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1. Abstract 

The objective of this paper is to present the subject of wave- 
lets from a filter-theory perspective, which is quite familiar to 
electrical engineers. Such a presentation provides both physical 
and mathematical insights into the problem. It is shown that taking 
the discrete wavelet transform of a function is equivalent to filter- 
ing it by a bank of constant-Q filters, the non-overlapping band- 
widths of which differ by an octave. The discrete wavelets are pre- 
sented, and a recipe is provided for generating such entities. One of 
the goals of this tutorial is to illustrate how the wavelet decompo- 
sition is carried out, starting from the fundamentals, and how the 
scaling functions and wavelets are generated from the filter-theory 
perspective. Examples are presented to illustrate the class of prob- 
lems for which the discrete wavelet techniques are ideally suited. It 
is interesting to note that it is not necessary to generate the wave- 
lets or the scaling functions in order to implement the discrete 
wavelet transform. Finally, it is shown how wavelet techniques can 
be used to solve operatodmatrix equations. It is shown that the 
“orthogonal-transform property” of the discrete wavelet techniques 
does not hold in numerical computations. 

‘This is part 1 of a two-part article. Part 2, which treats the 
continuous case, will appear in the December issue. 

2. Introduction 

Many books and numerous papers have been published 
describing wavelets. It is not possible for us to include all the ref- 
erences. Selected references [ 1-31 have been chosen to illustrate 
where additional materials are available. No attempt has been made 
to provide the earliest reference material. 

Wavelets are a set of functions that can be used effectively in 
a number of situations, to represent natural, highly transient phe- 
nomena that result from a dilation and shift of the original wave- 
form. For example, when a pulse propagates through a layered 
medium, due to dispersion and for different electrical properties of 
the layers, the pulse is dilated and delayed, due to the finite veloc- 
ity of propagation. The application of wavelets (which literally 
translates from ondellets in French into English as small waves) 
was first made in the area of geophysics [4], in 1980, by the French 
geophysicist J. Morlet, of Elf-Aquitane. A good history fi-om the 
mathematical perspective is available in the special issue of the 
IEEE Proceedings [5]. 

In electrical engineering [6-81, however, wavelets have been 
popular for some time, under the various names of multirate sam- 
pling, quadrature-mirror filters, and so on. Since the majority of the 
readers of this article are assumed to have an electrical-engineering 
background, it will perhaps be useful to describe the methodology 
in terms of filter theory. One of the objectives is to illustrate that 
performing the discrete wavelet transform is equivalent to filtering 
a signal by a band of constant-Q filters, the non-overlapping band- 
widths of which differ by an octave. It is hoped that this mode of 
presentation will make wavelets easier to visualize, conceptualize, 
and apply to the problem at hand-if the wavelet theory is relevant! 
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One of the goals of this paper is to illustrate how one can generate 
the scaling functions and the wavelets, specially tailored to one's 
needs. 

Consider a signal, x ( t ) ,  the Fourier transform of which is 
X ( w ) .  In this paper, we deal only with discrete wavelet tech- 
niques. Discrete wavelet techniques are quite suitable for discrete 
signal processing, for example, in speech and image processing. In 
particular, their applications are very desirable in data compres- 
sion. Since a complex matrix is a two-dimensional system, the 
solution of a matrix equation may be posed as an image-analysis 
problem. As we shall observe, discrete wavelet techniques may be 
suitable for the solution of large complex matrix equations. 

Continuous techniques, on the other hand, may be suitable 
for time-domain processing, where the wavelet transform can be 
interpreted as a windowed Fourier transform. This we shall deal 
with in the second part of the paper. 

3. Development of the discrete wavelet methodology from 
filter-theory concepts 

3.1 Preliminaries 

Consider the signal ~ ( t )  that is discrete, so that it is repre- 
sented by the sequence 

x( .): Iz = 0,1,2,. . . (1) 

Then, its Fourier transform is best handled by the z transform (the 
lowercase letters are for functions in the original domain, and the 
uppercase letters are used for the z transform): 

where w=2$  is the angular frequency, and z = e J o  = e J 2 ~  
Consider the sampled signal x(n) to be bandlimited, and assume it 
is sampled (say) at f = 1Hz. Thus, the sampling interval is 
At = 1 sec. From the Nyquist sampling criterion, it is then neces- 
sary for the signal x ( n )  to be bandlimited to 112 Hz, so that it can 
be sampled at two times its bandwidth at the Nyquist frequency 
without aliasing. The bandwidth of the signal (in angular fie- 
qUency), mband > is 

and the sampling angular frequency, w,a,,p, is 

= 2 z .  (4) 

Now, let us filter the signal .(a) by a low-pass filter, H ( z ) ,  of 
bandwidth 7112 [Le., 0 5 w 5 z 12 1, and by a high-pass filter, G(z) , 
of bandwidth w = n 12 to z. Let u'(n) be the low-pass-filtered 
signal [Le., ~ ' ( n )  has been obtained by passing x(n) through the 
low-pass filter h(n)  1, and let ~ ' ( n )  be the high-pass-filtered signal 
[i.e., ~ ' ( n )  has been obtained by passing x(n)  through the high- 
pass filter g ( n ) ] .  This is shown in Figure 1. Now, since the band- 
width of the signals ~ ' ( n )  and ~ ' ( n )  has been reduced by a factor 

Transmitter Receiver 

Figure 1. The principles ok sub-band filtering. 

of two, these signals can be decimated by a factor of two without 
any aliasing. This is equivalent to reducing the sampling rate. 
Decimation or down-sampling by a factor of two implies that 
altemate samples are dropped, and the data are compressed, as 
shown in Appendix 1 (Section 8). The purpose of decimation is to 
reduce the sampling rate and, thereby, the bandwidth of the signal. 
This down-sampling i s  possible because .I(.) and ~ ' ( n )  have an 
effective bandwidth of f = 1 I 4  or w = z 1 2 ,  because they have 
been filtered. 

Next, both ~ ' ( n )  and ~ ' ( n )  are down-sampled by a factor of 
two, resulting in u(n) and v(n). This sub-sampling can continue 
further, as we shall see later on. Here, we will restrict ourselves to 
the two stages of filtering of x ( n )  by h(n)  and g ( n ) ,  for illustra- 
tion purposes. Since both u(n) and v(n) have a smaller band- 
width, they can be easily sampled, quantized, coded, and transmit- 
ted. In the receiver, the quantized, sampled, and coded .(.) and 
v(n) are received. The down-sampled versions, .(a) and ~ ( n ) ,  
can be transmitted at a much lower bit rate than the original signal, 
without any loss of information, as they have a smaller bandwidth 
than the original signal. The problem is how to reconstruct the sig- 
nal x(n) back again, given the sub-sampled versions u(n) and 
v(n) of x ( n ) ,  without any aliasing or distortion. 

Using this type of sub-band splitting has many advantages: 

1. This methodology results in a "maximally decimated" sig- 
nal (Le., some of the sample values of the signal have been deleted 
or set to zero), namely, the sampling rate can be reduced, without 
any loss of information. [Note that v(n) of x(n) have a lower 
bandwidth than the original signal x ( n )  and, hence, the sample 
rate has been reduced by a factor of two]. This is equivalent to 
saying that u(n) and v(n) have been decimated by a factor of two. 

2. Even if .(E) and v(n) are quantized in a very rough fash- 
ion (say, quantized into two bits, rather than the conventional eight 
bits or 16 bits), then the reconstruction is really remarkable, even 
though such large quantization errors are introduced in the coding 
of u(n) and v(n) [3-81. This has been shown, at least in the area of 
image processing. We will also demonstrate that this happens in 
the compression of matrices arising in electromagnetic-field prob- 
lems. Our interest in this is due to the fact that a matrix is essen- 
tially a discretized version of an image. So, can we apply this 
methodology to the efficient solution of operator equations? We 
will address this issue later on. 

3. Mother Nature, in many cases, performs processing in such 
a way. For example, human ears and eyes, at least in the first stage 
of decoding sound and sight, perform processing by constant-Q 
filters that are very closely related to wavelets. 
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H ( z )  = h(O)+ h(l)z-'+ ...+ ~ ( N ) z - ~ .  (14) Next, the signal is reconstructed from the decimated trans- 
mitted signals .(.) and .(.). The signals are up-sampled by a 
factor of two to produce ~ " ( n )  and ~ " ( n ) .  The principle of up- 
sampling is shown in Appendix 2 (Section 9). Then, they are 
filtered by two receiving filters, g'(n) and h'(n) . The outputs are 
combined to form ."(n). Now, let us see how x(n) is related to its 
estimate X(n) , and then the methodology to extract x(n) will be 
obvious. 

