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Abstract. The principles of dilation and shift are two important properties that are attributed to wavelets.
It is shown that inclusion of such properties in the choice of a basis in Galerkin’s method can lead to a
slow growth of the condition number of the system matrix obtained from the discretization of the
differential form of Maxwell’s equations. It is shown that for one-dimensional problems the system matrix
can be diagonalized. For two-dimensional problems, however, the system matrix can be made mostly
diagonal. This paper illustrates the application of the new type of "dilated" basis for a Galerkin’s method
(or equivalent, for example, finite element method) for the efficient solution of waveguide problems.
Typical numerical results are presented to illustrate the concepts.

Introduction

Differential forms of Maxwell’s equations are
generally solved utilizing the finite difference and the
finite element method. These techniques transform
the operator equation to a matrix equation and then a
sparse matrix solver is used to solve the problem.
However, one of the problems with these techniques
is that as the dimension of the problem increases, the
- size of the matrix equation increases, and typically
the condition number of the system matrix grows as
0(1/h%) (where 6(1/h%) denotes "of the order of 1/A42"
where A4 1s the discretization step). This is in contrast
to the electric field integral equation utilized in the
method of moments where the growth of the condi-
tion number of the system matrix is 6(1/A4) and for the
magnetic field integral equation the growth of the
condition number can be independent of A. The
above holds as long as the integral equations have a
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unique solution (that is, the problem is not solved at
a frequency corresponding to an internal resonance of
the closed structure) [Peterson, 1987).
~ The objective of this paper is to demonstrate that
if the principle of dilation is introduced into the
choice of basis functions in a finite element method
then most of the system matrix can be made diagonal.
If that is the case then the growth of condition
number can be checked by proper scaling.

In section 2 the concept of wavelets are introduced
and with it the principle of dilation. It is shown in

- section 3 that for the one-dimensional Laplace’s equa-

tion the system matrix can be made exactly diagonal.
This concept i1s then extended to two-dimensional
problems, and in section 4 we demonstrate how such
a basis can be chosen. Typical numerical results are
presented in section 5.

Wavelets: A Cursory Preview

Wavelets have been studied extensively over the

last two decades by both mathematicians and engi-
neers resulting in some excellent documentation

[Daubechies, 1992; Chui, 1992; Vaidyanathan, 1993}
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explaining the various mathematical subtleties and
their properties. Two of the items (the integral
wavelet transform and the wavelet series and their
interconnections) have provided some interesting
results. The properties of the wavelets are summa-
rized next.

The integral wavelet transform of a square inte-
grable function f(i.e., f ¢ &%) is defined as

Wlab) = fiw) O

where (e; ¢) denotes the usual Hilbert inner product
and where the doubly indexed family of wavelets
W.,(x) are generated from the basic wavelet y (often
called the mother wavelet) by dilation and translation,

that 1s,
Y(x-b)
a (2)
VIa]

where a,b are real variables with g#0. Substitution of
(2) into (1) results In

W.'b(x) =

where the overbar denotes the complex conjugate.
The inverse wavelet transform recovers the func-
tion f from the values of W{a,b]. This is achieved by

=L [ ] oy g G

Ct 8
- where _
C, = 2n f dEt (103 <o  (4b)
e €]

and (E) is the Fourier transform of y(x).

The convergence of the integral in (3) is defined in
a weak sense [Daubechies, 1992], that is, taking the
inner product of both sides of (4) with any function
g(x) € & and commuting the inner product with the
Integral over a,b, in the right-hand side leads to the
true formula,
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[Daubechies, 1992, p. 25]. The convergence also
holds in the following, slightly stronger sense:

lim
A0 pp-L dadb w 1ab] w_,()1=0
A,,B 00 C, A,sthA, a’ ! ¥

o> (5)

where the double bar denotes the norm. Since for

any absolutely integrable function vy, ¢(f) (the
Fourier transform of y(x)) is continuous, (5) can only
be satisfied if '

;i,(o) = 0 (6a)
or equivalently
[ wixy dx =0 (6b)

that 1s, the wavelet y does not have any "dc" value.

