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ABSTRACT

This paper presents the preliminary development of adaptive
signal processing for distributed, waveform diverse, antenna ar-
rays. The long term goal is to develop practical waveform-time-
space adaptive processing algorithms for distributed apertures.
A crucial issue identified in previous works is that, in prac-
tice, the target and interfering sources are not in the far-field
of the antenna array. Recent work by the authors develops the
model required to generate simulated data. This paper extends
this work, focusing on using the model to formulate adaptive
signal processing algorithms specifically for waveform diverse
distributed apertures.

I. INTRODUCTION

In the field of radar signal processing, a recent exciting pro-
posal has been to combine the benefits of extremely sparse ar-
rays with the benefits of waveform diversity. Such a system is
based on an array of sub-apertures placed several thousands of
wavelengths apart. Waveform diversity has been proposed to
deal with the resulting problems of grating lobes. Each sub-
aperture of the array transmits a unique waveform, orthogonal
to waveforms transmitted by the other apertures. Initial studies
have shown that while providing a remarkably narrow main-
beam, such a system can also eliminate grating lobes [1, 2].

So far, research into waveform diverse distributed apertures
has mainly been for proof-of-concept. In the area of adaptive
signal processing for such systems, in particular, the studies
have been limited and have generally ignored the specifics of
distributed apertures [1, 3]. Existing space-time-adaptive pro-
cessing (STAP) algorithms were applied to the waveform-time-
space adaptive processing (WTSAP) case. Waveform diversity
is achieved using multiple narrow band transmissions. While
the results were promising, in general, the studies serve more to
highlight the work remaining in developing practical adaptive
processing for waveform diverse distributed apertures.

A very important result that came out of the work in [1, 2],
is that given the extremely long baselines (thousands of wave-
lengths), the ranges of interest are not in the far field of the
antenna array, indeed the entire notion of a steering vector has
to be revisited. The range dependence of target and interfer-
ence has significant impact on the performance of adaptive al-
gorithms and requires the formulation of algorithms specifically
to address this issue.

In developing adaptive signal processing for airborne radar
arrays, a crucial development was the availability of data mod-
els for the target and interference [4]. A recent contribution
in [5] was a similar model for the case wherein the steering
vector is a function of range. To account for the frequency di-
versity, the processing scheme uses true time delay between the
widely distributed apertures. The interference is modelled as
a sum of several low power interference sources, each with a
range dependent contribution to the overall interference. This
paper presents results of preliminary investigations into using
adaptive processing using this model to generate data. The ex-
amples demonstrate the importance of frequency diversity in
eliminating grating lobes.

This paper is organized as follows. Section 2 illustrates the
problem and introduces the system model used for the steering
vector and the interference model. Section 3 presents results of
numerical simulations using the model developed in Section 2.
Section 4 concludes the paper and points to future work.

2. SYSTEM MODEL

In the case of airborne radar, all sources are in the far-field
and the steering vector depends only on the angle between the
source direction and the array baseline. The data model, such as
that developed in [4], for both target and interference depends
heavily on the use of such a steering vector. The situation is not
as simple for distributed arrays. Given an antenna array with
largest dimension D, operating at wavelength λ, the distance to
the far field must satisfy [6]

r � D, (1)

r � λ, (2)

r � 2D2/λ. (3)

Using typical values for distributed apertures, D = 200m,
λ = 0.03m, implies that the far field begins at a distance of ap-
proximately 2700km. Clearly for widely distributed apertures,
both targets and interfering sources are not in the far field. This
fact requires that any analysis of waveform diverse apertures
start “from scratch”. The notion of a steering vector still exists,
but now depends on both angle and range, i.e., each point in
space corresponds to in its own steering vector. Furthermore,
coherent processing of the signals over the distributed array



with frequency diversity requires true time delays, as opposed
to the phase shifts used in narrowband processing. Formulating
the steering vector requires accounting for these issues.

2.1 System Model and Steering Vector

The model of the distributed aperture assumes the array com-
prise N elements distributed over the x − y plane, at points
(xn, yn), n = 1, . . . , N . Each element in the array trans-
mits a coherent stream of M linear-FM pulses, with common
bandwidth B with pulse repetition interval (PRI) Tr. How-
ever, each element transmits at a different central frequency
fn, n = 1, . . . N . The transmission scheme uses true time de-
lay to focus on a look-point (Xt, Yt, Zt). This is in contrast to
an airborne radar wherein a transmitting array uses phase shifts
to transmit in a look direction. The return signal at all N fre-
quencies is received and processed at all N elements, i.e., the
return signal over space, time and frequency can be written as
a length-N2M vector. The model developed here was initially
proposed in [5] and is summarized here for completeness.