Without loss of generality and for convenience we choose 

El'(.)= z-"H(z-') so that h ' ( n ) = h ( N - n ) .  (15) 

The factor Z-" is used to guarantee causality of the filters [Le., 
A'(.) = 0 for n < 01. The high-pass filter g'(n)  is chosen in such a 
way that 

Please observe that 

G'( z )  = z - ~ G ( z - ' )  with g ' (n)  = g(N - a ) .  (16) U'(2)  = H ( z ) X ( z ) ,  (5) 

V ' ( z )  = G ( z ) X ( z ) .  (6)  In addition, we define the high-pass filter g ' (n)  in terms of the 
low-pass filter coefficients h'(n) by choosing From Appendix 1 (since ~ ( n )  and v(n) have been decimated by a 

factor of two) 
g'(n)=-(-l)"h'(N -.)=-(-l)"h(n), 

1 
U ( Z )  = -[ut(&) 2 + V'(-&)], (7) 

g(.) = (-l)"h(N- n) = (-l)%'(n), 

V ( z ) = ' [ V ~ ( & ) + V ~ ( - & ) ] .  2 so that 

By using the results of Appendix 2 (where ~ " ( n )  and ~ " ( n )  have 
been up-sampled by a factor of two), 

U"(z)= u ( z 2 ) = 2 [ u ~ ( z ) + z i ' ( - z ) ] ,  1 
(9) 

Substitution of Equations (1 8) into Equation (1 3) demonstrates that 
all four equations are consistent, and the aliased component due to 
X(-z)  is zero. (10) V " ( z )  = V ( z 2 )  = ,[V'(z)+ 1 V+)] 

Furthermore, by utilizing Equations (1 5) and (16), Equation 
(12) simplifies to 

Therefore, 

k ( z )  = - '[ z - N G ( ~ ) G ( ~ - ' ) +  z -"H(z)H(z- ' ) ]X(z )  
2 1 

=--{ [G(z )X(z )  2 + G(-z)X(-z)]G'(z) 

+[ H( z ) x (  2) + N( - z )X(  - z )]H' (  z ) }  (1 1 )  

(19) 
= -[H(-z- ')H(-z) 1 + H(z)H(z- ' ) ]z -"X(z) .  

2 

If the filter H ( z )  is chosen in such a way that 1 
2 

= -{[ G ( ~ ) G ~ (  .) + H ( ~ ) H ~ ( ~ ) ] x (  .) 

+[G(-z )G~(z )  + H ( - ~ ) H ~ ( ~ ) ] x ( - ~ ) } ,  (12) H(-z)H(-z- ')  + H(z )H(z - ' )  = 2 ,  

where k(z), G'( z ) ,  H ' ( z ) ,  G ( z ) ,  H ( z ) ,  and X ( z )  are the z 
transforms of Z ( n ) ,  g ' (n ) ,  h ' ( n ) ,  g(n), h ( n ) ,  and A(.). The z 
transform has been defined by Equation (2). 

or 

The estimated signal X ( z )  contains the original signal 
(which is given by the first term) and an aliased part (which is 
given by the second term of Equation (12)). Now, to remove the 
aliasing effect, the second term must be zero, Le., 

then one would have a perfect reconstruction property: 

qz) = z -NX(z ) ;  X(.) = x(. - N ) ;  (22 )  

and the estimated signal is delayed by N samples. 

The filters H ( z )  and G ( z )  are called quadrature mirror fil- 
ters (QMF), because they have symmetry around the point 7d2, as 
shown in Figure 2. Ideally, we would prefer H ( z )  and G(z )  to be 

Let H ( z )  be a FIR (finite-impulse-response) filter of order N + 1 . 
Then, h(n) will have N +1 terms. We consider N to always be 
odd. Then, 
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Figure 2. The quadrature mirror filters. 

d n 
I 

2 7t '0 

Figure 3. Non-overlapping ideal filters. 

non-overlapping, as shown in Figure 3. However, due to 
realizability conditions, they are like those presented in Figure 2. 
Moreover, we would like to have N ( z )  and G ( z )  be FIR filters 
(finite impulse response), as opposed to IIR (infinite impulse 
response), for ease of numerical computation. To illustrate the 
nature of the various FIR filters given by the various equations, 
consider as an example N = 3 [9]. Then, the various filters H ( z ) ,  
G ( z )  , N ' ( z ) ,  and G ' ( z )  will have four nonzero coefficients in 
their expansion. Or, equivalently, h(n) , g(n )  , h'(n) , and g'(n) 
will have four entries. They will have the following form. If we 
choose 

N 
H ( z )  = z h ( n ) z - "  = h(0) + h(1)z-' + h ( 2 ) Y 2  + h ( 3 ) ~ - ~  , (23) 

n=O 

then from Equation (1 8), 

G ( ~ )  = - z - 3 ~ ( - z - l )  

= -z-3[q~) - h(qz+I + h(2)z+2 - h(3)z+3] 

= +q3)  - ~ ( Z ) ~ - I  + h ( ~ ) ~ - ~  - h ( ~ ) ~ - ~ ,  

and from Equation (1 5),  

H ' ( z )  = z-"H(z-') 

= h(3) + h(2)z-1 + h ( ~ ) ~ - ~  + h ( ~ ) ~ - ~ ,  

and finally from Equation ( 1  8), 

G ' ( z )  = z-NG(z-*)  = -H(-z) 

= -h(O) + h(1)z-I - h(2)z-Z + h(3)z-3. 

52 

So, if we solve only for H ( z ) ,  the other three filters of Figure 1 
will then be given by Equations (24), (25), and (26). 

Now, we show how to solve for H ( z ) .  In this example, we 
have N = 3 ,  and the order of the filter, L, is given by 

L =order of filter= N +1= 4 .  (27) 

Utilizing Equation (20), we have 

[h(O)- h(1)z-l + h(2)z-Z - h(3)z"I 

x[h(O) - h(1)z + h(2)z2 - h(3)z3] 

+[h(O) + h(1)z-I + h(2)z-Z + h(3)Z-q 

(28) 

x [ ~ ( o )  + ~ ( I ) z  + h(2)z2 + h(3)z3] = 2 .  

Equating all the coefficients related to the individual powers of z in 
Equation (28) leads to 

h(O)h(2) + h(l)h(3) = 0 (for z2  and z - ~ ) .  (30) 

We need two more equations to solve for H ( z ) .  Since G(z )  is a 
high-pass filter, then at w = 0, 

From Equation (23), this leads to 

-h(3)+h(2)-h( l )+h(O)= 0 

In addition, from Equations (21) and (3 1) at w = 0 we have 

From Equations (23) and (33) we get 

H(e") = H(1) = h(0) + h(1) + h(2) + h(3) = A. (34) 

From Equations (32) and (34) we see that 

(35) 
1 

h(0) + h(2) = -, z/z 

(36) 
1 

h(1) + h(3) = - a' 
In addition one has Equations (29) and (30). We need one more 
equation, as these four equations [Equations (29), (30), (35), and 
(36)] are linearly dependent, since Equations (35) and (36), in 
conjunction with Equation (30), lead to Equation (29). The 
question is how to find the fourth equation. Without the fourth 
equation it is not possible to get the complete solution. Here, the 
various methodologies differ, and different researchers have come 
up with different procedures. 
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For example, Daubechies [ 11 originally developed this meth- 
odology by constraining the filter N ( z )  to be smooth, by enforcing 
all derivatives to be zero at w = 0 ,  up to order p ,  or, equivalently, 

G‘P(l) = 0 ,  where the superscript p denotes the pth derivative of 
G’ . The actual value for p is determined from the number of equa- 
tions needed to solve for the values of h(n) , n = OJ,. ..,A’. This 
leads to taking the various moments of g’(n) and setting them 
equal to zero. Daubechies chose this procedure because enforcing 
the above conditions guarantees smooth wavelets, which we will 
define later. However, for the present case, where the number of 
discrete wavelet coefficients is finite, the smoothness of the wave- 
lets is a moot point. This is true since for the discrete case, the 
wavelet transform can be implemented (for the examples that we 
are interested in) without explicitly specifying the wavelets. The 
smoothness of the wavelets at this point, then, is of no concern to 
us! Another approach, for example, is given in [lo, 111. 

In mathematical terms, setting the derivative of G’(1) to zero 
leads to 

-Oh(O) - Ih(1) + 2h(2) - 3h(3) = 0 .  (37) 

Solution of Equations (30), (35), (36), and (37) leads to 

I + &  h‘(0) = h(3) = __ 
4Jz ’ 

3+& 
h‘(l) = h(2)  = __ 

4Jz ’ 

3-A h’(2) = h( l )  = __ 
4Jz ’ 

1-43 
h‘(3) = h(0) = __ 

44‘5 

The magnitude and the phase responses of H ( z ) ,  H‘(z )  , G(z) , 
G‘(z) are shown in Figures 4a and 4b, respectively. Note that 
these filters have no ripples, with many zeros at n. The slope at the 

. - 
0 0.5 1 1.5 2 2.5 3 3.5 

- w  

Figure 4a. The magnitude responses of the fourth-order filters. 

