solving this
matrix equation.

IV. NUMERICAL EXAMPLES

In this section, six examples are presented to validate the
above technique. A program to evaluate the currents on an
arbitrarily shaped closed or open body using the electric-field
integral equation (EFIE) and triangular patching is used [5].
The rationale for doing this is that we are going to use the EFIE
both in time [6] and frequency domain [5]. We utilize the same
surface patching scheme for both domains; hence, eliminating
some of the effects of discretization from this study. The
triangular patching approximates the surface of the scatterer
with a set of adjacent triangles. The current perpendicular
to each nonboundary edge is an unknown to be solved for.
The frequency-domain data was generated using the program
described in [5]. However, in the last example, of the cone
hemisphere, the magnetic-field integral equation (MFIE) is
preferred due to the instability of the EFIE formulation [7].
Quadrilateral patching is used with the MFIE approach.

Although the program can be used with an arbitrary excita-
tion, we used a linearly polarized plane wave with a Gaussian

...
...

...
...

...
...

(18)

...
...

...
...

...
...

(19)
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profile in time. The excitation has the form

(21)

where,

(22)

unit vector that defines the polarization of the incom-
ing plane wave;
amplitude of the incoming wave;
controls the width of the pulse;
a delay and is used so the pulse rises smoothly from
zero for time to its value at time ;
position of an arbitrary point in space;
unit wave vector defining the direction of arrival of
the incident pulse.

To find the frequency response to the above Gaussian plane
wave, the transfer function of the system is multiplied by
the spectrum of the incident Gaussian plane wave. The input
spectrum is given by

(23)

The time and frequency domain form of the incident wave is
shown in Fig. 1 for Example 1.

In all our computations, is chosen to be 377 V/m.
The time step is dictated by the discretization used in
modeling the geometry of each example. The frequency step

is either 1 or 2 MHz depending on the problem.
In all examples, the extrapolated time-domain response is

compared to the output of the marching-on-in-time (MOT)

program [6]. Also, the extrapolated frequency-domain re-
sponse modified by the spectrum of the incident wave is
compared to the frequency response obtained from the method-
of-moments (MoM) program [5]. In all the plots, extrapolated
signal refers to the extrapolated response using AH expansions
while original signal refers to the data obtained from the MOT
or MoM program.

A. Example 1—Unequal Plates

In this example, we have two square plates of zero thickness
and sides 1 and 2 m in the -plane. The configuration with the
discretization is shown in Fig. 2. The separation between the
plate is 1 m. The excitation arrives from the direction ,

; i.e., along the negative-direction, is along the -
axis. The time step used in the MOT program is 196.8 ps. In
this example, ns and ns. The edge under
consideration is on the smaller plate, in the–direction and
center. On that edge, we would like to generate the information
about the current for all times and frequencies for the given
excitation from the information of the current for early times
and low frequencies.

Using the MOT algorithm, time-domain data is obtained
from to ns (250 data points). Also, frequency-
domain data is obtained from dc to MHz (300 data
points). Assume that only the first 100 time-data points (up
to ns) and the first 140 frequency-data points
(up to 278 MHz) are available. In the time-domain data,
the multiple reflections have been ignored, however, that
information is available in the low-frequency data. Solving
for the matrix equation (20) using the available data, the
time-domain response is extrapolated to 300 points (up to

MHz). Given a time-bandwidth product of about
5.56, we extrapolate to a time-bandwidth product of 29.9.

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

...

...

...

(20)
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(a)

(b)

Fig. 1. (a) Time-domain representation of the Gaussian pulse. (b) Spectrum of the incident Gaussian pulse.

The order of expansion is chosen to be 68 and the time-
domain signal was centered about it second zeroth-crossing,
i.e., ns (denoted by “” in the plots). A choice of
was made such that the entire time axis (with the time shift)
and the frequency axis were roughly mapped in the range
( 12, 12).

From Fig. 3, it can be seen that the time-domain recon-
struction is almost indistinguishable from the actual (MOT)
data. The origin of time axis in the AH expansion has been

marked by an . The reconstruction in the frequency domain
is also very good, as can be seen from the real and imaginary
parts of the frequency-domain data are given in Figs. 4 and
5. The -axis marked represents the current at that edge
as a function of time and is the value of the transfer
function at a frequency .

B. Example 2—Equal Plates
Two equal plates of side 1 m are placed as in the previous

example, but the separation between the plates is reduced to
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Fig. 2. Discretization of the two unequal plates.

Fig. 3. Time-domain response at the smaller plate (N = 68).

Fig. 4. Frequency-domain response at the smaller plate—real part
(N = 68).

