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An Orthogonal Relay Protocol with Improved

Diversity-Multiplexing Tradeoff

K. V. Srinivas, Raviraj Adve

Abstract

Cooperative relaying helps improve the reliability of data transmission over wireless fading

channels. In orthogonal relay protocols the source and the relay terminals transmit over orthogonal

channels, allowing a simple receiver at the destination. These protocols achieve the maximum

diversity gain but suffer from reduced multiplexing gain. We propose a new orthogonal decode-and-

forward relay protocol that employs rotated n-dimensional QAM constellations for input signaling

and, with a single cooperating relay, achieves a multiplexing gain of n

n+1
where n + 1 is the

cooperation frame length in symbol intervals. We show that the proposed protocol achieves a linear

diversity-multiplexing tradeoff (DMT) connecting the points (0, dmax) and (rmax, 0) where dmax =

2 and rmax = n

n+1
. With NR relays, our proposed protocol achieves a linear DMT connecting

(0, NR + 1) and
(

n

n+NR

, 0
)

.

Index Terms

Cooperative relaying, Diversity, Multiplexing gain, Rotated constellations, Multi-dimensional

constellations.

I. INTRODUCTION

In cooperative relay communications, users help each other by acting as a relay for

other users signals [1], [2], [3]. Cooperative relaying creates virtual antenna arrays and

realizes spatial diversity (even) with single antenna terminals. In recent times, there has been

enormous interest in devising efficient cooperative relay protocols for half-duplex terminals.

The cooperative protocols can broadly be classified as either orthogonal or non-orthogonal. In

orthogonal protocols, the source and the relay transmit over orthogonal time intervals [3]. Due

The authors are with the Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada,

M5S3G4. e-mail: {kvsri,rsadve}@comm.utoronto.ca. This work was supported in part by the Natural Sciences and

Engineering Research Council of Canada.



SUBMITTED TO IEEE TRANS. WIRELESS COMMNS., NOV. 2009 2

to this orthogonality, co-channel interference is avoided at the destination terminal. Though

orthogonal protocols achieve the maximum diversity gain, their multiplexing gain has, so

far, been limited to 1/2 [4]. The tradeoff between the diversity gain and the multiplexing

gain, commonly known as diversity-multiplexing tradeoff (DMT) [5], is an effective metric

to evaluate the performance of relay protocols and [4] shows that the orthogonal protocols

proposed in [3] achieve a linear DMT connecting maximum diversity gain of 2 with maximum

multiplexing gain of 1/2.

Non-orthogonal relay protocols have been proposed to improve the spectral efficiency [6],

[7]. In non-orthogonal protocols, while the relay forwards the message (it received from the

source) to the destination, the source transmits a new message over the same channel. This

results in a multiplexing gain of 1 but the destination has to cancel co-channel interference.

Recently, Pawar et al. have shown that the optimal tradeoff for the half-duplex relay channel

is same as that of an equivalent multiple-input single-output (MISO) channel and proposed

a non-orthogonal quantize-and-map relay protocol [8] which achieves the optimal tradeoff.

In this letter, we focus on improving the multiplexing gain (and the DMT) of orthogonal

relay protocols and propose a half-duplex orthogonal decode-and-forward relay protocol that

achieves a multiplexing gain higher than 1/2. With a single cooperating relay, the proposed

protocol has a cooperation frame of length n + 1 symbol intervals and employs a rotated

n-dimensional (n-D) QAM constellation for input signaling. It achieves a multiplexing gain

of n/(n+1) and, for fixed transmission rate, it achieves the maximum diversity gain provided

by the channel. When the data rate increases with SNR, we show that the diversity gain of the

proposed protocol falls linearly with the multiplexing gain, resulting in a linear DMT con-

necting (0, dmax) with (rmax, 0), where dmax = 2 (assuming Rayleigh fading source-destination

and relay-destination channels) and rmax = n/(n + 1). The protocol can also be employed

when there are NR > 1 relays assisting the transmission between a source-destination pair.

In such a situation, it still achieves the maximum diversity gain (dmax = NR + 1) but the

multiplexing gain gets reduced to rmax = n/(n+NR). The key contribution here is, therefore,

an orthogonal protocol whose DMT is arbitrarily close to that of a non-orthogonal protocol.

The cost is the use of rotated n-dimensional constellations.