I 

I 

-150 - 

-200 I 
0 0.5 1 1.5 2 2.5 3 3.5 

- w  

Figure 4b. The phase responses of the fourth-order filters. 

center is proportional to f i  . The transition from jH(z)\ = 0.98& 

to jH(z)l= 0.02& is over an interval of length 4/&. 

Instead of having a two-stage decomposition of the signal 
x ( n )  into ~ ’ ( n )  and ~ ’ ( n )  , one can perform a multistage decom- 
position by applying the filters successively to each stage of the 
decomposition, as shown in Figure 5. The electrical-filter-theory 
equivalent is shown in Figure 6. This is the decomposition part (or 
the part labeled “transmitter” in Figure I). The coefficients at the 
output of Figure 5 are then thresholded. This is equivalent to 
keeping only those coefficients that are bigger in magnitude than 
some constant E .  The values smaller than E are set equal to zero, 
resulting in the approximate filter output. Now, the interesting part 
is that these “filtered” thresholded coefficients can now be used to 
recover the original signal with an accuracy better than E (!). (We 
will see this feature later on). The reconstruction algorithm is 
depicted in Figure 7 ,  where the approximated coefficients are up- 
sampled, and then filtered the way that is depicted in the receiver 
of Figure 1. 

The type of decomposition outlined in Figure 5 is identical to 
a wavelet decomposition, as the next section will illustrate. For 
example, filtering a function by h(n) is equivalent to fitting a 
scaling function at a certain scale, and filtering by g(n)  is equiva- 
lent to curve fitting x ( n )  by wavelets at the same scale as the 
scaling function. The mathematical connection is now established 
between wavelet theory and filter theory. 

3.2 Connection between the filter theory and the mathematical 
theory of wavelets 

To establish a connection between the filter theory and the 
mathematical theory of wavelets, we will deal with functions of a 
real continuous variable. Discrete samples then will be viewed as a 
“sample and hold” of the these functions of a continuous variable. 
Such an approach is absolutely necessary, because the wavelets 
cannot be expressed in terms of discrete samples. Moreover, the 
dilation equation, which is at the heart of wavelet theory, has no 
solutions for the discrete samples. So, the discrete wavelet trans- 
form implies that the functions we are dealing with are functions of 
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Figure 5. A multistage decomposition of the signal .(a). 

I 7-1 

4 4  

x(n) 

Figure 6. A filter-theory representation of the discrete wavelet 
transform. 

Figure 7. The reconstruction of the original signal, x ( n )  , from 
the approximate coefficients of the discrete wavelet transform. 

a continuous variable. They can have integer shifts. In addition, 
they can be scaled up and down by integer multiples. 

We consider the original signal, x( t ) ,  with bandwidth from 0 
to n. Also, consider some functions #(t). We assume that the inte- 
ger shifts m of &), namely #(t - m ) ,  are a Riesz basis for the 
original space [38]. Let us denote 

Hence, one can represent a dilated version of &)-namely, 
&2)-by a combination of the functions 4(t - m)  [or dm ( t ) ]  with 
some coefficients h'(nz), resulting in the dilation equation 

or, equivalently, [with h'(n) = h(N - m) , as defined by Equa- 
tion (1 5)]  

N N 
4(t)= ~ C h f ( m ) 4 ( 2 1 - m ) = 1 / 2 C h ( N - m ) ~ ( 2 t - m ) .  (41) 

m=O nz=o 

It is interesting to note that the coefficients h'(m) tum out to be the 
same coefficients that we have described earlier in the receiver part 
of Figure 1 and Figure 7. 

As an example, consider 4(t) to be a pulse function of mag- 
nitude 1, located between 0 and 1, as shown in Figure 8. Then, 
4(t/2) has support from 0 to 2, or is a dilated version of $(t) .  
Please note that 4(t) can be represented by 4(2t) and 4(2t - I) ,  
where each of these functions is defined between 0 to 112 and 112 
to 1, respectively. In this case, h'(0) = h'(1) = I/&. Equation (41) 
essentially reflects the basis of the dilation equation: Le., the func- 
tion can be approximated by a weighted sum [through h'(m)] of 
the shifted and dilated versions of the same function. 

The fimction d ( t ) ,  which solves the dilation equation for a 
particular h'(m),  i s  called the scaling function, and is also called 
the father of wavelets. Also, note that the functions #(t - m) are 
assumed to be normalized, Le., 

I 4(t - m)dt = 1 
I 
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Here, " d t  "can be represented as the incremental interval length. 
Therefore, from Equation (41), utilizing Equation (42), we get 

4(2t -2k-m)  J i N  
j C ( t  - k)dt = 1 = Jic h Q ) j  d(2t) = - h'(m) 
I 2 m=O 2 m=O 1 

or, equivalently, 

nz=O 

Hence, the coefficients h'(m) , satisfying the dilation equation, 
must satisfy Equation (44). This is the same equation as Equa- 
tion (34), restricted to N = 3 terms. The corresponding wavelets 
are given by (compare with Equation (17)) 

m1=0 

(45) 
N 

= Jz C-(-l)'%(N - m)4(2t - m) , 
nz=O 

where N + 1 is the order of the filter (which is always even). Here, 
the filter coefficients h'(m) and g'("z) have been assumed to be 
real. The function ~ ( t ) ,  for a given g ' (m)  , is called the mother of 
wavelets. (This might be viewed as the traditional Judeo Christian 
concept of mother: where the mother is generated from the father!) 

So, from an electrical-engineering perspective, if we have the 
filter coefficients h ' (m) ,  then the scaling function 4(t)  can be 
obtained by iteratively solving the dilation Equation (41). This is 
carried out by starting with letting #(t)  be a pulse function, and 
then filtering by h ' (m) ,  and continuing until convergence is 
reached. Once the scaling function is known, the wavelets are 
given by Equation (45). 

The scaling function can also be solved for in the transform 
domain. By taking the Fourier transform of Equation (41), one can 
write the dilation equation in the w domain as 

(46) 
A I -JW/2 $(a> = --N (e ) $(w/2), 2 

where i ( w )  is the Fourier transform of &), and H ' ( z )  is the z 
transform of h'(n) (see Equation (15)). One can repeatedly apply 
Equation (46) to obtain 

Owing to Equation (42), $(O)  = 1. Therefore, in the limit n + ca, 
Equation (47) becomes 

The solution for $(a) is point-wise convergent, provided the infi- 
nite series converges. In the original domain, this is equivalent to 

4(t) = f i [*2 - ' / 2h ' [2k t ) ] ,  where * denotes a convolution. Note 

that the sequence of convolutions is carried out by various com- 
pressed versions of the same signal. When the sequence of convo- 
lutions converges, it yields the function #(t) .  

k=l 

When N = 0 ,  the dilation equation becomes, for hb = &, 

and the scaling function becomes a delta function. If we choose 
L = N + 1 = 2  and 

Hence, in this case, the dilation equation is &) = 4(2t) + 4(2t - 1). 
One possible solution of this dilation equation is the pulse func- 
tion: 

1 i f O < t < l  
0 otherwise 

The wavelet is generated from Equation (45), and is given by 

-1 f o r O < t < l / 2  

0 otherwise 

since y/ ( t )  = -4(2t)+ 4(2t - 1). This is shown in Figure 8. This is 
the pulse doublet, and it is related to the Haar wavelet. Please note 
that the scaling function @(t) is in this case orthogonal with respect 
to its own translates, i.e., 

a) 

p(t)+(t  - m)dt = 0. (52) 
-m 

This is also true for the wavelets: 

m 

j ~ ( t ) l y ( t  - m)dt = 0 (53) 
-m 

For N = 3 ,  we obtain the case presented earlier. Note that for this 
case, the filter coefficients hi are given by Equation (38). Hence, 

Figure 8. An example of the dilation equation for A4 = 2 .  
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the scaling function can be obtained from the solution of the 
dilation equation, 

&)= $[(1+.11)~(21)+(3+.11)~(2t-l) 

+ (3 - &)&t - 2)+ (1 -.11)4(2t - 3)]. (54a) 

The wavelets are generated in an analogous fashion by using 
Equations (45) and (38), resulting in 

v(t)=$[(1-&)4(2t)-(3-&j$(2t-l) 

+ (3 + &)4(2t - 2)- (1 + &)4(2t - 3)]. (54b) 

We are not going to delve further into the solution of the dilation 
equation, since for the discrete wavelet transform and for the 
problems that we are interested in electromagnetics-namely, solu- 
tions of large matrix equations-the scaling functions and the 
wavelets are really not necessary. This is because the discrete 
wavelet representation can be carried out from the knowledge of 
only h(m)! However, we present some other wavelets for illustra- 
tion purposes. 

