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ABSTRACT 

The Joint Domain Localized (JDL) adaptive processing algorithm mitigates interference 
in a localized processing region in the angle-Doppler domain. Spatial and temporal steering 
vectorra transform the data collected in the space-time domain to the angle-Doppler domain. 
However, the JDL algorithm depends on the assumption that the spatial and temporal steering 
vectoni form an orthogonal set. In practice, due to the mutual coupling between antenna elements, 
the spatial steering vectors do not form an orthogonal set. This paper presents a modification of 
the JDL algorithm to account for the non-orthogonality of these steering vectors. Examples from 
the MCARM database demonstrate the improvement in detection capability. 

1 .0 INTRODUCTION 

The detecti,on of small, slow moving targets by airborne surveillance radar requires the suppression of strong, 
dynamic and possibly inhomogeneous interference in real time. Space-time adaptive processing (STAP) techniques 
promise to be the best means to suppress such interference. Consider a phased array antenna with N spatial channels, 
possibly subarrays of a larger array, with M pulses per coherent processing interval (CPI). The most straight 
forward, and optimal, STAP algorithm uses the (known) NM dimensional covariance matrix of the interference to 
obtain NM complex weights that minimize the expected squared error with respect to the desired signal [Brennan, 
19731. In a practical situation, this covariance matrix is unknown and is estimated by averaging over secondary data 
from range cells surrounding the range cell of Interest. For an accurate estimate, about 2NM to 3NM independent, 
identically distributed (i.i.d.) data samples are required. The problem with this joint domain approach is that in 

practice, it is difficult to obtain such a large number of i.i.d. samples. Further, the computation expense rises as the 
third power of the number of weights. Hence, even if i.i.d samples are available, the computation load makes this 
optimal joint domain algorithm impractical. 

To ovcrcome the drawbacks of the joint domain algorithm, researchers have tried to limit the number of 
adaptive weighls so as to reduce problems associated with sample support and computation expense. Wang and Cai 
[Wang, 19941 introduced the Joint Domain Localized (JDL) algorithm, a post-Doppler, beamspace, approach that 
adaptively processes the radar data in the angle-Doppler domain. An inner product with the spatial and temporal 
steering vectors transforms space-time data to the angle-Doppler domain. The spatial steering vector associated with 
a particular angle is the complex conjugate of the normalized vector of measured voltages due to a far field point 
source at that angle. Similarly, the temporal steering vector associated with a Doppler frequency is computed using 
the vector of vc'ltages due a calibrated source offset from the carrier by that Doppler frequency. This transformation 
localizes the signal and interference in angle-Doppler space. As such, adaptive processing may be performed in a 
localized processing region centered about the test angle-Doppler bin. Hence, interference suppression is achieved 
using a limited number of adaptive weights, in turn, requiring limited secondary data. 

In developing the JDL algorithm, the authors assume the receiving antenna to be a uniformly spaced, linear 
array of ideal, isotropic, point elements. Under this assumption, the inverse Fourier coefficients form the set of 
spatial and temporal steering vectors. This allows for the use of Discrete Fourier Transforms (DFT) to transform 
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from space domain to the angle domain and the time domain to the Doppler domain. The orthogonality of the 
Fourier coefficients localizes the target space-time signal to a single point in the angle-Doppler domain. 

In practice, however, the elements of the array are not isotropic point sensors. Due to their physical size, 
the elements not only spatially sample incident fields, but also re-radiate them. The re-radiated fields interact with 
the other elements manifested as mutual coupling effects. Further, the assumption of a linear array is restrictive. The 
array may be planar, allowing for degrees of freedom in azimuth and elevation. In practice, the Fourier coefficients 
do not form the spatial steering vector and a DFT does not transform the space domain to the angle domain. The 
spatial steering vectors have to be either measured or obtained using numerical electromagnetic analysis. It is these 
measured steering vectors that transform the space domain to the angle domain. Unlike in the ideal case, the 
measured steering vectors do not form an orthogonal set. Mutual coupling does not affect the temporal steering 
vectors. 

This paper modifies the traditional JDL algorithm of [Wang, 19941 to account for the non-orthogonality of 
measured steering vectors. Examples using measured data from the Multi-Channel Airborne Radar Measurements 
(MCARM) database [Sloper, 19961 illustrate the improvement in detection performance. The database contains 
clutter and signal measurements collected via an airborne radar over many flights with multiple acquisitions on each 
flight. The radar antenna is a 22 (2x11) rectangular array. Also provided with the database is a set of measured 
spatial steering vectors. Wang [Wang, 19951 and Melvin and Himed [Melvin, 19961 applied the JDL algorithm to 
the MCARM data and use the measured steering vectors to transform the space domain to the angle domain. 
However, they ignore the fact that the spatial steering vectors are not orthogonal. By comparing the performance of 
the JDL algorithm before [Wang, 1995, Melvin, 19961 and after the proposed modifications, it is shown that the non- 
orthogonality of the steering vectors plays a significant role in practical antenna arrays. 