The paradox now is that the wavelets have integral

zero, so how can any superposition of them approxi-

mate f, which has a nonzero integral. The reason is

that (4) holds in a & sense and not in $' sense.
Next, we choose the parameters a,b as

b = ko (7a)

a =1/ (7b)

sb that the integral wavelet transform is defined as
Wik = [ dcf 2 y7x -8 ®

The shift integers k are chosen in such a way that
y[2%x - k] covers the whole x axis. The wavelet
transform thus separates the "object" into different
components in its transform domain and studies each
component with a resolution matched to its scale.
The wavelet series amounts to expanding the

function f in terms of wavelets W,,(x), so that

Ax) = E C;}; "’M(x) ©)

J=—o
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If we further assume that the wavelets y, (x) are
orthogonal, then '

Ciu =(fi ¥, ) (10)

By comparing (8) and (10) it is apparent that the

(k)" wavelet coefficient of fis given by the integral

wavelet transform of f if the same orthogonal wave-

lets are used in both the integral wavelet transform

and in the wavelet series. The problem now at hand
is: are there any numerically stable algorithms to
compute the wavelet coefficients C;, in (10)? Specif-
ically, in real life, f is not a given function but is

sampled. Computing the integrals of <f: V> then

requires some quadrature formula. For the smallest

value of j, often referred to as the scale parameter,

that is, most negative j, this will not involve many
samples of f and one can do the computation quickly.
For large scales, however, one faces large integrals,
which might considerably slow down the computation
of the wavelet transform of any given function.
Especially for on-line implementations, one should
avoid having to compute these long integrals. One
way out is the technique used in multirate/multiresol-
ution analysis, by introducing an auxiliary function
¢(x), so that

(11)

o) = Y . $@2x-m) (12)

m=-—c

where In each case only finitely many coefficients c,,
and d,, are different from zero. Here ¢ does not have
integral zero but y does, and ¢ is normalized such
that

[ dxdx = 1 (13)

and we define ¢;, even though ¢ is not a wavelet, that
1S,

G =27 $Q27x - k) (14)

Since ¢(x) satisfies an dilation equation in (12), it is
called the scaling function. Hence
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(fi 'l’;,g) = E <f: ¢j,g+.;)

(15)

So the problem of finding the wavelet coefficient
reduces to that of computing < f ; ¢, >. Note

(f; ¢j.k) = E

Cm (f’ 4’1-1; 2k+m ) (16)
in which case < f; ¢;, > can be computed recursively
starting from the smallest scale (most negative j) to
the largest scale. Under certain conditions the advan-
tage of this procedure is that it is numerically robust
(because, even though the wavelet coefficients C;, in
(10) are computed with low precision, say with a
couple of bits) one can still reproduce f with compar-
atively much higher precision [Daubechies, 1992, p.
98]. However, from practical considerations the
limits in the sum can never be infinite but have to be
truncated to a finite sum. Also, the wavelets have no
dc value, so they cannot provide a good approxi-
mation for functions with nonzero mean, Both these
situations can be avoided in the hybrid representation,
where the function f{x) is approximated by both the
scaling function ¢(x) and wavelets y(x). The scaling

functions provide the dc value, as they have nonzero

integrals as per (13). The coefficients of the func-
tions in the hybrid representation can also be comput-
ed efficiently by utilizing the discrete wavelet trans-
form and terminating the infinite summation after a
finite number of terms. The number of terms chosen
depends on the number of samples of data provided.
The details are available by Chui [1992), Daubechies
[1992], and Vaidyanathan {1993).

The added advantage of the hybrid representation
1s that for continuous functions fr), they provide
uniform convergence. However, like the Fourier
techniques, the hybrid representation does display the
Gibbs phenomenon at a discontinuity of the function
A¢t). The Gibbs phenomenon occurs because it has
been assumed that the wavelets chosen for the ap-
proximation problem are continuous. However, that
need not be the case. One could in principle, and in
practice, choose wavelets that are discontinuous: for
example, the Haar wavelets (or equivalently, in
engineering notation, the Walsh functions). For the
case of a discontinuous wavelet basis the Gibbs
phenomenon cannot occur! So whether the Gibbs
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phenomenon manifests itself in the hybrid represen-
tation of discontinuous functions depends on the
choice of the wavelet basis.