For example, consider the Shannon wavelet, which is the 
dual of the Haar wavelet. The scaling function is given by 

and its transform is given by 

1 for o</w(  <z 
0 otherwise i(4 = { 

The confusing part here is what to use as the starting point for 
a scientific endeavor to carry out a numerical analysis utilizing 
wavelets? There are two choices: 

1. Do we start with +(t) ,  construct h ' (n ) ,  and then generate y ( t )  
[from Equation (45)]?; or 

2 .  Do we start with h ' (n) ,  and then create $(t) and ~ ( t )  ? 

For the discrete case that we arc dealing with, the answer is 
straightforward: that is, we design h'(n) , and then obtain #(t)  and 
~ ( t )  . This is also much simpler in practice. However, for the dis- 
crete wavelet transform, as we shall see, 4(t)  and ~ ( t )  are not at 
all required in the numerical computation! 

In summary, the mathematical basis of the wavelets has been 
presented from a filter-theory perspective. How to construct scal- 
ing €unctions 4 and wavelets y has been shown, starting from the 
filters h'(m) , and utilizing the perfect-reconstruction argument 
presented with subband-filtering techniques. Once h'(m) i s  known, 
4 can be generated from Equation (41), and v ,  from Equa- 
tion (45). 

4. Approximation of a function by wavelets 

Consider a function ~ ( t )  . The objective is to approximate it 
by the wavelets ~ ~ , ~ ( t ) ,  Le., 

where we define the wavelets by 
The wavelet can be generated from Equation (45), and is given by 

y ( t ) = - p - ,  s i n a  3nt 
2 

and its transform is 

Lagrange half-band filters are used when one needs a non-negative 
frequency response of the filters h(n)  . A closed-form expression 
was given by Ansari [12], starting from 

H ' ( z )  = - 1 '  + c h;(2n - 1)[z-**+' + 2 - 1 1 ,  

2 n=l 

with 4i - 1 coefficients. The coefficients hi are determined using 
the Lagrange interpolation formula: 

21 

( - l ) n + J - ' n ( i -  k +  1 / 2 )  

(i - n)!( i - 1 + n)!(2n - 1) ' 
h;(2n - 1) = k=l 

These filters are very regular, as they have a 2i-fold zero at z = -1 . 

(55) 

yn&) = 2-"'2y(2-"t - k )  . (56) 

Note that v[2-"t) represents a dilated version of ~ ( t ) .  For 

n = -1, we say the scale is the finest. This is because for n > -1, 
the function gets dilated and becomes wider. ~ ( t - k )  represents 
the shifts. Therefore, we approximate the function ~ ( t )  by a dilated 
and shifted version of the same function ( ~ ( t )  . We assume that we 
are dealing with orthogonal wavelets, hence 

The scale factor 2?12, appearing in Equation (56), is there so as to 
make the functions ~ ~ , ~ ( t )  orthonormal, Le., 

It is interesting to note that ~ ~ , ~ ( t )  has zero DC value 

( = 0) = 0 ,whereas x ( t )  may not! Therefore, if we have to 
talk about convergence of the series in Equation (55), we can only 
talk about mean-square convergence. This dichotomy, however, 
does not arise when the sum in Equation (55) is finite. Utilizing 
Equations (58) and (55), we observe that 
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and these are the discrete wavelet coefficients of the function ~ ( t )  . 
These are the same values shown in Figure 5. Our objective in this 
section is to establish that isomorphism. 

Now, if we have to carry out the inner products in Equa- 
tion (59), it will be extremely time consuming, as the inner prod- 
ucts have to be carried out for all values of n and k. Here, the 
strength of the wavelet techniques comes in, as they provide a fast 
and accurate way to recursively evaluate the inner products. This is 
accomplished through the introduction of the scaling functions 

@ l , j ( t )  = 2-"24(2-'t - j ) .  (60) 

We further assumeiutilize the orthogonality relationships between 
the scaling functions and the wavelets, and between the scaling 
functions themselves, i.e., 

and 

We now define the coefficients q n  through 

It is now shown how the dk,n are evaluated recursively through 
the C k , n .  

We have, from Equations (58), (61), and (62), that the fol- 
lowing orthonormal set 

and from Equation (45), 

It is interesting to note that a byproduct of Equations (66) and (67) 
is that 

which can be generalized to 

Next, observe that 

m m 

2 ( n )  = j p ( t )@( t  - n)dt = j p ( t ) C  hF(t)&@(2t - 2n - k)dt 

= Ch ' (k )a ( - ' ) (2n+k)=Co( - l ) ( k )h ' ( k -2n ) ,  

-m -m k 

(68) 

k k 

and 

bo(.)= Ca(-l)(k)g'(k-2?2). 
IC 

Given the existence of relationships like Equations (68) and (69), 
and drawing the isomorphism between 

represents a basis, as the functions involved in the set are orthogo- 
nal. From the dilation equation, Equation (41), and from Equation 
(45), we note that 

(&5(2t - k)Im k=-m 

also form an orthonormal set for the same space. This is for scale 
n = -1, as defined by Equation (56). Therefore, we can expand any 
function p ( t )  by 

Here, u(- ')(k) are the coefficients used to represent the function 

p ( t )  by @(2t - k )  . The superscriptsj on the coefficients d ( k )  and 

b j ( k )  represent the value of the scale j at which they are 
represented. We have from Equation (41), 

we can generalize the expressions of Equations (68) and (69) to 

c ~ , ~ + ~  = E ~ , , ~ h ' ( n - - 2 k ) =  Ccn , ,h (N+2k-n )  for j 2 - 1 ,  (70a) 
n n 

These results have been derived utilizing Equations (1  5) and (1 6). 
The above recursive relations show that we need to compute the 
inner product of Equation (63) at the highest scale, n = -1 ,  only 
once (instead of using Equation (59)), and then the wavelet coeffi- 
cients dk,n of the XDwr(n, k )  ( n = 0,1,2,. . .) are computed recur- 
sively from Equations (70a) and (70b). From a filter-theory point 
of view, Equations (70a) and (70b) show that the c , , ~  need to be 

convolved with h(n) and g(n)  , then down-sampled by a factor of 
two. Through Figure 5 and from the above development, it is clear 
that for the computation of the discrete wavelet transform (DWT), 
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it is not necessary to even know what the scaling functions and 
wavelets are, as one can directly use Equations (70a) and (70b) 
without going through the mathematical derivations, as Figures 5 
and 6 illustrate. One starts with c ~ , - ~ ,  which is the coefficient gen- 

erated by correlating 4(2t) with the function ~ ( t )  , and then recur- 
sively computes the discrete wavelet transform mathematically 
through Equations (70a) and (70b), and graphically using Figure 5 ,  
which is easier to visualize from a filter-theory perspective. The 
methodology is the same. The process described so far is similar to 
the transmitter part as labeled in Figure 1. If the 4(2t) are the 
impulse scaling functions, then q - 1  will be equivalent to the 

sampled version of ~ ( t ) ,  namely x ( n ) .  

There is another subtle point that one should introduce now! 
So far, in the approximation in Equation (55) ,  the limits are infin- 
ity. This is good from a mathematical perspective. However, from 
a practical reality, the limits have to be finite. Hence, in addition to 
dk ,n ,  we also have c ~ , , ~ .  The approximation of ~ ( t )  from a practi- 
cal standpoint is done by 

Hence, we have both wavelets and scaling functions in the 
approximation. This very important feature is generally not clearly 
delineated in many presentations. Now, observe that Equation (71) 
is the representation of ~ ( t )  . 

In summary, the evaluation of the discrete wavelet coeffi- 
cients in Equation ( 5 5 )  is equivalent to filtering the coefficient 
c ~ , - ~  obtained from ~ ( t )  (or, equivalently, the sampled values of 

~ ( t )  for a certain class of scaling functions) by a cascade of mutu- 
ally orthogonal filters, as shown in Figure 5. The bandwidth of the 
filters is reduced by a factor of two as one goes towards the DC 
value. For the infinite sum in Equation ( 5 9 ,  the scaling function 
does not enter into the final sum, except in the intermediate com- 

Figure 9a. The original picture of “Lena.” 

Figure 9b. A compressed version of the picture of “Lena,” 
utilizing QMF compression (40:l compression). 

Figure 9c. A compressed version of the picture of “Lena,” util- 
izing JPEG compression (40:l compression). 

putations. However, if the sum is finite in Equation ( 5 5 ) ,  then one 
obtains Equation (71), and the scaling functions are needed in the 
summation. 

In practice, once the coefficients d,c,n and q m  have been 
obtained, those coefficients with magnitudes below a certain 
threshold value of E ( e g ,  E = are set equal to zero. At this 
point, the transmitter then sends out the approximate coefficients 
dk,n and c k , M ,  which are the values obtained after thresholding 
dk,n and q m  by E .  Now the problem is, how does one recover 

~ ( t )  from these approximate coefficients in a fast efficient way? 

