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Abstract- This paper details a preliminary investigation into 
space-time-waveform adaptive processing for waveform diverse 
distributed apertures. The large baseline of such a distributed 
radar results in angular resolution that is orders of magnitude 
better than the resolution of a monolithic system (single large 
radar) with the same power-aperture. This capability comes at 
the cost of grating lobes (multistatics with evenly spaced 
apertures) or high sidelobes (multistatics with randomly spaced 
apertures). This paper develops some preliminary solutions to 
these drawbacks associated with distributed apertures. In 
particular, the use of approximately logarithmic spacing with 
each aperture transmitting orthogonal waveforms provides 
excellent detection performance. 

 

I. INTRODUCTION 

This paper investigates the application of adaptive 
processing to a relatively new concept in radar systems: 
waveform diverse distributed apertures.  In such a radar, the 
transmit/receive aperture is divided into a number of 
subapertures that can be placed in various locations relative 
to each other.  The distributed radar operates in a multistatic 
mode with all apertures transmitting (either the same signal, 
different uncorrelated signals or orthogonal signals).  
Multistatic radars can provide significantly improved target 
tracking and interference rejection because of the large 
baseline between the various apertures.  The large baseline 
results in angular resolution that is orders of magnitude better 
than the resolution of a monolithic system (single large radar) 
with the same power-aperture.  This capability comes at the 
cost of grating lobes (multistatics with evenly spaced 
apertures) or high sidelobes (multistatics with randomly 
spaced apertures). 

In a related paper, we have shown that a new mode of 
multistatic operation is required to achieve the improved 
interference rejection while maintaining the systems’ 
surveillance capability.  In this mode, the subapertures radiate 
mutually orthogonal waveforms, however, each subaperture 
receives and processes all orthogonal waveforms.  Consider a 
distributed aperture with N subapertures.  Since each 
subaperture receives the returns form all transmitted 

waveforms, there are N × N returned signals for each radar 
range. A space-waveform-range data cube therefore replaces 
the usual space-time-range data cube. In this paper, the 
orthogonal waveforms are chosen to be relatively narrowband 
signals offset in center frequency.  Here we report on the use 
of optimal adaptive space/waveform processing for such a 
distributed aperture. In particular, we compare this situation 
to the traditional case where subapertures transmit the same 
waveform.   

In such a system, there are a few unique concepts: 

§ Adaptive space/waveform processing: Traditionally, 
adaptive processing has focused on the space and time 
dimensions leading to space-time adaptive processing 
(STAP).  The spatial steering vector is related to the look 
direction while the temporal steering vector is 
determined by the look Doppler frequency.  In our case, 
the time dimension is replaced with the waveform 
dimension. The space/waveform steering vector is 
determined by the look angle uniquely with a different 
spatial steering vector for each transmit frequency. 

§ Spacing of subapertures/waveforms (frequencies): 
Distributing the apertures and separating the transmit 
frequencies introduces two new degrees of freedom 
available to the radar designer: the spacing between the 
antenna elements and the frequencies. Equally spaced 
elements with equally spaced frequencies can lead to 
grating lobes that can reduce the effectiveness of the 
adaptive process. Here we investigate various 
configurations, comparing them in terms of grating 
lobes, mainbeam width, etc.  Future work will investigate 
the optimization of these parameters with respect to 
some performance measures. 

§ Targets/interference are not necessarily in the far field: 
By common definition, the fair field region is determined 
by three conditions: R > λ, R > D and R > D2/λ where R 
is the radial distance, D is the total aperture baseline and 
λ is the frequency of operation [1].  From a physical 
point of view, the far field may be defined as the region 
where the spatial steering vector is effectively 



independent of the radial distance.  In our example, we 
choose D = 200m with a center frequency 10GHz, 
setting the beginning of the far field at approximately 
1500km. The target and interference are therefore not 
necessarily in the far field.  This has serious implications 
in the type of adaptive processing scheme chosen, 
including choice of secondary data to estimate the 
interference covariance matrix.  Similar to STAP for 
bistatic radar, this range dependent steering vector 
reduces the secondary data available to estimate the 
covariance matrix.[2, 3]. 

In addition to the above, another important consideration is 
position errors in the array. Due to the large baseline, a 
relatively small error in position may be comparable to the 
wavelength of operation. This is especially true for radars 
operating at X-band.  

Section II describes the system model and the adaptive 
processing scheme. Section III presents some preliminary 
results for space-time-waveform adaptive processing for 
waveform diverse distributed apertures. Finally, Section IV 
presents some conclusions and points to some future work. 