Another salient feature of the wavelets is that it
provides localization of the result in both the original
and in the transform domain. It is claimed that in the
time-frequency characterization of a signal, a wavelet
approximation provides better localization properties
than the Fourier techniques simultaneously in time
and in frequency. If one delves deeper into the
subject, one observés that a function cannot simulta-
neously be limited in both frequency and time. Also,
the degree of resolution achievable in both time and
frequency is limited by the Heisenberg principle of
uncertainty, that is,

At Af > 12 (17)
‘Here At and Af are the resolutions achievable in time
and frequency, respectively. Both the Fourier tech-
niques and the wavelets are dictated by the principle
of uncertainty. The only difference, between Fourier
techniques and the wavelets is that, for the wavelets,
the approximation is made of the function as a sum of
functions which have nonoverlapping octaves band-
width. For example, in a wavelet representation we
take the spectrum of f(f) and separate the spectrum
into octaves of widths Aw; that is, the frequency band
o has been divided into {2x to 2*'x] for all values of
J,» and now we define wavelets in each frequency bin
Aw; and approximate f{¢) by it. If we choose

o) = S (18)
. nt
W) = 2020 - $¢) (19)
and define
v, 0 =27 yQ't - b (20)

then the wavelet expansion of ) with respect to
1S -

O =THO=ZCuwy @D

The functions \;(f) are orthonormal because their
bandwidths are nonoverlapping: namely for a fixed
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J» f{w) has bandwidth Aw, which is [2r, 2*'n]. So
the wavelet expansion of a function is complete in the
sense that it makes an approximation by orthogonal
functions that have nonoverlapping bandwidth.

There are also some similarities between the
wavelets and the Fourier series. Both of them use the
principle of dilation. In the next section the principle
of dilation used in the choice of basis functions will
be discussed. Note that in the approximation of a
function by a Fourier series results in decomposing a
function into a sum of orthogonal functions (¢™) just
as in (21).

n

o« ¥ C e™ (22a)
. p=—oo
where
21
c =_1 f f(t) e ™ dt (22b)
271 )

Observe that the orthogonal functions into which fr)
1s decomposed in (22) is generated by integer dila-
tions of a single function €. In contrast, for the
Fourter transform, the spectrum is decomposed into
noninteger dilations of the function é*.

In the next section we show how a proper choice
of basis functions can change the structure of the
system matrix.

Solution of One-Dimensional Problems Utilizing

- the Wavelet Basis

In the solution of operator equations, particularly
differential equations, the above concepts of dilation

“and shift in the choice of the hybrid basis functions

(a combination of scaling functions and wavelets)

- could provide some computational advantages. As an

example, consider the solution of the one-dimensional
differential form of Maxwell’s equations, that is,

a<sx<h (23)

Veu(x) = F(x)

where V? is the Laplacian operator = d%dx* in one-
dimension and u is the unknown to be solved for the
given excitation F. The boundary conditions are left
undefined at this point because it can be either
Dirichlet (homogeneous, that is, u(a or b) = 0, or
inhomogeneous, u(a) = A and u(b) = B) or Neumann
type (homogeneous, that is, du/dx (atx =aor b) =0
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or inhomogeneous du/dx (x a) = C and du/dx (x =

b) = D).

The development is independent of the nature of
the boundary conditions. However, the boundary
conditions arc needed for the complete solunon of the
problem.