- 
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By utilizing Equations (66) and (67) in Equation (65b), we 

By equating Equation (72) to Equation (65a), we find 

(72) 

(73) 

= C[ h(N + 2n - k ) # ) ( n )  + g ( N  + 2n - k)h(o)(n)] 
/ I  

Hence, we start with the approximate coefficients Ck,M and d”k,,, , 
and we then recursively generate, through the use of a generaliza- 
tion of Equation (73), the coefficients 

Note that the are the estimates of the discrete values of x ( n )  
for the impulse scaling functions. Also, observe that Equation (74) 
is equivalent to Figure 7, from a filter-theory perspective, and is 
identical to the receiver point in Figure 1. The most remarkable 
point here is that even though the original coefficients have been 
thresholded by c to produce the approximate coefficients, 

and CT,‘,,, , the original sampled function x(n) can be reconstructed 
through Y ( n )  with an accuracy better than E .  This we will illus- 
trate through numerical examples in the next section. 

I n  summary, in order to implement aiid carry out the discrete 
wavelet transform, it is not even necessary to introduce the concept 
of scaling functions and wavelets. The filter-theory approach 
essentially provides the same methodology, in a simpler, practical 
fashion. 

As an illustration of how to utilize the discrete wavelet trans- 
form, we consider the compression of an image. For the case of 
images, one is dealing with the two-dimensional discrete wavelet 
transform, which is a generalization of the one-dimensional case. 

In the following examples, we consider the image to be a 
two-dimensional array. We take the discrete wavelet transform in 
two dimensions by utilizing a recursive relationship similar to 
Equations (70a) and (70b). We utilize an eighth-order filter that has 
been designed to match the signal [21]. Once the discrete wavelet 
coefficients are obtained, they are thresholded, and then the origi- 
nal image is reconstructed utilizing the recursive relation of Equa- 
tion (74). The objective is to illustrate that even though only a few 

bits are utilized to code the compressed image, the reconstruction 
is still better than the conventional JPEG algorithm [21]. 

As an example, consider the original image of “Lena,” shown 
in Figure 9a. The images in Figures 9b and 9c show the result of a 
40: 1 compression of “Lena,” using wavelet techniques utilizing 
both signal-dependent QMF filters and JPEG compression. (JPEG 
is the current standard for image compression, and the coefficients 
of the filters h(m) are determined from the signal). Here, 
compression refers to the total number of bits required to store the 
image, as opposed to the total number of bits of the original image. 
Even though there is noticeable degradation in both of the images, 
the two methods perform reasonably in the reconstruction of the 
image. This is due to the fact that the image is compressed by 
blocks. The image compressed utilizing the signal-dependent QMF 
decomposition looses detail in the local (i.e., high-frequency) edge 
information. In particular, notice that the sharpness in the eyes and 
the detail in the feather cap are blurred. Unlike the JPEG-com- 
pressed image, however, there are no objectionable artifacts, such 
as the “blockiness” mentioned earlier. 

As another example, consider the application to halftone 
images. Unlike continuous-tone images, such as photographs, a 
halftone image is digital in nature: all pixels are either on or off. 
These digital pixels are densely placed on the paper (as many as 
2400 per inch, to emulate high-quality magazine halftones). Half- 
tone images are produced by photographing a continuous-tone 
image through a very fine screen, typically having 100-133 lines 
per inch. They are also often simulated-with lower resolution and 
quality-on common digital printers, including laser, ink-jet, and 
dot-matrix printers. It has become common for such images to be 
scanned into a computer using an 8-30 bitsipixel optical-input 
scanner, with the resulting image stored in the computer. Such a 
digital simulation of a typical halftone image is shown in Fig- 
ure 10a (with a magnification of three for demonstration purposes). 
Notice the dot pattern of the background, which is not present in 
most continuous-tone images. This image was printed by a 400 
dots-per-inch printer. Figures 10b and 10c show the result of a 30:l 
compression of Figure 1 Oa, using both the signal-dependent QMF 
filters and the JPEG compression. Notice that the QMF compres- 
sion attenuates the dot pattern associated with the original. This is 
because the high detail content of the dot pattern is lost in the QMF 
compression. In this instance, attenuation has become an asset, 
actually improving the appearance of the image. The JPEG-com- 
pressed image seems to produce a noise pattern in the output. This 
is indicative of the problems faced when using JPEG compression 
on halftone images. 

By utilizing a wavelet technique, it is possible to quantize 
images with bit rates as low as 0.4 bits per pixel, while maintaining 
a sufficiently high quality of reconstruction [9]. 

5. Relevance of discrete-wavelet techniques in computational 
electromagnetics 

There are essentially two different ways to solve operator 
equations utilizing wavelet techniques. The first possibility is to 
use the wavelets as basis functions, in a conventional Method-of- 
Moments formulation. The second approach is to use traditional 
sub-sectional basis functions, and obtain a dense complex matrix. 
The wavelet techniques are then used to compress the elements of 
the matrix, and either a direct sparse solver or an iterative method 
is used to obtain the solution of the sparse-matrix system. The 
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basic philosophy of the two methodologies is the same: namely, to 
obtain a sparse complex matrix instead of a full one, as results 
utilizing MOM and sub-sectional basis functions. However, the 
advantage of forming a sparse matrix is offset by the problem that 
the condition number of the transformed matrix may be worse. 
This is particularly significant for the second method, where the 
transformation utilizing a wavelet-like basis, from a complex-full 
matrix to a sparse-complex matrix, is orthogonal, from a strictly 
mathematical point of view. However, from a purely numerical 
perspective, as will be shown later, the results do not confirm this 
orthogonal transformation, as the condition number of the system 
changes and, in some cases, the change is by an order of magni- 
tude. 

5. 1 Application of wavelet basis for the solution of operator 
equations 

In [22], a Galerkin method, utilizing a wavelet basis, has 
been used for the analysis of radiation for TM-scattering problems. 
There, a method is also proposed to compress the impedance 
matrix, utilizing wavelet techniques. This is accomplished through 
a compression process in which only the significant terms in the 
expansion of the (yet unknown) current are retained and subse- 
quently derived. 

Figure lob. A compressed version of the simulated halftone 
picture of Figure loa, utilizing QMF 30:l compression. 

Wavelet bases have also been used to solve the Fredholm 
integral equation of the first kind, which leads to the TM-scattering 
from conducting cylinders [23]. Here, the compactly supported 
semi-orthogonal bases have been used. The wavelets have been 
specially constructed for the bounded interval for solving first-kind 
integral equations. It has been observed that the use of cubic-spline 
wavelets almost diagonalizes the matrix. Explicit closed-form 
polynomial representations for the scaling functions and wavelets 
are given. 

In [24], the wavelet-expansion method, in combination with 
the boundary-element method (BEM), has been used to solve the 
integral equation for the surface currents. The unknown current is 

Figure 10c. A compressed version of the simulated halftone 
picture of Figure loa, utilizing JPEG 30:l compression. 

expanded in terms of a basis derived from a periodic, orthogonal 
wavelet in a finite interval. Because the geometrical representation 
of the BEM is employed to establish the mapping between the 
curved computational domain and the interval [0,1], it would be 
very interesting to find out how this can be extended to three- 
dimensional problems, where an arbitrary surface needs to be dis- 
cretized. 

Figure loa. The original, simulated halftone picture printed on 
a 400 dpi digital printer. 

An adaptive multi-scale Moment Method is presented in [25], for 
the solution of the Fredholm integral equation of the first kind. An 
adaptive procedure is outlined, which refines the unknown solution 
in regions utilizing multi-scale wavelet-like functions. Even though 

68 IEEEAntennas and Propagation Magazine, Vol. 40, No. 5, October 1998 



the matrix is highly sparse, the deterioration in the condition num- 
ber of the matrix-as opposed to the condition number of the origi- 
nal matrix utilizing a conventional sub-sectional basis-is clearly 
visible. One disturbing fact is that the results are not consistent 
with the increase of the order of the filter, nor with the level of 
thresholding used. The methodology can also be used for solution 
of the differential form of Maxwell’s equations, utilizing finite 
elements [26]. Similar wavelet-like functions can also be used to 
compress the elements of the impedance matrix, utilizing a thresh- 
olding operation. 

In [27], the problem of electromagnetic scattering from per- 
fectly conducting strips, coated with thin dielectric material, is 
analyzed, utilizing an adaptive multi-scale Moment Method. The 
method of a non-uniform grid and the multi-scale technique, which 
generates a locally finer grid, are usually used when the solutions 
of the integral equations or the differential equations are known to 
vary widely in different domains. By non-uniform gridding, one 
can reduce the size of the problem and improve the accuracy. The 
multi-level or the multi-grid technique has been widely used in 
solving differential equations and integral equations [28-321. 
Kalbasi and Demarest [33, 361 applied multilevel concepts to solve 
the integral equation by the Moment Method on different levels, 
which has been called the Multilevel Moment Method. No matter 
what the multi-grid technique is, the basis functions for an 
improved approximation have to be reconstructed again. By using 
the multi-scale technique in one dimension, the basis functions for 
the new scale have to be reconstructed. The new approximation 
grids formed by the multi-scale technique are the same as those for 
the multilevel technique; however, the constructions for the func- 
tions are different. 