The receiver uses true time delay to coherently
process all N frequencies. Denote as Dn =√

(X − xn)2 + (Y − yn)2 + (Z − zn)2, the distance of
the look point to the nth element. The time delay used by the
nth element on receive is

∆Tn =
max{Dn} −Dn

c
, (4)

where c is the speed of light. This is the time delay introduced
to the signal at the nth receive element. By using true time
delay, the normalized response at the N elements due to all N
frequencies for a target at the look point is just a vector of ones,
i.e., the space-time-frequency steering vector, s, is given by

s = st ⊗ ssf , (5)

st =
[
1, ej2πfdTr , . . . , ej(M−1)×2πfdTr

]T
, (6)

ssf = [1, 1, 1, . . . , 1]T , (7)

where ⊗ denotes the Kronecker product, fd the target Doppler
frequency, st the length-M temporal steering vector as in [4]
and ssf the length-N2 space-frequency steering vector of ones.

2.2 Interference Model

As in the case of airborne radar [4], interference here is mod-
elled as the sum of many low power sources. However, due to
frequency diversity and true time delay, the interference model
is far more complex than in the airborne radar case. We be-
gin by deriving the contribution for an individual interference
source for one frequency fn. The transmitted signal over M
coherent pulses with pulse shape up(t) is given by

s(t) = u(t)ej2πfnt+ψ;u(t) =
M−1∑
m=0

up(t−mTr), (8)

where ψ is a random phase shift. The received signal at element
i due to this transmitted signal at frequency fn is

r̃ni (t) = Acu(t− τi)ej2π(fn+fdc)(t−τi), (9)

where Ac is the complex amplitude, with random phase (also
incorporating ψ), fdc the Doppler frequency of the interference

source and τi =
(√

(xi − xl)2 + (yi − yl)2 + (zi − zl)2
)
/c

is the delay from the lth interference source to the ith element.
After down-conversion and delaying the signal by ∆Ti, the
baseband signal at element i is

rni (t) = Acu(t− τi − ∆Ti)e−2πfn(τi+∆Ti)

× ej2πfdcte−j2πfdc(τi+∆Ti). (10)

After matched filtering with the time reversed pulse shape, the
signal becomes

xni (t) =
∫ ∞

−∞
ri(τ)u∗p(τ − t)dτ, (11)

=
M−1∑
m=0

Ace
−j2πfn(τi+∆Ti)ejm2πfdcmTr ×

∫ ∞

−∞
up(τ − τi − ∆Ti −mTr)u∗p(τ − t)

ej2πfdc(τ−τi−∆Ti−mTr)dτ. (12)

The final integral is recognized as the ambiguity function of the
pulse shape evaluated at the interference source Doppler fdc.
Therefore,

xni (t) =
M−1∑
m=0

Ace
−j2πfn(τi+∆Ti)ej2πfdmTr

χ(t−mTr − τi − ∆Ti, fdc), (13)

where χ(τ, f) is the ambiguity function of the pulse shape
up(t) evaluated at delay τ and Doppler f . Sampling this sig-
nal every t = kTs corresponding to each range bin and using
χ(mTr, f) � 0,m �= 0,

xni (kTs) =
M−1∑
m=0

Ace
−j2πfn(τi+∆Ti)ej2πfdmTr

χ(kTs −mTr − τi − ∆Ti, fdc), (14)

Finally, given Nc interfering sources at location {xl, yl, zl}Nc

l=1

with corresponding Doppler frequency f ldc, the received signal
the ith element on the mth pulse at frequency fn is

xni (kTs,m) =
Nc∑
l=1

Alce
−j2πfn(τ l

i+∆Ti)ej2πf
l
nmTr

χ(kTs − τ li − ∆Ti, f ldc), (15)

Note that ∆Ti, defined in Eqn. (4), remains the delay from the
look point to the ith element.

3. NUMERICAL SIMULATIONS

The development of the model in Section 2 is motivated by a
desire to develop adaptive processing for the case of waveform
diverse, distributed apertures This section presents the results



TABLE I
PARAMETERS COMMON TO ALL EXAMPLES

Parameter Value Parameter Value
N 16 M 8
B 10MHz Tp 10µs

PRI 5Tp Target SNR 10dB
Target Velocity 50m/s Freq. Offset 100MHz

Xt -86.51m Yt -333.12m
Zt 200km INR 50dB

of numerical simulations using the model developed above. In
keeping with the nascent nature of this research area, the ex-
amples are preliminary in nature focusing on the fully adaptive
processing scheme [4]. The examples serve to illustrate the im-
portance of frequency diversity and the need for range depen-
dent adaptive processing. However, the first example illustrates
the importance of frequency diversity using the non-adaptive,
matched filter. The data does not include interference.