Notation: <a,=a, a∗ and |a| are real part, imaginary part, complex conjugate and absolute

value of complex number a, respectively.  :=
√
−1 and E[·] denotes expectation operator.

An n-dimensional symbol is denoted by x and x(i) denotes ith component of x.
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II. SYSTEM MODEL

Consider a cooperative communication scenario in which a single relay terminal R assists

data transmission between source terminal S and destination terminal D. Each terminal has a

single antenna; no terminal can transmit and receive simultaneously (half-duplex constraint).

Let hij denote the channel gain from terminal i to terminal j, i ∈ {S,R}, j ∈ {R,D}.

We assume that hSR is known at R and hSD, hSR and hRD are known at D. {hij} are

i.i.d. with hij ∼ CN (0, 1) and we consider a block-fading environment in which the channel

gains remain constant over a coherence time spanning several symbol intervals. The power

constraint of the source and relay are assumed to be equal to unity and without loss of

generality, we consider symbol level transmission.

The functioning of the orthogonal relay protocol of [3] with a single relay can be sum-

marized as follows. During the first symbol interval of a cooperation frame spanning two

symbol intervals, source S transmits its symbol to destination D and relay R. The relay

processes the received symbol (e.g. amplify or decode and re-encode) and forwards it to D

in the next symbol interval while the source remains silent. This protocol is referred to as the

“conventional orthogonal protocol” in the rest of the paper. The data symbol, received through

two independently fading channels, hSD and hRD, achieves a diversity gain of two. Only one

symbol gets conveyed over two symbol intervals resulting in a maximum multiplexing gain

of 1/2.

III. PROPOSED ORTHOGONAL DECODE-AND-FORWARD PROTOCOL

In the proposed orthogonal decode-and-forward (ODF) protocol, the input symbols are

chosen from a rotated n-D QAM constellation1. A cubic n-D QAM signal set VnD is obtained

as the Cartesian product of n
2

2-D QAM signal sets, i.e., VnD = V2D ×V2D . . .×V2D [9]. To

achieve a data rate of b bits per 2-dimensions, the n-D constellation will have (at least) 2nb/2

symbols. A symbol vector from a rotated n-D constellation XnD is given by

xk = vkΦ, (1)

where vk = (vk(1), . . . , vk(n)) ∈ Z
n is a symbol from un-rotated n-D QAM constellation

VnD and Φ ∈ R
n×n is a unitary rotation matrix chosen such that that rotated symbols xk, k =

1, . . . , , 2nb/2 have the following property:

xk(i) 6= xm(i), i = 1, . . . , n, xk, xm ∈ XnD, 1 ≤ k,m ≤ 2nb/2, k 6= m. (2)

1The terms “constellation” and “signal set” are used synonymously.



SUBMITTED TO IEEE TRANS. WIRELESS COMMNS., NOV. 2009 4

Such rotated QAM constellations were originally proposed for exploiting component (or,

coordinate) level diversity available with input symbols having n > 1 components [10], [9].

While many rotation matrices result in rotated constellations satisfying Eqn. (2), the optimal

rotation matrices for up to 30-dimensions were determined and reported in [11].

A message symbol enjoys a diversity gain of two if it is received at the destination over

two independent Rayleigh fading channels (in this case, the source-destination and relay-

destination channels). However, this requires the relay to forward every symbol it receives

from the source and, as in conventional ODF protocol, it reduces the multiplexing gain

to 1/2. The proposed protocol achieves a higher multiplexing gain by requiring the relay

transmit only a part of the message symbol; more precisely, for each n-component (i.e., the

n-D) message symbol it receives (and decodes) from the source, the relay forwards only one

component to the destination. Thus, only one of the n components of the message symbol

experiences the two independent fading channels. If the symbols are drawn from a standard

n-D QAM constellation, this results in a diversity gain of only one.

We chose input symbols from rotated n-D QAM constellations satisfying Eqn. (2) and

this ensures full diversity. The DMT analysis in Section IV shows that, when the effective

channel gains experienced by the components of a rotated n-D QAM symbol are ordered, the

entire symbol enjoys a diversity gain of two even if only one of its components experiences

both channels. We now detail our scheme.