In addition to these numerical concems, there are some philo- 
sophical concems that need to be addressed in the selection of an 
appropriate set of basis functions. Consider the solution of an 
operator equation 

A X = Y ,  (75) 

where, in general, A is a known integro-differential operator, and 
X is the unknown to be solved for a given excitation, Y. For the 
solution of boundary-value problems, the most widely used tech- 
niques, like MOM, FEM, and BEM, convert the functional equa- 
tion to a matrix equation. The matrix equation is then solved for 
some unknown constants, instead of obtaining the solution in terms 
of unknown functions. The solution procedure starts by expanding 
the unknown, X, in terms of known basis functions e , ( t ) ,  with 
some unknown constant multipliers a, in front, i.e., 

N 
~ ( t )  z C a l e i ( t ) .  

, = I  

We then substitute Equation (76) into Equation (75), and form the 
error or the residual (R), defined by 

Then, the objective is to make the residuals zero with respect to 
some weighting functions, W j .  From Equation (77), it is quite 
clear that Aej must approximate Y in some sense. Hence, it is 
required that Aei must he linearly independent, and must form a 
complete set. It is immaterial whether the ei are linearly independ- 

ent, or even orthogonal! This point was illustrated by [13-171, 
through the solution of the following differential equation: 

(78) d2Y 
dx2 
-=sinx+2 for 0 1 x < 2 z ,  

which has a solution y = -sinx + x(x - 2 z )  when the boundary 
conditions are y ( x  = 0) = 0 and y(x = 2 n )  = 0 .  

A particular choice of the basis functions e, for the unknown 
y could be the Fourier series, i.e., 

m 

y = a0 + c (a, cos nx + b, sin nx) , (79) 
n=l 

in which the Fourier bases are linearly independent and orthogonal. 
This yields a solution y = -sinx . Hence, it does not provide the 

correction solution. This is because the series for -, formed 

after the double differentiation of Equation (79), is not complete, 
as the a. term is missing. So, Ae, does not form a complete set 
[13-171. Hence, Equation (79) does not and cannot provide the cor- 
rect solution. To rectify the error, one should choose the basis 
functions as [ 15,161 

d2Y 
dx 

m 

y = co + c p  + c2x2 + c (a, cos nx + b,, sin nx) . 
U=1 

(80) 

These basis functions are not even linearly independent in the 

interval 0 to 2z, as both x and x2 can be approximated by the 
remainder of the h c t i o n s  representing the Fourier series. How- 

ever, if we form __, d2Y we obtain 
dx2 

m 

do + (d, cos nx + e, sin nx) , 
n=l 

(with do = 2c2,  d, = -n2a,, e, = n2b,,), which, indeed, form a 
complete set. Utilizing Equation (76), it is then possible to get the 
exact solution. This example clearly illustrates that the choice of 
the bases is important. Moreover, it is not necessary for the basis 
functions e, to be orthogonal or even complete. What is necessary 
is that Ae, must form an orthogonal set [13-171. Hence, it is nec- 
essary to address the question, how does the set Ae, form a com- 
plete set when one chooses a wavelet-like basis?! 

For the wavelet methodology to be successful, the wavelet 
techniques have to ensure that the wavelet decomposition is carried 
out for Ae, , and not for e , .  This is perhaps extremely difficult to 
do. Also, it needs to be rigorously shown that all the nice proper- 
ties of perfect reconstruction, using the wavelets described earlier, 
remains valid after a couple of differentiations of the series, pre- 
sumably carried out term by term. Another hurdle is how to extend 
the one-dimensional technique to two-dimensional and three- 
dimensional problems. These are open problems. 

In this first Section 5.1, we described how to use the wavelets 
as basis functions in the conventional MOM problems leading to 
sparse matrices. Also, in [26], how to use this approach for imple- 
mentation of the differential form of Maxwell’s equations utilizing 

IEEE Antennas and Propagation Magazine, Vol. 40, No. 5, October 1998 61 



finite elements has been illustrated. Initial results illustrate how to 
use the wavelet techniques to generate a sparse matrix, utilizing a 
wavelet-like basis. A similar methodology can also be used in 
making sparse matrices-arising in the implementation of finite 
elements in the solution of differential forms of Maxwell’s equa- 
tions-still sparser. 

In the next Section 5.2, how to use the discrete wavelet tech- 
niques to transform a complex dense matrix, arising in conven- 
tional MOM, into a sparse matrix, utilizing a set of orthogonal 
transformations, is illustrated. Some work [35-381 has already been 
done to address this topic. This is described next. 

5.2 Solution of large matrix equations by the discrete wavelet 
transform 

Consider the solution of a matrix equation [A][X]=[Y], 
where [A] is a known Q x Q matrix, [Y] is a known Q x 1 vector, 
and [XI is the unknown to be solved for. Note that Q has to be an 
integer power of two for the wavelet techniques to be applicable. If 

the original matrix [A] is not of size 2m, then the matrix [A] can 

be augmented by a diagonal identity matrix to make it 2m. First, 
we illustrate how to obtain the wavelet transform of a vector [Y], 
and then we will illustrate how to take the wavelet transforms of a 
matrix [A]. We first select h‘(n). We then use h’(n) and g‘(n) to 
find the discrete wavelet coefficients, utilizing Equations (70a) and 
(70b). What is going to be different is that we are going to express 
Equations (70a) and (70b) as circular correlations with respect to 
h’(n) and gf (n) ,  or as circular convolutions with respect to h(n) 
and g(n )  , respectively. This is a computationally efficient way to 
carry out convolution by utilizing the FFT. As an example, we first 
create the following 8 x 8 orthogonal matrix [PI as 

J 0 0 -h, +h, -h2 +h3 4 4  +h5 

-h4 +A5 0 0 -h, +h, -h, +h3 I -h2 +h3 -h4 +hs 0 0 -h, +hi 

[In Equation (81), we have used hk to represent h(k)  , to conserve 
space]. This equation is the matrix form of the discrete wavelet 
transform of Equations (70a) and (70b). Inside [PI we have the 
filter coefficients, six in number. Please note that the first four 
rows are due to the filters h’(n) , and the last four rows are due to 

g‘(n) (see Equation (17) for the relationship between h‘(n) and 
g‘(n)).  Therefore, multiplying a vector (say [Y]) by [PI is 
equivalent to filtering (in the transmitted portion) in Figure 1, fol- 
lowed by a sub-sampling of two. The matrix-vector product yields 
u(n) and v(n) . The first four elements are equivalent to u(n) and 
the last four are v(n). The matnx-vector product has already 
incorporated the sub-sampling by a factor of two. The sub-sam- 
pling by a factor of two is accomplished by the shift between the 
elements of each row of the matrix [PI. Now, for [PI to be an 
orthogonal matrix, it is necessary that the following three equa- 
tions, similar to Equation (29) [the normalization constant is set to 
unity] and Equation (30) [the filter is orthogonal to its two-shifted 
version] hold: 

C h 2 ( i )  = 1, 
1 

h(O)h(2) + h(l)h(3) + h(2)h(4) + h(3)h(5) = 0,  (83) 

h(O)h(4) + h(l)h(5) = 0 .  (84) 

Finally, from the boundary conditions for the filter, 
H(z  = I ) = &  and G(z =1)= 0,  we have 

(85)  
1 

h(0) + h(2) + h(4) = - = h(1) + h(3) + h(5) . Jz 
Equations (82)-(85) provide four independent equations, and one 
needs two more to uniquely solve for the h( i ) s .  If one follows 
Daubechies’ procedure for making the wavelets smooth, one would 

need the derivatives of G’P(z = 1) = 0 for p = 1 and p = 2 ,  lead- 
ing to (from Equation (18)) 

-0-h(O)+lh(l)+2h(2)+3h(3)-4h(4)+5h(5)= 0 ,  (86) 

-O*h(O)+lh(l)-4h(2)+9h(3)-16h(4)+25h(5) = 0 .  (87) 

The setting of the higher-order moments of g’(n) to zero guaran- 
tees the smoothness of the wavelets. This, in tun,  provides a recipe 
so that the discrete-wavelet coefficients of the transform drop off 
rapidly, as one goes to the dilated scales from a fine scale. The 
number of zeros of G’P(z) at z = 1 tells us how many basis func- 
tions are needed in Equation (55) for approximating ~ ( t ) .  The 
smoother the function and the higher the order of zeros, the faster 
the expansion coefficients go to zero, and the fewer coefficients we 
need to keep. For piecewise functions, a wavelet basis is better. 
These piecewise functions may have jumps. They may be smooth 
and then suddenly rough. We keep more Coefficients in the rough 

neighborhoods by going to a smaller scale T J .  The mesh adapts 
to ~ ( t )  in a way that Fourier methodology finds difficult. 