Galerkin’s method is now used to solve (23) which
gives the fundamental equations of the finite element
method. Hence consider the weighting function v(x),
which multiplies both sides of (23) and the product is
integrated by parts from g to b to yield

b
du dv (x) du(x)
{ i e V@) - =22 | V(D)
b
= f v(x) F(x)dx (24)
a

Next it is assumed that the unknown u(x) can be
represented by a complete set of basis functions ¢(x),
which has first-order differentability. Then

N
u(x)=up(x) = iEI 8,0,(x) +a,,$,, (%) +a,dp(x)  (25)

where g, and qg,; are the nnknowns to be solved for.

Basically, the functions ¢,(x) satisfy the homogeneous
boundary conditions and ¢,, take care of the inhomo-
geneous Dirichlet condltlons

In a Galerkin’s procedure the weighting functions
v(x) are of the form

w(x) = ¢(x) ; ¢, ,(x) G0, (%)

Substitution of (25) and (26) Into (24) results in a
system of equations which can be wntten n the
following matrix form:

(26)

! a2/ /] a2l ! a2l / I
'<¢1; ¢ 1” <¢1;¢5>‘ <¢’1; 4’0!" <¢'1; ¢'oz>
/ I a1
<$,5;0,> <¢d,> 5
i | : i
/ / ] o/ I o/ I a1
P> <0ud,> <dpdo> <o, b>

I o/ N, N, N,
<boisP1> <doiidy> <doi;do1> <bops 02>

/ / / / / / ! /
<bp;d1> <bpd,> <dopdor> <¢o; br>

969

a, <F;¢,>

a, <F,¢,> 0

. i — —

a | = -|<Fé>| - |- %)x=a| @70)

7 Fw

_— — du| -

891 <F;$,> | & *

a,, <F5¢02>

or equivalently
#ZA _y _ (27b)

where the superscript * denotes the first derivative of

the function and <c,d> denotes the classical Hilbert
inner product, that is,

0

<c,d> = f e(x) d(x) dx (28)

Here the overbar denotes complex conjugate.

The solution of (27) then provides the unknowns a,
and a,, and ag. The crux of the problem therefore
lies in the solution of large matrix equations. The
stability of the solution of large systems is dictated by
the condition number of the matrix and by the num-
ber of effective bits ¢ with which the solution is
carried out on the computer.

Specifically, In the solution of (27) if AZ is the
Y is AY, then the error in the solution AA 1s bounded
by [Sarkar et. al, 1981]

= 29
Ikl __cond) _[1an, 1azy]
WUl 1-/Neond@2* |l M1 121

where N is Lhe dimension of the matrix E and the
norm is defined as the Euclidian norm. It is therefore

clear that the choice of the basis functions, which

determines the condition number of the matrix Z, has
a tremendous influence on the efficiency and accura-
cy on the solution of (27).
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the increase of the condition number as the dimension
of the matrix increases. Mikhlin [1971] and Krasnos-
elskii [1972] choose the basis functions such that the
growth of the condition number is controlled.

A good way to choose the basis functions is shown
in Figure 1. It is interesting to point out that these
basis functions are similar to the classical triangular
functions used by Harrington [1967] in the method of
moments. However, unlike the method of moments,
these basis functions are not the subdomain basis
functions. In the classical subdomain basis functions
the choice would be the seven piecewise triangle

functions as shown in Figure le. The seven basis

functions would consist of the four solid line triangu-
lar functions and in addition the three dotted line

- triangular functions shown in the same figure.

In the new basis, which we call the hybrid wavelet

‘basis, we have the seven basis functions shown in

Figures la-le marked by ¢, ¢x, and é,,. The
difference is that instead of the three dotted triangular
basis functions we have three different nested basis
functions ¢,, ¢,, and ¢,, which in the finite element
literature are called hierarchical basis functions. The
functions ¢,, and ¢, are there to treat arbitrary
boundary conditions. The basis functions shown in
Figures 1c-le are termed the "wavelet" basis as they
are the dilated and shifted version of the same func-
tion [R. A. H. Lorentz and W. R. Madych, Wavelets
and generalized box splines, Unpublished manuscript,
1994]. These basis functions are derived from the
Battle-Lamarie type of wavelets. Here the basis are
chosen as the ¢ functions and not the y functions.
The natural question that arises is, what is the advan-
tage of this type of the wavelet basis over the conven-