0.25 m so as to increase the resonance. The excitation arrives
from , , i.e., along the negative-direction. is
along the -axis. Here, ns and ns. The
time step used is 160.1 ps. The edge under consideration is in
the -direction and close to the center of the upper plate.

In this example, the MOT algorithm is used to obtain time-
domain response from to ns (780 data
points). Also, the frequency-domain response is obtained using
the MoM program from dc to MHz (450 data
points). Assume that only the first 120 time-data points (up
to ns) and the first 150 frequency-data points (up to

MHz) are available. Using this data, the time-domain
response is extrapolated to 780 points (up to ns) and
the frequency-domain response is extrapolated to 450 points
(up to MHz). Given a time-bandwidth product of
5.72, we extrapolate to a time-bandwidth produce to 112.

Fig. 5. Frequency-domain response at the smaller plate—imaginary part
(N = 68).

Fig. 6. Time-domain response at the upper plate (N = 200).

The order of expansion was taken to be 200, and
the time-domain signal was centered about its sixth zeroth-
crossing, i.e., ns. A choice of was made such
that the entire response (shifted)- and -axes were sealed in
the range ( 23, 23).

From Fig. 6, it can be seen that the time-domain reconstruc-
tion is almost identical to the actual (MOT) data. The origin
of the AH expansion in the time domain has been marked
by an . The reconstruction in the frequency domain agrees
closely with actual MoM data, as can be seen from Figs. 7
and 8. The point here is that there are multiple reflections that
need to be taken into account in the time domain. However, by
taking time-domain data only up to 19.20 ns, we are omitting
the various reflections. If the complementary low-frequency
information was not there, then it would not have been possible
to extend the time-domain information.

C. Example 3—Plate Sphere

A plate–sphere combination is considered next, with the
sphere of radius 1 m centered at the origin and separation
of 5 m. The actual discretization is shown in Fig. 9. The
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Fig. 7. Frequency-domain response at the upper plate—real part (N = 200).

Fig. 8. Frequency-domain response at the upper plate—imaginary part
(N = 200).

Fig. 9. Discretization of the plate–sphere structure.

excitation arrives along , i.e., along the
negative -direction, behind the plate. is along the -axis.
In this example, ns and ns. The time
step used in the MOT program is 0.484 ns. The edge under
consideration is on the plate, in the-direction, and close to
the center.

The time-domain response is obtained using the MOT
algorithm from to ns (300 data points). Also,
the frequency-domain response is obtained using the MoM
program from dc to MHz (250 data points). Using
the first 80 time data points (up to ns) and the first 80
frequency data points (up to MHz), the time-domain
response is extrapolated to 300 points (up to ns) and

Fig. 10. Time-domain response at the plate (N = 66, 5-m separation).

Fig. 11. Frequency-domain response at the plate—real part (N = 66, 5-m
separation).

the frequency-domain response is extrapolated to 250 points
(up to MHz). In this example, given a time-bandwidth
product of 3.05, we extrapolate to a time-bandwidth product
of about 36.

The order the expansion was chosen to be 66 and
the time-domain signal is centered about its second zeroth-
crossing, i.e., ns. is chosen such that entire
response (shifted)- and -axes are mapped in the range (11,
11).

The time-domain response reconstruction is agreeable to the
actual MOT data, as seen in Fig. 10. The origin of the AH
expansion in the time domain has been marked by an. From
Figs. 11 and 12, it can be seen that the frequency response also
has reasonably good reconstruction using the AH expansions.

D. Separation of 12 m

The separation between the sphere and plate is increased to
12 m. All the other parameters are kept unchanged.

The time-domain response is obtained using the MOT
algorithm from , ns (300 data points). Also,
the frequency-domain response is obtained using the MoM
program from dc to MHz (250 data points). Using
the first 50 time data points (up to ns) and the first 80
frequency data points (up to MHz), the time-domain
response is extrapolated to 300 points (up to ns) and
the frequency-domain response is extrapolated to 250 points
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Fig. 12. Frequency-domain response at the plate—imaginary part (N = 66,
5-m separation).

Fig. 13. Time-domain response at the plate (N = 84, 12-m separation).

(up to MHz). In this example, given a time-bandwidth
product of 1.91, we extrapolate to a time-bandwidth product
of about 36.

It is important to point out that, in this time-domain data,
there is no information about the sphere. This means that by
taking only 50 data points in time, the incident pulse has
crossed the plate, but did not arrive at the sphere. However, the
information about the sphere is available in the low-frequency-
domain results. Therefore, the information is complementary.
By extrapolating or solving the problem in just one domain
would not be sufficient to obtain the complete answer.