If x ( t )  has p derivatives, its wavelet coefficients decay like 

2-np [38]: 

where J is a constant, and &’)(t) represents the pth derivative of 

4) ’ 
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However, since we are dealing with a finite number of terms, 
the drop-off rate of the wavelet coefficients is of little significance. 
The solution of the above equations can be obtained analytically, 
and has been given by Daubechies [ 11 as 

l + f i + J X  
16& 

h(5) = h’(0) = - 

5 + f i  + 3 & Z T  h(4) = h’(1) = - 
16& 

10 - 2 4 1 3  + 2 4 5  + 2&0 
16& 

h(3)  = h’(2)  = - 

(884  
10 - 2 f i  - 2 J G G  

16& 
h(2)  = h’(3) = - 

1+&&6Z7iT 
h(0) = h’(5) = - 

16& 

Once the filters are available, one can form the orthogonal matrix 
[PI by substituting in the above values of h. Let us say we have a 

vector [Yl], of length Q = 25 = 32. We now know how to extend 

the wavelet transform to [ Y ] ] .  We create a [PI] matrix, which is 
32 x 32,  and only six elements of any of its rows are populated by 
the elements of Equation (88); and a matrix of size 32 x 32, similar 
to Equation (81), is also formed. 26 elements per row of the matrix 
are zero. Note that the first 16 rows of [PI] are formed by h’(m), 
and the last sixteen rows, by g’(m) . We pre-multiply [Yl] by [I?,], 

and obtain a vector [Y2]. The last 16 elements of [Y2] are dk,o, 

and they are fixed. This is the result of filtering [Y,] by g(n)  , in 

Figure 5 .  We pre-multiply the first 16 elements of [Y2],  Le., [Y;] 
as shown in Figure 11, by an orthogonal matrix [P2], which is 
16 x 16. Again, only six of the elements of any row of matrix [P2] 
are nonzero. The result will be a vector [Y3] of 16 elements. The 
last eight elements are fixed, as they are dk,, . The first eight ele- 

ments of [Y3], namely CY;], are again pre-multiplied by the 
orthogonal matrix [PI of Equation (81), as shown in Figure 11, 
producing c k , 2  and d k , 2 .  The final result is then the wavelet 
decomposition of the vector Yl . The resultant composite vector of 
32 elements includes the wavelet coefficients resulting from the 
discrete wavelet transform. It is interesting to note that when deal- 
ing with a finite-length vector, the widely presented formula of 
Equation ( 5 5 )  is no longer applicable. Here we use Equation (71). 
Instead, we have a series containing both the scaling functions and 
wavelets. Specifically, for the case we have just considered, we 
obtain a transformed vector of 32 elements, [TI, which is given by 

wavelet coefficients 
[p2116x16[y~~16x1 [y~116x1 

[[y,’l1+ scaling function contribution 

Figure 11. The principles of the wavelet transform, applied to a 
matrix. 

where 

Ck,2  for k = 1,. . .,4 

dk.4,2 fork = 5 ,..., 8 
dk-8,1 f o r k = 9  ,..., 16 ‘ 

dk-lG,O fork = 17,. ..,32 

T ( k )  = (89) 

The coefficients c k , 2  are due to the scaling functions & k ,  and the 
remainder of the coefficients, dk,, ( i  = 0,1,2) are due to wavelets 
V I & .  Note that in this case, even though we have carried out a dis- 
crete wavelet transform, we do not need to h o w  anything about 
the scaling and the wavelet functions 42,k and vl,k. The discrete 

wavelet transform of [Y,] is depicted in Figure 5 .  The choice of 
the filter h’(m) completely defines the entire procedure. Also, note 
that for an infinite sum in Equation ( 5 5 ) ,  we never talk about the 
scaling function in the summation. However, for the finite-sum 
case, the wavelets by themselves are not complete. One needs the 
contribution of the scaling functions. Unfortunately, this very 
important feature is not spelled out explicitly in the literature. 

To compute the inverse of the discrete wavelet transform of 
the resultant vector, one simply reverses the procedure. In this 
case, we start with the smallest level of the hierarchy, and work our 
way through. This is expressed by Equation (74). The inverse 
matrix of all the [PIS in this case is simply their transpose, as [PIS 
are real orthogonal matrices. To compute the two-dimensional 
wavelet transform, one follows the rules of the FFT. One deals 
with all the rows and then all the columns. 

Next, we consider the solution of the matrix equation 
[A][ X] = [Y] , utilizing the discrete wavelet transform. The discrete 
wavelet transform actually does not solve any matrix equations. 
What the wavelet transform does is to preprocess the matrix [A] 
and make it sparse, if some thresholding is applied [31]. 

The basic principle, as outlined by Beylkin, Rokhlin, and 
Coifman [ 181, based on [ 191, is as follows. Let the matrix elements 
be generated from a kemel, such that the magnitude of the ele- 

ments of the matrix [A] decay from the diagonal as - ,where 

i a n d j  may he the row or the column number. Then, if the two- 
li- jl“ 
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dimensional discrete wavelet transform is applied to the system 
matrix [A], the resulting system matrix will be sparse if all the 
elements below a threshold are set to zero. Typically, one would 

have only 10Qloglo elements in the sparse system, where Q is 

the size of the matrix and E is the truncation level, i.e. elements of 
the resultant matrix whose absolute value is less than E will be 
discarded. So, for a 2048x 2048 matrix, the resultant system 
matrix would be sparse by a factor of about 30 [20]. 

(:I 
Order YO of 

of Filter Nonzero 
~ + 1  Elements 

4 7.58% 
8 6.28% 
16 6.41% 
32 6.54% 

Consider a real matrix [A], of dimension Q x Q ,  where Q is 
large. Let the elements of [A] be defined by 

Error in Cond[B,] 
Reconstruction 

6 
,58 10-4 4.66 x 106 
,54 10-4 5.56 x lo6 
,52x10-4 5.74 107 
,5iX10-4 1.57 107 ( 1  if i = j  

Order 
of Filter 

We now apply a wavelet transform to the matrix [A]. This is 
equivalent to pre- and post-multiplying [A] by a number of 
orthogonal matrices. Let [SI be the product of the orthogonal 

matrices [Pi], as explained earlier for the one-dimensional discrete 
wavelet transform explained by Figure 1 1 : YO of Error in Cond[B,] 

Nonzero Reconstruction 

Even though the sizes of the various [Pl]s are not the same, we 

make them the same by supplementing, say, [P2] by a diagonal 

unity matrix, [I], to make it the same size as [P,]. Thus, 

(92) 

Since the product of all orthogonal matrices is an orthogonal 
matrix, [SI is an orthogonal matrix. When the wavelet transform is 
applied to the system of equations [A][X] = [Y] ,  one obtains 

(93) 

where T denotes the transpose of a matrix. Since [SI is an 
orthogonal matrix, we have 

where [I] is the identity matrix. So, we take the wavelet transform 
of [XI and [Y] to form [X'] and [Y'], and we take the wavelet 
transform of [A] to form [B] . Hence, Equation (93) reduces to 

[B][X'] = [Y'] with [B] = [S][A][S]T. (95) 

The unknown [XI is solved for fi-om this by 

[XI = [sIT[xr]. (96) 

[B] is the two-dimensional wavelet transform of [A], and has 
been computed by a series of one-dimensional transforms to its 

rows and columns, which is similar to carrying out a two-dimen- 
sional FFT. 

Now, we consider [A] to be of the form in Equation (go), 
and choose various order filters (i.e., M = N + 1) for h(n) , with 4, 

8, 16, or 32 terms. Next, we compute [B] = [S][A][SIT ([SI being 
given by Equation (91)), and then apply a threshold to the elements 
of [B] to obtain matrix [B,]. The matrix [B,] is an extremely 

sparse matrix. For example, if the threshold is set at and the 
size of [A] is Q = 5 12, and if we then apply a fourth-order filter 
(Le., M = N+1= 4 )  h(n) , we find that only 7.58% of the ele- 
ments of [Ba] are nonzero (see Table 1). 

Next, take that sparse matrix [Ba], and try to reconstruct [A] 
by computing 

Define an average value, 6, of the error between the elements of 

[ A a l  and [AI by 

From Tables 1-6, it is seen that the matrix [A] can be recovered 

from [B,] to provide [A,] with an average error that is lower than 
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Table 3. The sparseness, error in reconstruction, and condition 
number of the two-dimensional wavelet transform of a matrix 
[A] of the form in Equation (go), as a function of the order of 
the filter, with a threshold of 0.001, Q = 2048, and the condi- 

tion number of [A] given by Cond[A] = 6.80 x 10’. 