Figure 1. The basis functions: (a)¢y,; (b)dy,: (€)0,; (d)¢,;
¢ and (e) subsectional basis seven piecewise triangle
functions. |

tional subsectional basis functions? The disadvantage
of the wavelet basis is clear, for example, for ¢,, ¢,,

The problem with the finite element method lies in
the solution of large matrix equation. Also, as the
number of basis functions increases, the condition
number of the matrix also increases. An increase in
the condition number of the matrix creates various
types of solution problems. For example, the condi-
tion number directly dictates the solution procedure,
as a highly 1ll-conditioned matrix prohibits application
of a direct matrix solver like Gaussian elimination

[Golub and VanLoan, 1989] and a more sophisticated

technique like singular value decomposition may have

and ¢, more calculations need to be carried out over
the domain of interest as opposed to the three dotted
triangular basis functions shown for the classical
subsectional basis. However, as a final solution, both
the subsectional and the wavelet type basis provide
the same information content about the approxima-
tion.

In spite of the additional computation the reason
for the choice of the wavelet basis is that as the
dimension of the problem increases, the condition
number of the solution matrix does not go up as fast
for the wavelet basis. This has been rigorously
shown by Jaffard [1992]. There is another computa-

to be introduced. There are various ways to eliminate  tional advantage which we will describe later.
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~ In summary, the distinct feature of this present ap-
proach is a different choice of basis functions for the
unknown. This choice is different from the classical
subsection basis. For the approach presented in this
~paper the "granularity” of the basis function is differ-
ent for different orders of approximation, some entire
domain and some subdomain, so that the span of the
basis function is complete. We now proceed with the

solution procedure to describe the other salient

features. Under the new basis functions we have _
<¢is &;>=0 i#j (30)
<¢:; ¢31> = () (31)
<¢:; @32:' =0 (32)

Because of the proper choice of the wavelet basis; we
have (30)-(32) and therefore (27) reduces to

<d; b1>

) 0

0
<b,; b,
1ol 'Y
0 <dg; 0> <®os; o>
<$oy'®0> <bgpb0s>
a, <F;¢,>
a, <F;¢,> 0
2 |=-{<Fé>|+|- %|x= (33)
<Fd > _Ou | x=

84, » Por Ox
&y, <F;¢m>

In the solution of (33) the boundary conditions of the
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problem are implicitly provided. For example, if the
boundary conditions are purely Dirichlet type then aj,
are known and for the Neumann condition the right-
hand sides are known and a,; values are to be solved
for. For mixed boundary conditions a combination of
the above are required and a,; need to be solved for
the jth boundary which has a specified Neumann
condition. So, from (33) we have

<F;¢>

8, = - —— (34)
<¢’1;¢’1> |
‘4’31;%1-" “%1;4’0:" am]
"4’3234’31"' "4’32;4’01) fo2
, du (35)
<F;bp,>] | a =™
== o <F;¢m> + a‘
_a x=h

where two of the four parameters a,,; a,,; du/dx (x=a)

and du/dx (x=b) have been fixed by the boundary
conditions (Dirichlet, Neumann, or mixed) of the
problem.

The application of the wavelet basis is now clear.
For one-dimensional problems the system matrix can
be made almost diagonal, and hence its solution is
trivial.

In summary, if the dilation and shift principles of
wavelets are utilized 1n the choice of basis functions
such that their first derivatives are orthogonal to each
other then the system matrix can be diagonalized
corrcsponding to the unknowns. So the choice of a
wavelet type basis makes the system matrix almost
diagonal, simplifying the computational complexity.

We now extend this procedure to the solution of
two-dimensional problems and apply it t0 some
waveguide problems.