II.  SYSTEM MODEL AND ADAPTIVE PROCESSING SCHEME 

The elements of the linear array are not equally spaced and 
each element in the array may transmits at a frequency. Let 
{xn , n = 0,1,2…N-1} denote the positions of the N elements, 
each with corresponding frequency {fn , n = 0,1,2…N-1}. 
Each element receives and processes the signals from all N 
transmissions. Consider a scenario wherein each element 
transmits M pulses within a single coherent pulse interval 
(CPI) at a pulse repetition frequency (PRF) of fr. Due to these 
N transmissions, the return signal from a unit target at the nth

 

element, kth frequency and mth pulse, for a target at relative 
velocity v and relative angle ϕ is given by 
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where fdk is the Doppler frequency associated with transmit 
frequency fk, i.e. 
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This signal can be written as a length N2M space-
waveform-time steering vector 
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where each length NM vector, sk is the traditional space-time 
steering vector for center frequency fk 

( ) ( )ϕkkk v abs ⊗= ,          (5) 
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Note that both the spatial and temporal steering vectors are 
defined in terms of the N frequencies of operation fk. Also, 
unlike the traditional spatial steering vector for a linear equi-
spaced array, the spatial steering vector here is defined in 
terms of the position of the elements xk.  

The jammer signal has a structure similar to the target 
signal. Here we model Gaussian barrage noise jammers. 
Hence, the only difference between the target and jammer 
models is that the temporal steering vector is replaced by a 
vector of independent, complex, Gaussian random variables. 
The jammer signal, for frequency index k is modeled as  

( )JJJJ ϕξ kkkk abs ⊗= ,         (8) 

where ξJk is the amplitude of the jammer and the temporal 
vector bJ is a white, complex Gaussian random vector of 
independent random variables with zero mean and unit 
variance. The length N2M vector of jammer signal is therefore  
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Noise is modeled as a white complex Gaussian random 
variable for all frequencies, pulses and elements. The overall 
received signal, is therefore given by, 

( ) nssx ++= J,ϕξ vt ,        (10) 

where n is complex Gaussian noise vector.  

Using the signal in Eqn. (10), we can now implement a 
space-time-waveform adaptive processing algorithm. The 
algorithm chosen here is the traditional optimal approach 
where the N2M elements of the received signal x are 
combined using a weight vector w. The weight vector is 
determined using the relation 

w = R-1s,          (11) 

where s is the space-time-waveform steering vector of Eqn.         
(4) and R is the interference plus noise covariance matrix.  
Note that in practice, this matrix must be estimated. 

 



A. Data Generation and Implementation of Adaptive Process 

Using Eqn. (10) above, received data can be generated 
corresponding to the chosen scenario.  Repeating this several 
times, e.g. (P+1) times, yields a space-time-waveform-range 
hypercube, organized as a N2M × (P + 1) matrix. Each 
column of this matrix corresponds to a single range. To 
implement an adaptive process, using this data, a space-time-
waveform covariance matrix is estimated.  

In the simulations presented in Section III, the data for the 
(P + 1) ranges is generated without a target, i.e. ξt = 0. Then a 
target with chosen power is injected into the middle range, p 
= (P/2+1). For the qth range, an interference covariance 
matrix is estimated by using a sliding window 
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where the superscript H represents the Hermitian of  a 
complex matrix and xp represents one of (P+1) snapshots of 
data. In general, for a reasonably accurate estimate of R, we 
need P > 2N2M [4]. The adaptive weights are obtained using 
Eqn. (11).  Using these weights we define the modified 
sample matrix inversion (MSMI) statistic, which as the 
property of having constant false alarm rate (CFAR) in 
Gaussian interference, 
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This statistic is plotted as a function of range. Clearly, if 
the range corresponds to the one with the target, the output 
statistic should be as large as possible, while if the range does 
not contain a target, the output MSMI statistic should be 
close to zero. 

These weights are also used to obtain the output signal-to-
jammer-ratio (SJR), assuming a unit target, as 
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Note that the jammer signal sJ
 includes the jammer 

amplitude. In this analysis, to illustrate jammer suppression, 
this SJR is plotted as a function of jammer angle ϕ. 

III.  PRELIMINARY RESULTS 

Unless stated otherwise, the parameters chosen in the test 
scenarios are given in Table 1.  

 

 

 

 

Table 1: Parameters for test scenario 

N 6 PRF 2kHz 

Center 
Frequency 

10GHz 
Jammer-to-
Noise Ratio 

50dB 

Frequency 
Offset 

100MHz Target SNR 0dB 

Radar 
Baseline 200m 

Target 
velocity  (v) 10m/s 

Pulses in CPI 
(M) 

12 
Number of 
range bins   

(P + 1) 
1728 

The frequency offset given in Table 1 is used in the case 
where different elements transmit on different frequencies. 
When using the frequency offset, each transmission is 
separated by 100MHz.  The first null beam width of such an 
array is 0.014o. 