Assume a cooperation frame of length n+1 symbol intervals and let the channel coherence

time be at least as long as the cooperation frame length. With a target data rate is b bits per

2-D symbol, S chooses two n-D symbols, xk and xl, each carrying nb/2 bits of information,

from a rotated n-D QAM signal set XnD. The symbols are combined to obtain n complex

(equivalently, 2-D) symbols x̃i, i = 1, . . . , n, where

x̃i = xk(i) + xl(i), i = 1, . . . , n. (3)

The transmission and reception in the proposed ODF protocol, with a single cooperating

relay, are described below.

• Source S transmits the symbols x̃i, i = 1, . . . , n, in n symbol intervals2. The signals

received at the destination and the relay are, respectively,

yD,i = hSDx̃i + nD,i, i = 1, . . . , n, (4)

2The energy of the signal set XnD is scaled such that x̃i, i = 1, . . . , n, have unit average energy.
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yR,i = hSRx̃i + nR,i, i = 1, . . . , n, (5)

where yj,i and nj,i denote the received signal and additive noise at terminal j, j ∈
{D,R}, in the ith time slot and nj,i ∼ CN (0, σ2

j ).

• From the n 2-D symbols yR,i, i = 1, . . . , n, R obtains two n-D symbols rk and rl, where

rk(i) = <(h∗
SRyR,i) = |hSR|2xk(i) + <wR,i, i = 1, . . . , n,

rl(i) = =(h∗
SRyR,i) = |hSR|2xl(i) + =wR,i, i = 1, . . . , n,

and wR,i = h∗
SRnR,i.

• R decodes3 the symbols rk and rl :

x̂j = arg min
xq∈XnD

∣

∣

∣rj − |hSR|2xq

∣

∣

∣

2
, j ∈ {k, l}.

• From x̂k and x̂l, R forms ˆ̃x1 = x̂k(1) + x̂l(1) and forwards to the destination in the

(n + 1)th time slot. Assuming that R decodes the symbols correctly (i.e., x̂k = xk and

x̂l = xl), D receives,

yD,n+1 = hRDx̃n+1 + nD,n+1. (6)

• Using Eqns. (4) and (6), D generates two n-D symbols y
k

and y
l
, where

yk(1) = <(h∗
SDyD,1) + <(h∗

RDyD,n+1) = γxk(1) + <wD,1 + <wD,n+1,

yl(1) = =(h∗
SDyD,1) + =(h∗

RDyD,n+1) = γxl(1) + =wD,1 + =wD,n+1,
(7)

and
yk(i) = <(h∗

SDyD,i) = |hSD|2xk(i) + <wD,i, i = 2, . . . , n,

yl(i) = =(h∗
SDyD,i) = |hSD|2xl(i) + =wD,i, i = 2, . . . , n.

(8)

where γ = |hSD|2 + |hRD|2 and

wD,i = h∗
SDnD,i, i = 1, . . . , n,

wD,n+1 = h∗
RDnD,n+1.

(9)

• From y
k

and y
l
, D obtains x̂k and x̂l:

x̂j = arg min
xq∈XnD

|(yj(1), yj(2), . . . , yj(n))−
(

γxq(1), |hSD|2xq(2), . . . , |hSD|2xq(n)
)∣

∣

∣

2
, j ∈ {k, l}. (10)

3As we are considering uncoded transmission, it is equivalent to demodulating the symbol.



SUBMITTED TO IEEE TRANS. WIRELESS COMMNS., NOV. 2009 6

As can be observed, S transmits during the first n symbol intervals and R transmits only

during the (n + 1)th symbol interval. As it takes n + 1 symbol intervals for n symbols,

the protocol achieves a maximum multiplexing gain of n/(n + 1). When there are NR > 1

relays, relay Ri, i = 1, . . . , NR, forwards symbol ˆ̃x1 to D in (n + i)th symbol interval and

the maximum multiplexing gain gets reduced to n/(n+NR). In the next section, for the case

of NR = 1, we determine the diversity gain when the multiplexing gain increases from 0 to

n/(n + 1).

IV. DIVERSITY-MULTIPLEXING GAIN TRADEOFF ANALYSIS

The DMT is essentially the tradeoff, at high signal-to-noise ratio (SNR), between the error

probability and the data rate of a system [5]. A diversity gain d(r) is said to be achieved at a

multiplexing gain of r, if the transmission data rate R scales as R(SNR) = r log SNR b/s/Hz

and the error probability scales as, Ps ≈ SNR
−d(r). More precisely, the multiplexing gain r

and the corresponding diversity gain d(r) are defined as

lim
SNR→∞

R(SNR)

log SNR
= r,

lim
SNR→∞

log Ps(SNR)

log SNR
= −d(r).