Solution of Vu+k*u=F for Two-Dimensional Prob-
lems Utilizing the Wavelet Basis
Consider the solution of

Vu(xy) + k*u(xy) = F(x,) (36)

restricted to the region R defined by the contour [ .
In this paper we have focused our attention only to
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rectangular regions and have assumed that any
arbitrary shaped region R can be made of rectangular
regions R of the type:

R. Osx<a Osy<h (37)

To apply Galerkin’s method, one integrates (36) in
the domain R to obtain

[vxy) VPulxy) dedy + k? [ux.y) vix,y)dudy
R R | (33)
= [Fay)vxy) dudy
R

which, after integration by parts, yields

_ f(Vu)(Vv)dr+fv%d]'+szuvdr=fder (39)
R r an X -

Generation of a wavelet type basis 1in two dimen-
sions can be done by utilizing the multiresolution
analysis and essentially following the one-dimensional
construction. Another method consists in obtaining
the wavelets using the one-dimensional reconstruc-
tion

In this paper we follow Jaffard [1992] in the
development of a two-dimensional wavelet type basis,
where it is shown that three wavelets (', y*, and y°)

are required in two dimensions, and they are gener-
ated from

¥'EY) = ¥ 40) 40
yixy) = o) y0) (400)
V) = ¥®) o) (40c)

where the significance of the ¢ and y functions are
explained in section 2.

Let the basi_s chosen for this case, be

M N

u(xy) =8 =3 3 Adxy)

i=1j=1 @1

4 K 4
+ Y BN +Y CTxy)
i=1j=1 =l
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~and Ay, By, and C; are the unknown constants to be
solved for. In this expansion, ¢,(x,y) are zero on the

rectangular boundary as before, and they are explic-
itly chosen as

$xy) = nR)n0) = sin(T) sin(7L) @42)

These functions are not only orthogonal to them-

selves, but their partial derivatives are also orthogon-
al; that is,

<bgid> =0 for ispijrq  (43)

<V¢v;V¢”> =0 for i#pjrq (44)
[6, 2 ¢, d =0 45)
: v on M

where the inner product in the two-dimensional
rectangular region is defined as

a b
<c;d> = [dr [ dyctxy) dixy)  (46)
0 O

In addition we need four edge basis functions N
where, for example, N;; is zero everywhere on the
boundary (i.c., on all edges) except on edge E1 (refer
to Figure 2). The two-dimensional basis has the
representation

Ny(xy) = GO)nfx) (472)
N, (xy) = Hon0) (47b)
N, () = HOING) (47c)
Ny(xy) = GX)M0) (47d)

where the polynomials G(x), G(y), H(x) and H(y), are
chosen based on the differentiability conditions. In
this case,
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TH Nlj T2 X

(B)

Figure 2. Geometry for the two-dimensional basis func-
tions: (a) edges and nodes; (b) basts functions corre-
sponding to the edges and nodes.

G(x) = 1-f (48a)
G(y) = 1-%. (48b)
H(x) = .’af. (48c)
HO) = & (484)

Therefore N,; only participates in providing the match
corresponding to edge E2 only.

In an analogous fashion, one can illustrate that the
wavelet basis T, in (41) provides the matching condi-

~ tions needed for the four vertices V,oV,V,and V, as

shown in Figure 2. Specifically, the wavelet basis

~associated with the four vertices can be written as

T,(xy) = G(x) GO) (493)
T,(xy) = H(x) G(y) (49b)
T,(xy) = H(x) .H(y) (49¢)
T,(xy) = G(x) HQ) (49d)

Substitution of (42), (47), (48), and (49) in (41) and
utthzing ¢,; N, and T; functions, as the weighting
function results into a system matrix

[PI[A4] + K[QIIA] = [V;] + V]  (50)

where the system matrix [P] and [Q] has the form

[Dlx [Glpxm
[Clp.n (Bl

[P} [Q) = G

where [D] 1s a diagonal matrix and [G] and [B] are
sparse matrices. The system matrices again would be
mostly diagonal. What percentage of the matrix is
diagonal dcpends on how many rectangular regions
the original region has been divided into.