All examples use the same parameters, shown in Table I. The
array uses a nominal center frequency of 10GHz. In the table
Tp refers to the duration of each linear-FM up-chirp. The fre-
quency offset is the difference between carrier frequencies of
the N transmissions. The array elements are uniformly dis-
tributed in the x− y plane on a square 200m× 200m grid. The
interference-to-noise ratio (INR) is relevant only if interference
data is included in the simulation.

3.1 Example 1: Need for Frequency Diversity

This example illustrates the need for frequency diversity,
without considering interference. The data includes a sum of
a target and additive white Gaussian noise (AWGN). The tar-
get is at a range of 200km, in the radial (z) direction. Figure 1
plots the beampattern in the transverse, x−direction at the tar-
get range. It should be mentioned that since the steering vectors
are range dependent, the beampattern is in fact a plot of the sig-
nal strength versus the transverse coordinate. Note the closely
spaced grating lobes. The range dependence of the steering vec-
tor results in a very small decay in the grating lobe level further
away from the target location Xt. However, clearly, the decay
is inadequate for purposes of target detection. Figure 2 plots
the beampattern in the radial z-direction. As expected, grating
lobes do not occur.

Figures 3 and 4 plot the beampatterns when including fre-
quency diversity. As seen in Fig. 3, the use of frequency diver-
sity eliminates the grating lobes. Note, also, the asymmetrical
beampattern due to the range dependence. Figure 4 illustrates
the significant improvement in range resolution on using fre-
quency diversity, coupled with true time delay processing.

3.2 Example 2: Need for Adaptive Processing

This example illustrates the effect of interference and the use
of adaptive processing. The array uses 16 elements equally
spaced in x and y coordinates. The overall length of the array in
each dimension is 200m. Interference is modelled as a spheri-

−1500 −1000 −500 0 500 1000 1500

−16

−14

−12

−10

−8

−6

−4

−2

0

Xrange (m)

dB

Fig. 1. Matched filter processing along the transverse, x-direction. No fre-
quency offset.
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Fig. 2. Matched filter processing along the radial, z-direction. No frequency
offset.

cal cluster of 104 low power interfering sources offset from the
target location in the transverse direction by 1.6km. The radius
of the interference cluster is set to 400m.

Figure 5 plots the results of non-adaptive processing as a
function of the transverse, x−direction, Figure 6 plots similar
results for the radial z-direction. As is clear, the strong inter-
ference completely buries the weak target. The non-adaptive
pattern in the radial direction clearly indicates the extent of the
interference sources.

Figure 7 plots the modified sample matrix inversion (MSMI)
statistic [4] as a function of the transverse x-direction. The lim-
ited interference range limits the available secondary data. This
adaptive processing therefore uses only M = 3 pulses in the
CPI. All interference range cells are used to estimate the in-
terference covariance matrix. Note that even with using three
pulses, the target is clearly identified within interference. Fig-
ure 8 plots the MSMI statistic versus the radial, z-dimension.
As compared to Fig. 6, the target is clearly detected with signif-
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Fig. 3. Matched filter processing along the transverse, x-direction.
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Fig. 4. Matched filter processing along the radial, z-direction.

icantly improved range resolution.

II. CONCLUSIONS AND FUTURE WORK

This paper has taken the initial steps toward developing adap-
tive processing for distributed aperture, frequency diverse, ar-
rays. The steps are parallel to those undertaken in the 1990s
that proved successful in the development of STAP for airborne
radar, starting with the development of a data model [4]. Based
on the realization that the target and interfering source are not
in the far-field of the array, this paper develops a data model ac-
counting for range dependence while accounting for true time
delay for multiple frequency bands. The numerical examples
illustrate the importance of having such a data model. The data
model is used here to estimate the beampattern and beamwidths
in both the transverse and radial directions. The model is also
used in a single numerical example illustrating the importance
of adaptive processing for distributed aperture arrays.
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Fig. 5. Matched filter processing along the transverse, x-direction. Includes
interference.
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Fig. 6. Matched filter processing along the radial, z-direction. Includes inter-
ference.

The numerical results illustrate the crucial differences from
STAP for airborne radar and the work remaining to develop a
good understanding of adaptive processing for distributed aper-
tures. As the second example shows, in crucial interference sce-
narios of interest, the availability of secondary data is a crucial
issue. It is, therefore, likely that available adaptive algorithms,
developed for airborne radar, are not relevant to the application
at hand. The long-term goal of this effort is the development
of adaptive algorithms specifically for distributed aperture, fre-
quency diverse, arrays.
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Fig. 7. MSMI statistic versus transverse x-dimension. Includes interference.
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Fig. 8. MSMI statistic versus radial z-dimension. Includes interference.
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