A. Statistic Versus Range 

 
Figure 1: MSMI statistic versus range. No frequency offsets. 



 
Figure 2: MSMI statistic versus range. Using frequency offsets (orthogonal 

waveforms) 

The first example illustrates the use of orthogonal 
waveforms to separate target from interference. The target is 
at broadside in range bin 865. A 50dB barrage noise jammer 
at 0.04297o, approximately three first-null beamwidths away, 
hinders target detection. Figure 1 and Figure 2 plot the MSMI 
statistic versus range for two cases considered here: in Figure 
1, all six elements transmit at the same frequency whereas, in 
Figure 2, each element transmits orthogonal waveforms 
(waveforms separated in center frequency by 100MHz). Both 
figures plot the MSMI test statistic versus range close to the 
range cell where the target was injected. As is clear from the 
figures, when all elements transmit at the same frequency, the 
target cannot be distinguished from the interference. 
Whereas, when each element transmits a orthogonal 
waveforms (different frequencies), the target is clearly 
visible, with approximately a 6dB separation between target 
and interference.  

The rest of the examples plot the output signal-to-jammer 
ratio (SJR) versus jammer angle. 

B. SJR versus Jammer Angle.  Equally Spaced Elements 

The second example, again, compares the use of the same 
frequency from each element with using multiple frequencies 
(orthogonal waveforms). The elements of the array are 
equally spaced. The jammers are stepped over angles spaced 
by 1.4× 10-3 degrees. This example uses only one pulse, i.e. 
M = 1. 

Figure 3 plots the output SJR versus angle for the case 
where all elements transmit at the same frequency. The 
output SJR is rather high for most angles. However, at certain 
angles for the jammer, the SJR shows deep nulls as the null in 
direction of target. The large null at the target look direction 
is expected as the jammer and target cannot be at the same 
location. The deep nulls in the other directions are due to the 
grating lobes associated with equal spacing and all elements 
transmitting at the same frequency.  

 

Figure 4 plots the SJR for the case where each element 
transmits at a different frequency. The deep null at the target 
is visible, however, clearly there is a huge improvement in 
grating lobes. Off-target nulls still occur, the nulls are much 
shallower and much further away from the target location. To 
confirm the fact that grating lobes are reduced in this case, in 
Figure 4, the analysis is conducted over a much larger 
angular extent than in Figure 3. The resolution, however, is 
the same. Note that the off-target nulls in Figure 4 are broader 
than the off-target nulls in Figure 3, i.e. while using multiple 
frequencies helps, the off-target nulls broaden. This is true 
due to the equal spacing between array elements.  

 

 
Figure 3: Signal-to-jammer ratio. Equal frequencies and element spacing. 

 
Figure 4: Signal to jammer ratio versus jammer angle. 



 
Figure 5: Signal-to-jammer ratio. Log spacing and the same frequency. 

 
Figure 6: Signal to jammer ratio. Log spacing and orthogonal waveforms. 

The next example illustrates the use of unequal spacing, 
here close to log-spacing. The six elements are located at 0m, 
20m, 60m, 140m, 190m and 200m. Figure 5 plots the output 
SJR versus jammer angle for the case where all elements 
transmit at the same frequency. In comparing with Figure 3, 
clearly the grating lobes are significantly reduced in number. 
However, note that there still exist grating lobes that are 
spaced further away. Figure 6 plots the SJR for the case of 
using orthogonal waveforms (unequal frequencies). Here the 
grating lobes are totally eliminated and the output SJR is 
high, except at extremely close to the target look direction. 
The null is less than 1.4×10-3 degrees wide. 

IV. CONCLUSIONS AND EXTENSIONS  

This paper has documented a preliminary investigation into 
the use of waveform diverse distributed apertures. The use of 
diverse waveforms, in the form of frequency offset 
orthogonal signals, overcomes a significant drawback with 
distributed apertures, i.e. grating lobes. By choosing an 

approximately logarithmic spacing, coupled with frequency 
diverse waveforms, grating lobes are eliminated.  

The analysis here is undertaken under ideal conditions. The 
most important extension would be to include range 
dependent target and jamming signals. The extremely long 
radar  baseline sets the beginning of the far field beyond any 
practical ranges. Similar to bistatic radar, the range dependent 
data would reduce the secondary data available to accurately 
estimate an interference covariance matrix. This issue leads 
to another possible extension, namely the development of 
new adaptive processing schemes specifically for waveform 
diverse distributed apertures. 
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