Section 2.0 introduces the JDL algorithm as applied to the ideal case of a linear array of isotropic, point 
sensors and details the use of non-orthogonal steering vectors. Section 3.0 presents examples to illustrate the 
improvement in processing performance obtained by the modifications proposed in this paper. Finally, section 4.0 
presents some conclusions and a summary of the results presented here. 

2.0 THE JDL ALGORITHM 

Consider an array of N antenna elements receiving an incident plane wave. Each receiver collects M data 
samples corresponding to M pulses in the CPI. For each range bin, the data is a vector X of length MN, containing 
entries numbered (m-I)N+I to mN, corresponding to the returns from the mth pulse. In range cells without a target, 
X=C+N and in range cells with a target, X=aS+C+N, where, a is the target amplitude, S is the space-time steering 
vector, C the vector of interference sources and N the noise vector. Each term in the vector as, corresponding to a 
target at angle 0 and radial velocity component v, is given by 

where, f t  is the normalized Doppler frequency and f \  the normalized spatial frequency given by f ,  =d sin OIL, 
f,=2v/LYdlPRF, where PRF is the pulse repetition frequency, f i l  the Doppler frequency, h the design wavelength of 
the array and d the spacing between elements. 

The contribution of the target can be written in terms of the spatial steering vector (S,J and temporal steering 
vector (S,), i.e. S = a,, @ S, where @ denotes the Kronecker product. In the case of a linear array of ideal, isotropic 
elements [Ward, 19941, 

(2)  1 e , i (N-1)*2nfy  e i3*’q, ...... s ,~  = [1 e i 2 q f ,  e i2*2=Tf, 
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Figure 1: Transformation of the space-time domain to the angle-Doppler domain 

Equations ( 2 )  and (3) indicate that the components of the spatial and temporal steering vectors are the 
Fourier coefficients. Therefore, an inner product with the space-time steering vector is equivalent to a two 
dimensional DFT. The 2-D DFT transforms the space-time data X to the angle-Doppler data x. Since the rows of a 
DFT matrix are orthogonal, the 2-D DFT transforms multi-channel, multi-pulse target data to a single point in the 
angle-Doppler domain, i.e., the signal is localized. This localization of the signal and interference implies that 
interference suppression can be achieved using a limited number of adaptive weights. 

The JDL algorithm forms a localized processing region (LPR), centered around the test directiodDoppler 
point in the angl1:-Doppler domain (shown filled in Figure 1) .  Detection processing in the LPR is performed for this 
test directiodDoppler only. To test for targets in other angle-Doppler bins, a new LPR centered around the new look 
direction is formed. Interference suppression is achieved by adaptively combining data contained in the LPR. The 
covariance matr1.x corresponding to this LPR is estimated using secondary data from neighboring range cells. In 
Figure 1, the number of adaptive weights to be determined is 9, corresponding to 3 Doppler bins and 3 angle bins. 
The adaptive weights are given by 

w a = R - ) S  (4) 

where, RI is the estimated angle-Doppler covariance matrix corresponding to the LPR of interest and T i s  the 
steering vector for the adaptive process. This vector should not be confused with either the spatial or temporal 
steering vectors. s is the space-time vector S = S, 0 S, transformed to the angle-Doppler domain and is non-zero at 
only one point, i e., for the case shown in Figure 1,  

(5) 

Adaptive weights are used to obtain a test statistic for hypothesis testing. In this paper, the modified sample 
matrix inversion (MSMI) statistic is used. The JDL-MSMI statistic is given by pMsMI =w,XI / E J , ~  [Wang, 
19951, where x is the angle-Doppler data vector from the LPR at the range ring (cell) of interest. 

2.1 JDL using measured steering vectors 

Y = [ O  0 0 0  1 0  0 0  0 O l T  

The JDL algorithm, as developed above, assumes the receiver to be a linear array of equispaced, isotropic, 
point sensors. A real array, such as the MCARM array, may be planar. Further, an array of point sensors is not 
achievable in practice. Each array element must have non-zero physical size, which leads to mutual coupling 
between the elements. In a practical situation, therefore, the spatial steering vectors are not the Fourier coefficients. 
The spatial steering vector associated with a given angle is the amplitude and phase taper derived from 
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measurements of a calibrated far field source. For a real array, the spatial steering vector in the preceding analysis 
must be replaced by the measured steering vector ( S,: ), i.e., S = S,y@ S, . 