Assume that two arbitrary symbols xk, xl ∈ XnD are transmitted as described in Section

III. With uncoded data transmission, we compute the probability that one of the two n-D

symbols transmitted in a cooperation frame gets decoded erroneously when the cardinality

of the QAM signal set increases with SNR to support a data rate of R = r log SNR b/s/Hz,

0 ≤ r ≤ n
n+1

. We denote this probability by Ps,1.

Let Pr {xk → xm} be the pairwise error probability (PEP) of confusing xk with xm when

xk and xm are the only two hypotheses. At high SNRs,

Pr
{

xk → xηk

}

< Pr{error|xk sent} ≤
∑

xm∈Xk

Pr {xk → xm} (11)

where xηk
denotes a nearest neighbor to xk and Xk ⊂ XnD is the set of all nearest neighbors

of xk.

Pr{xk → xm|hSD, hRD} = Q

(

|uk − um|
2σ

)

(12)

where Q(·) is the Gaussian Q-function [12] and

uj =
(

γxj(1), |hSD|2xj(2), . . . , |hSD|2xj(n)
)

, j ∈ {k,m}. (13)
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⇒ |uk − um| =

√

√

√

√γ2αkm(1) + (|hSD|2)2
n
∑

i=2

αkm(i), (14)

where αkm(i) = (xk(i) − xm(i))2. As the constellation is rotated such that no two symbols

have a common coordinate (cf. Eqn. (2)), αkm(i) > 0, i = 1, . . . , n, and using the fact that

γ2 = |hSD|2 + |hRD|2 > |hSD|2,

√

γ2αkm(1) < |uk − um| <

√

√

√

√γ2
n
∑

i=1

αkm(i). (15)

From Eqn. (1), xk(i) =
∑n

t=1 φitvk(t) and xm(i) =
∑n

t=1 φitvm(t) and hence,

αkm(i) =
n
∑

t=1

φ2
it(vk(t) − vm(t))2.

As the proposed protocol requires n + 1 symbol intervals for n 2-D symbols, to meet a

transmission data rate of R = r log SNR b/s/Hz (per 2-D), each of the 2-D symbols should

have (n + 1)R/n bits of information. This requires that the n-D symbols xk and xl carry

(n+1)R/2 bits each, and hence, the n-D constellation will have 2(n+1)R/2n points in each of the

n dimensions. The distance between two adjacent points is 2−(n+1)R/2n = SNR
−(n+1)r/2n [5].

If vk and vm are dt
km symbols apart along tth dimension, 1 ≤ t ≤ n,

(vk(t) − vm(t))2 = (dt
km)2

SNR
−(n+1)r/n.

Note that dt
km is non-zero for at least one value of t when k 6= m. This implies,

αkm(i) =
n
∑

t=1

φ2
it(d

t
km)2

SNR
−(n+1)r/n. (16)

The noise term in y
k

is (<(h∗
SDnD,1) + <(h∗

RDnD,n+1),<(h∗
SDnD,2), . . . ,<(h∗

SDnD,n)) (cf. Eqn. (9)).

For a given value of hSD and hRD, its variance σ2 can be bounded as

γ
σ2

D

2
< σ2 < nγ

σ2
D

2
. (17)

Using Eqns. (15), (16) and (17) in Eqn. (12), and by noting that 1/σ2
D = SNR, we bound

the PEP as

Eγ

[

Q
(
√

γSNR
(1−(n+1)r/n)C1

)]

< Pr{xk → xm} < Eγ

[

Q
(
√

γSNR
(1−(n+1)r/n)C2

)]

, (18)

where C1 = (
∑n

i=1

∑n
t=1 φ2

it(d
t
km)2) /2 and C2 = (

∑n
t=1 φ2

it(d
t
km)2) /2n.