Case A: Dirichlet

If the boundary condition over [ is purely Dirichlet
then the maximum dimension of the system matrix
will be L(N’+4N+4) where the original domain has
been subdivided into L regions and the highest order
of approximation M, N and X in (41) are assumed to
be the same, all N, that is, they are considered to be
the same 1n all L regions for comparison purposes.

Because of the choice of the wavelet type basis,
out of the maximum dimension of L(N*+4N+4), the
rank of the diagonal submatrix [D] in (51) will be
LN®, This clearly demonstrates that as the number of
unknowns N increase majority of the system matrix
becomes diagonal. This is because the row size
increase of [P] is dominated by the term LN? and so
1S the row size of the diagonal matrix [D]. The
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rectangular submatrix [G] has the row dimension as  Table 1. Cut-off Wave Numbers of the Transverse.
N* (the number of internal edges + number of inter-  Magnetic (TM) Modes of a Single Ridge Waveguide

nal corners) and the column dimension is LN>. The Mode Mode Mode Mode Mode
square matrix [B] has a row and column dimension of 1 2 3 4 5

N* (the number of internal edges + number of inter- “N=3 12.20 12_5 1402 1562 16.67

nal comers). Hence the size of B goes up as essen-

_ _ N=4 12.16 1245 1402 156  16.66
tially O[(L+1)N]. Therefore the computational com- N=6 12.15 1244 1401 15.6 16.66
plexity goes up as 6[{(L+1)N}’] when the number of N=g 1214 1243 1401 1559  16.65
unknowns go up by LN". This amounts to a signifi- 1\ 5 543 1401 1550 16.65
cant decrease in reduction of computational complexity. Sarkar 12'05 12'32 13'86 15'34 16.28
Case B: Neumann _ ot al ' ' ' | |

For this case the diagonal submatrix is of the same [1989]
size as that for the previous case of Dirichlet bound- Cwa- 1204 1229 1400 15.99

-ary conditions. However, now the coefficients of all minat-
the matching functions are unknowns. Hence the size han et.
of the system matrix [P] is LN>+N* {(number of g4I
edges) + (number of corners)}. The size of the [1990]
diazgonal matrix [D] is the same as before, that is,

LN°. | |
Case C: Mixed and the system matrix equation is
It is easy to extrapolate the results to a mixed '
) o (P][4] + k[ [Q][A] = O 3)

Dirichlet and Neumann conditions. The important
point is that due to the choice of the wavelet basis,

the major portion of the system matrix {P] and [Q]
are diagonal.

Application To Some Waveguide Problems

As an example, consider the solution of cutoff

frequencies of the transverse electric (TE) and trans-
verse magnetic (TM) modes of various conducting

waveguides structures. So, in this case the objective
is to solve an eigenvalue problem, as F=0. -

Therefore we are solving for '

Vu + kiu=0 (52)

s ik B R W =k W

lll--l-l-I-l-hl

' Figure 3. Single ridge waveguide (a = 1.0m;b=05m;
d=0.25m; s =0.5 m).

The objective is to solve this generalized eigenvalue
problem for the eigenvalue k. and the eigenvectors
[A]. Since [P] and [Q] are sparse mostly diagonal
matrices, the computational complexity has been
greatly reduced and the conjugate gradient method
[Chen et. al., 1986] can be used efficiently to find a
few of the generalized eigenvalues & and the eigenv-
ector associated with it.

For the first example, consider the solution of the
TM modes of a single ridge waveguide of dimensions
shown in Figure 3. The single ridge waveguide was
divided nto five rectangular regions as shown by the
dotted lines. Table 1 provides the cutoff wave
numbers of the TM modes of the single ridge waveg-
utde. Table 2 shows the percentage of the system

Table 2. Percentage of the Matrix That is Diagonal
for the TM Modes.