The order of the expansion was chosen to be 84 and
the time-domain signal is centered about its second zeroth-
crossing, i.e., ns. is chosen such that entire
response (shifted)- and -axes are mapped in the range (12,
12).

The time-domain response reconstruction is agreeable to
the actual MOT data, as seen in Fig. 13. As can be seen
from Figs. 14 and 15, the frequency-domain response agrees
reasonably well with the extrapolated response.

Fig. 14. Frequency-domain response at the plate—real part (N = 84, 12-m
separation).

Fig. 15. Frequency-domain response at the plate—imaginary part (N = 84,
12-m separation).

E. Example 4—Cavity

In this example, a rectangular cavity of dimensions 1 m
1 m 4 m, centered at the origin with its faces lined up
along the three coordinate axes and its length along the-
axis. The face at m is open. The excitation arrives
from the direction , and is along

. In this example, ns and
ns. The time step chosen for the MOT program is

0.267 ns. The edge under consideration is in the-direction,
close to the open end and at m.

The time-domain response of an edge near the entrance to
the cavity is calculated using the MOT algorithm from
to ns (500 data points). Also, the frequency-
domain response is calculated with the MoM program from
dc to MHz (250 data points). Assuming that only
the first 100 -data points (up to ns) and the first 120

-data points (up to MHz), the time-domain response
was extrapolated to 500 data points (up to ns) and
the frequency-domain response is extrapolated to 250 points
(up to MHz). Given a time bandwidth of 6.34, we
extrapolate to a time-bandwidth product of about 66.

was chosen to be 105 and the-domain response was
centered about its seventh zeroth-crossing, i.e., ns.

is chosen such that the entire response (shifted)- and
-axes are mapped in the range (16, 16).
From Fig. 16, the time-domain response can be seen to

closely agree with the actual MOT data. The frequency-domain
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Fig. 16. Time-domain response of the cavity (N = 105).

Fig. 17. Frequency-domain response of the cavity—real part (N = 105).

Fig. 18. Frequency-domain response of the cavity—imaginary part
(N = 105).

reconstruction is agreeable in comparison to the actual MoM
data, as can be seen from Figs. 17 and 18.

F. Example 5—Cone Hemisphere

In this example, we have a combination of a cone and
hemisphere, with the hemisphere attached to the base of the

Fig. 19. Time-domain response of the cone hemisphere (N = 28).

Fig. 20. Frequency-domain response of the cone hemisphere—real part
(N = 28).

cone and the axis along the-direction. The base of the cone
and hemisphere have a radius of 1 m, and the height of
the cone is 4 m. Due to the instability of the EFIE time-
domain formulation, in this example, the MFIE is used with
quadrilateral patching [7].

The excitation arrives from , , i.e., along the
negative -direction. along the -axis. In this example,

ns and ns. The time step used is
206.67 ps and the frequency step is 1 MHz. The edge under
consideration is close to the vertex of the cone.

The time-domain response is calculated using the MOT
program from to ns (450 points). Also,
the frequency-domain response is calculated using the MoM
algorithm from dc to MHz (250 data points). Using
the first 120 -data up to ns and the first 80 -
data points (up to MHz), the time-domain response
is extrapolated to 450 data points (up to ns) and the
frequency-domain response is obtained up to 250 points (up
to MHz). In this example, starting with a time-
bandwidth product of 1.96, we extrapolate to a time-bandwidth
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Fig. 21. Frequency-domain response of the cone hemisphere—imaginary
part (N = 28).

product of about 23 (considering the finite support of the
signals).

was chosen to be 28 and the time-domain response was
centered about its first zeroth-crossing, i.e., ns.
And is chosen such that the entire response (shifted)- and

-axes are scaled in the region of (7, 7).
From Fig. 19, the extrapolated time-domain response is

agreeable with the MOT data. The frequency-domain re-
sponses agree reasonably well with the actual MoM data, as
can be seen from Figs. 20 and 21.

V. CONCLUSION

In this paper, we have applied the AH polynomials to
the problem of extrapolating at a spatial location that is
excited by an incident wave. Six examples have been
considered—parallel-plate resonators (equal and unequal
size plates), plate–sphere combination with two different
separations, resonating cavity, and a cone–hemisphere
combination. Using early time and low-frequency data, we
have demonstrated good extrapolation in both domains can
be obtained even though a large amount of information is
missing in one domain. The information at early time and
low frequency is complementary. It is important to point
out that, in this methodology, we are not creating any new
information, but only processing it in an efficient manner to
obtain the complete response.
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