Now, since γ = |hSD|2 + |hRD|2 is a chi-square random variable with four degrees of

freedom, its distribution is given by f(γ) = 1
Γ(2)

γe−γ [12]. Using f(γ), the upper and lower

bounds in Eqn. (18) can be evaluated to show that,

CL
kmSNR

−2(1−(n+1)r/n) < Pr{xk → xm} < CU
kmSNR

−2(1−(n+1)r/n) (19)
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where CL
km and CU

km are appropriately defined constants. As both the upper bound and the

lower bound on Pr{xk → xm} have the same SNR exponent

Pr{xk → xm} = CkmSNR
−2(1−(n+1)r/n),

where Ckm represents the coding gain. By substituting the PEP obtained above in Eqn. (11),

we get Pr{error|xk sent} = CkSNR
−2(1−(n+1)r/n), and hence

Ps,1 =
∑

xk∈XnD

Pr{error|xk sent} = CSNR
−2(1−(n+1)r/n). (20)

Ps,2, the error probability of the second n-D symbol transmitted in the cooperation frame,

can be computed in a similar manner and it can be shown that Ps,2 = Ps,1. Hence, the

symbol error probability in the proposed protocol is given by Ps = CSNR
−2(1−(n+1)r/n).

Thus, conditioned on relay correctly decoding the symbols received from the source, the

DMT of the proposed protocol is given by the following result.

In the proposed orthogonal demodulate-and-forward protocol, the diversity gain scales

with the multiplexing gain as

d(r) = 2(1 − (n + 1)r/n), r ∈ [0, n/(n + 1)]. (21)

With NR > 1 relays, the DMT can be obtained in a similar manner. In this case, γ =

|hSD|2 +
∑NR

i=1 |hRiD|2 and the resulting DMT is given by

d(r) = (NR + 1)(1 − (n + NR)r/n), r ∈ [0, n/(n + NR)]. (22)

It is worth noting that, instead of ˆ̃xi, the relay can as well transmit ˆ̃xi = x̂k(i) + x̂l(i)

where i takes any value between 1 to n. In such a case, the corresponding αkm(i) would get

multiplied by γ giving exactly the same results as above.

It is known that a diversity gain of n can be obtained by transmitting the n components of

a QAM symbol satisfying Eqn. (2) over n independent Rayleigh fading channels [10], [9].

However, in the proposed protocol, |hSD|2+|hRD|2 and |hSD|2, the channel gains experienced

by the first and the remaining components, respectively, of the symbol are not independent.

Our analytical results shows that, in such a case, the diversity gain of the symbol is determined

by the maximum among the diversity gains of its components. This is because in a rotated

constellation, each coordinate is unique.
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V. DISCUSSION AND CONCLUSIONS

Pawar et al. [8] have shown that the optimal DMT of a half-duplex cooperating relay

network with NR relays is given by

d
∗(r) = (Nr + 1)(1 − r), r ∈ [0, 1],

which is same as the DMT of an (NR + 1) × 1 MISO system. These authors also proposed

a non-orthogonal quantize-and-map protocol that achieves the optimal DMT. Earlier, several

relay schemes have been proposed to improve the multiplexing gain and the DMT of half-

duplex relaying [13], [14], [15], [16]. While [14], [15] proposed non-orthogonal protocols,

[13] assumes no direct channel between the source and the destination. Tannious et al. [16]

proposed an orthogonal decode-and-forward protocol that achieves the MISO DMT. However,

the work in [16] assumes feedback from the destination.

For NR = 1, Fig. 1 compares the DMT of the proposed protocol with that of a conventional

ODF protocol and the optimal DMT (which is nothing but the DMT of a 2×1 MISO system).

For n = 1, the proposed protocol is equivalent to that of a conventional ODF protocol and

with increasing n, the DMT of the proposed protocol gets closer to the 2 × 1 MISO DMT.

Thus, the proposed orthogonal protocol outperforms the existing orthogonal protocols and

achieves a DMT that is very close to the optimal DMT which is shown to be achievable by

a non-orthogonal protocol.

For NR > 1, the DMT of a conventional orthogonal protocol is given by [4]

d(r) = (NR + 1)(1 − (NR + 1)r), r ∈ [0, 1/(NR + 1)] .

Comparing it with Eqn. (22), we can see that the proposed protocol outperforms the conven-

tional one for every n > 1.

It is to be noted that the improved DMT performance comes at a price of decoding

complexity. In each cooperation frame of length n, the relay and the destination have to

decode two n-D QAM symbols rather than n 2-D QAM symbols as in a conventional ODF

protocol. Furthermore, the use of a rotated constellation allows for full diversity order with

only one symbol relayed. The high SNR analysis here does not account for the resulting

SNR penalty to achieve a target error rate at some finite SNR.
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Fig. 1. Diversity-multiplexing tradeoff with a single relay.