Matrix Row Size of the Percent

Size Diagonal Block Diagonal
N=2 28 | 20 71.43
N=4 96 80 83.33
N= - 204 180 - 88.24
N= 312 320 90.91
N=10 540 500 92.59
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Table 3. Cut-off Wave Numbers of the Transverse.
Electric (TE) Modes of a Single Ridge Waveguide
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M({de Mgde Mgde M:de M(S)de . i ® E ™
N=2 226 490 648 753 985 ; ;
N=4 225 487 646 152 983 | |coeoeoeeoiaao.. - e
N=6 225 487 646 752 983
N=8 225  4.87 646 772 983 ° (2 d (6)
N=10 225 48 646 752  9.83
Sarkar 223 478 640 748 o071 | [ttt - R LECTITIELLIEE
et.al. | r*mm,__*?
[1989] - 3) o (%)
Swai- 225 494 652 156 W L -
ming- : :
than ' |
et. al.
[1990] a

matrix that is diagonal. Table 3 provides the cutoff
wave numbers of the TE modes of the same single
ridge waveguide, and Table 4 shows the percentage
of the system matrix that is diagonal.

Comparison of these results with data published in
the literature utilizing a finite difference technique
due to Sarkar et. al. [1989] and a surface integral
equation due to Swaminathan et. al. [1990] show that
the new approach is quite accurate and provides fast
convergence. | |

As a second example consider the coaxial rectangu-

lar waveguide shown in Figure 4. The waveguide has

been divided into eight regions. Table 5 provides the
cutoff wave numbers of the TM modes this wavegui-
de. Table 6 shows the percentage of the system
matrix that is diagonal as the order of the approxi-
mation increases. Table 7 provides the cutoff wave
numbers for the TE modes, and Table 8 shows the

Figure 4. Coaxial rectangular waveguide (a = 1.25 m; b
=10m; d=025m; s =025 m).

percentage of the system matrix that is diagonal as
the order of the system increases. Again, good
agreement has been obtained with other published
results. The three dots indicate that the results are
not available.

Table 5. Cut-off Wave Numbers of the TM Modes
of a Coaxial Rectangular Waveguide.

Mode Mode Mode Mode Mode
| 1 2 3 4 S
N=2 6.95 6.96 8.68 8.72 10.97
N=4 6.94 6.95 8.66 8.70 10.94
N=6 6.94 6.95 8.66 8.70 10.92
N=8 6.94 6.95 8.66 8.70 1092
N=10 6.94 6.95 8.66 8.70 10.92
Sarkar 6.91 6.96 8.5 8.51 10.57
et.al.
[1989]

Table 4. Percentage of the Matrix That is Diagonal

for the TE Modes.

Matrix Row Size of the Percent

Size Diagonal Block Diagonal
N=2 64 20 31.25
N=4 156 80 51.28
N=6 288 180 62.50
=8 460 320 69.57
N=10 672 500 74 .40

Table 6. Percentage of the Matrix That is Diagonal
for the TM Modes.

Mauix  Row Size of the Percent

Size Diagonal Block Diagonal
N=2 48 32 66.67
N=4 160 128 80.00
N=6 336 228 85.71
576 572 88.89

N=8
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Table 7. Cut-off Wave Numbers of the TE Modes of
a Coaxial Rectangular Waveguide.

Mode Mode Mode Mode Mode

1 2 3 4 5

N=2 190 2.84 3.91 5.18 5.78

N=4 1.89 2.84 3.91 5.16 5.77
N=6 1.89 2.84 3.91 5.16 5.77
N=8§ 1.89 2.84 3.91 5.16 5.76
Sarkar 1.85 2.81 3.80 5.05 5.68
el. al.
[1989]

Table 8. Percentage of the Matrix That is Diagonal
for the TE Modes.

Matrix Row Size Percent
Size of the Diagonal
Diagonal
Block
N= 06 | 32 - 38.33
N=4 240 128 53.33
N=6 448 288 64.29
N=8 720 512 71.11
Conclusion

The principal of dilation, extensively used by the
wavelet concept, can be introduced into finite element
techniques for efficient choice of basis functions.
With the new basis functions the large finite element
method system matrices can be made mostly diagonal
and the computational complexity can be significantly
reduced. This approach can easily be extended to
three-dimensional problems or to waveguides con-
- taining inhomogeneous materials.
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