Error  in Cond[B,] 
[-:o 1 Reconstruction 1 

Table 4. The sparseness, error in reconstruction, and condition 
number of the two-dimensional wavelet transform of a matrix 
[A] of the form in Equation (90), as a function of the order of 
the filter, with a threshold of 0.0001, Q = 512, and the condi- 

tion number of [A] given by Cond[A] = 4.45 x 10‘. 

Elements 

Table 5. The sparseness, error in reconstruction, and condition 
number of the two-dimensional wavelet transform of a matrix 
[A] of the form in Equation (90), as a function of the order of 
the filter, with a threshold of 0.0001, Q = 1024, and the condi- 

tion number of [A] given by Cond[A] = 3.02 x lo7. 

Error  in Cond[B,] 
=:io I Reconstruction 1 

Table 6. The sparseness, error in reconstruction, and condition 
number of the two-dimensional wavelet transform of a matrix 
[A] of the form in Equation (90), as a function of the order of 
the filter, with a threshold of 0.0001, Q = 2048, and the condi- 

tion number of [A] given by Cond[A] = 6.80 x lo7.  

Error in Cond[B,] 

Elements 

the value of the threshold used to eliminate the wavelet coefficients 
of [A], (or, equivalently, the elements of matrix [B] ). The number 

of [P,] matrices (see Equation (92)) used for obtaining the results 

appearing in Tables 1-6 is INT [ log2 [21)] __ (LNT stands for “the 

integer part of’). Please note that the wavelet transform of a real 
function is always real. 

The other interesting property to note is that utilizing a 
higher-order filter does not necessarily produce larger sparsity, as 
shown in Tables 2,4, and 5. 

The computational time in the computation of the wavelet 
transforms in the compression of a matrix is now investigated. We 
consider a filter of length L = N + 1 ,  and the data matrix is of 
length Q. Then the one-dimensional wavelet transform of [Y] may 
be done (we carry out the initial product at the highest stage of 
resolution and then down-sample) by the following number of 
mathematical operations: 

QL 1+-+-+ ... =2QL G : )  (99) 

To carry out the two-dimensional wavelet transform of [A], we 

require (2QL)* operations. Therefore, to produce the sparse sys- 

tem of Equation (95), we require 4Q2L2 + 2QL operations, result- 
ing in a matrix [B] that contains, at most, of the order of O(Q) 
elements. If we now apply the conjugate-gradient method to solve 
the sparse system, per iteration we will require O(2Q) multiplica- 
tions to carry out two matrix-vector products. Even if the conju- 
gate-gradient method converges in at most Q steps (where Q is the 
number of unknowns), then we have solved Equation (95) in an 

operation count of Q0(2Q) ,  in addition to 4Q2L2 + 2QL opera- 

tions. Observe that this O( Q2) is significantly lower than the con- 

ventional Q3/3 operations typically required in a solution of a 
matrix equation of size Q. This i s  essentially the contribution of 
Beylkin, Coifman, and Rokhlin [18]. 

However, it is interesting to note that the nature of the varia- 

tion ____ may also be the result from a convolution. In that 
li - jl“ 

case, the FFT would be much faster than the discrete wavelet trans- 
form, as the FFT essentially diagonalizes the operatorimatrix. 
However, for other cases, even when the variation is not due to a 
convolution, the wavelet result still holds. 

The most disturbing fact about the discrete wavelet transform 
is that the condition number of the matrix changes after the trans- 
form. It has been shown earlier that the wavelet transform of the 
matrix [A], which is [B] , has been formed through a series of 
orthogonal transformations. Therefore, by definition, the condition 
number of the matrix should not change as one goes from [A] to 
[B] . However, as is clear from the six tables, there is a change in 
the condition number of the transformed matrix when one uses a 
different-order filter. Also, the condition number is dependent on 
the threshold used to truncate the elements. There appears to be a 
lack of systematic change in the results. In this case, the matrix 
[A] is real. 
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c As a final example, consider the electromagnetic scattering 
from an array of wires, randomly spaced. We considered 56 thin- 
wire antennas. Six were of length 2.7A and radius 0.0051. The 
remaining 50 were 32 long and of the same radius. The 56 wires 
were located inside a parallelepiped of dimensions 
271xX5/2x21/2.  The usual MOM application led to a 
2096 x 2096 matrix. The matrix was compressed, utilizing a filter 
h(n)  of length 16. The compression for the real part of the imped- 
ance matrix was 17.8%, Le. 749289 of the elements of the matrix 

x (4 Y D ( 4  

Figure 12. The symbol used to represent decimation by a factor 
of two. 

0 1  

were above a threshold of For the imaginary part of the 
impedance matrix, only 3.28% of the elements were nonzero. This 
sparse impedance matrix was then used in a conjugate-gradient 
routine, to solve the transformed Equation (93). Convergence in 

the residuals of was obtained in 95 iterations. This simple 
example demonstrates the potential for the solution of large matrix 
equations. 

There are a few points that are worth mentioning. First of all, 
if the compression was not done on the real and the imaginary 
parts of the matrix separately, then the degree of compression was 
merely 35%, as opposed to 17.8%. This is significant. Secondly, 
the size of the impedance matrix has to be a power of two. Thirdly, 
the conjugate-gradient method takes the same number of iterations 
(95) to converge to the solution when applied to the original dense 
matrix, or to the sparse matrix, as the transformation is presumably 
orthogonal, from a strictly theoretical point of view. However, now 
as the entire compressed matrix is in memory, the number of page 
faults is small, and so the result can be obtained quite efficiently. 

Note that one of the disadvantages with this procedure is that 
the size of the matrix Q has to be a power of two for efficient 
implementation of the wavelet transform. 

6. Conclusion 

The discrete wavelet transform has been presented from first 
principles, utilizing the basic concepts of filter theory. It has been 
shown how to construct the filters h(m) that produce the wavelets 
and the scaling functions. However, for the discrete case, the intro- 
duction of wavelets and scaling functions are not at all necessary. 
Finally, it has been shown how to apply this technique to the solu- 
tion of large matrix equations. This was accomplished by com- 
pressing a large matrix by means of the discrete wavelet transform. 
The disturbing point is that the condition number before and after 
the transform and thresholding is quite different as a function of 
the order of the filter. 
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9. Appendix 1. The principle of decimation by a factor of two 

Pictorially, decimation by a factor of two is represented by 
the symbol shown in Figure 12, where the decimated signal, 
yD(n) ,  has been generated from the original signal, x ( n ) .  In the 
sampled domain, this is equivalent to obtaining the waveform 
shown in Figure 13. Note that altemate sample values have been 
dropped. Therefore, from Figure 13, in the sampled domain 

4 > 3 

Figure 13. The waveform obtained in the sampled domain 
from decimation by a factor of two. 

P"' 

Figure 14. The spectrum of the original signal. 

Figure 15. The spectrum of the down-sampled signal. 

or in the z transform domain, 

Yo(,) = - yyD(n) z -n  = C X ( M ) Z - " 2  

n form even 
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= ‘[x(S) + Xj-&)I. 
2 

If we observe the spectrum, then one observes that the original sig- 
nal has the spectrum given in Figure 14. Once the signal is down- 
sampled, the spectrum is as given in Figure 15. Hence, the spec- 

trum of YD(e’”) is aliased, and it is the sum of 

10. Appendix 2. The principle of expansion by a factor of two 

Pictorially, up-sampling can be represented by the symbol 
shown in Figure 16. In the sampled domain, this is equivalent to 
inserting a zero between the sampled signals, as shown in Figure 
17. Mathematically, this is equivalent to 

Figure 16. The symbol used to represent up-sampling by a fac- 
tor of two. 

P 

Figure 17. Up-sampling by a factor of two is equivalent to 
inserting a zero between the sampled signals in the sampled 
domain. 

Figure 18. The spectrum of the original signal. 

Figure 19. The spectrum of the up-sampled signal. 

or, in the transform domain 

If we observe the spectrum of YL(z) ,  then we observe that the 
original signal in Figure 18 is transformed into the spectrum of Y2 , 
as shown in Figure 19. 
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August 13-21,1999, University of Toronto, Canada 

irst Call for Papers Now Available 

The first announcement booklet and call for papers for the XXVIth General Assembly of the 
Intemational Union of Radio Science is now available. It includes the schedule for the sessions 
of the 10 URSI Commissions, as well as the instructions and format for submitting papers. There 
is also information on the Young Scientists Program and a Canadian Student Competition. 
The information in this first announcement booklet is essential for anyone wishing to submit an 
abstract of a paper to be presented at the General Assembly. The booklet can be obtained by 
sending a request with full address and contact information to 

URSI GA ‘99 Management Office 
National Research Council Canada 

Montreal Road, Building M-19 
Ottawa, Ontario, Canada K1A OR6 

Tel: (613) 993-7271; Fax: (613) 993-7250 
E-mail: URSI99@nrc.ca 

Those interested can also obtain the information, and request being placed on the mailing list, at 

The deadline for receipt of abstracts is January 15,1999. 
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