The measured spatial steering vectors for different angle bins are not orthogonal to each other. Hence, the 
signal space-time steering vector is not localized to a single point in the angle-Doppler domain. Equation (4) must 
be modified to reflect the non-orthogonality of the steering vectors. For the JDL algorithm using 3 angle and 3 
Doppler bins, the adaptive steering vector corresponding to angle bin (look direction) n is given by 

s = [O 0 0 <s,"!l,s: > <s,",s," > <s,"+, ,s,m > 0 0 0IT ($1 
where, < ., . > denotes the inner product of two vectors, S," the measured spatial steering vector corresponding to 
angle bin n. The zeros in equation (6) are due to the orthogonal temporal steering vectors. Modifying the adaptive 
steering vector in this manner accounts for the non-orthogonality of the spatial steering vector. This formulation is 
easily extended to JDL algorithms utilizing more than 3 angle bins. Note that the measured steering vectors also 
transform the secondary data to angle-Doppler space. A DFT is valid for the transformation from time to Doppler 
space only. 

A radar system transmits energy in some direction and the returns are processed for targets in that direction 
only. Hence, for each CPI, all Doppler bins are examined but the angle of interest remains constant. Therefore, for 
each CPI, the adaptive steering vector of equation (6) can be calculated a-priori. 

3 .O NUMERICAL EXAMPLES 

In this section, we present examples to illustrate the improvement in adaptive performance by considering 
the non-orthogonal nature of the spatial steering vectors. The examples use data from the Multi-Channel Airborne 
Radar Measurements (MCARM) database, a vast collection of clutter and signal measurements collected by an 
airborne radar over many flights with multiple acquisitions on each flight. The radar antenna is a 22 (2x11) 
rectangular array (N=22). Included with the database is a set of measured steering vectors. These steering vectors 
are used in [Melvin, 19961 and also here for spatial processing of the data. The database includes clutter 
measurements and certain acquisitions include the signals (tones) of known Doppler shift and power from a Moving 
Target Simulator (MTS). The examples presented here are based on acquisitions from flight 5.  Each CPI comprises 
128 pulses (M=128). 

For each 
example, two scenarios are compared. In both scenarios, a DFT in the time domain and the measured steering 
vectors in space transform the space-time data to angle-Doppler space. The first scenario ignores the non-orthogonal 
nature of the spatial steering vectors [Melvin, 19961 and uses equation ( 5 )  as the adaptive steering vector. The 
second scenario accounts for the non-orthogonality and so uses equation (6) to evaluate the adaptive steering vector. 
In all examples 3 angle bins and 3 Doppler bins form the LPR. The covariance matrix of the interference is 
estimated using 2 guard cells and 36 secondary range cells centered about the range bin of interest. 

3.1 Example 1. Injected target 

Two examples are presented here to illustrate the improvement in detection performance. 

In the first example, a synthetic target of fixed amplitude, direction, Doppler and range is injected into the 
MCARM data set. The amplitude and phase variation of the injected target across the 22 channels is obtained from 
the measured steering vectors. The amplitude of the injected target is chosen such that it remains undetected by non- 
adaptive digital beamforming/Doppler processing. 

JDL processing is performed at the target angle bin, for a few range bins surrounding the injected target and 
for all Doppler bins. In this example, the figure of merit used to compare the two scenarios is the separation between 
the MSMI statistic at the target range/Doppler bin and the highest statistic at other range or Doppler bins (the largest 
false alarm statistic). A large separation implies a large difference between target and residual interference, i.e. 
improving the ability to detect the target. 

In this example, the data from acquisition 575 on flight 5 is used. The parameters of the injected target are: 
Amplitude = 0.0003L0, Angle bin = 0" (Broadside), Doppler bin = -9 (-139.5Hz), Range bin = 290 
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Figure 2 plots the MSMI statistic, as a function of Doppler bin for the two scenarios considered. In the first 
plot, the MSM[ statistic at the target location is about 3.1 dB over the highest false alarm. However, when 
considering the non-orthogonal nature of the steering vectors, the separation between the target statistic and the 
nearest false alarm is 8.4dB. This is an improvement of 5.3dB over the first case. Figure 3 plots the results of the 
same two cases as a function of range. In the first case, a strong false alarm 8.7dB over the target is clearly visible. 
In the second case, the target is 2.5dB over the nearest false alarm. Accounting for the non-orthogonal nature of the 
steering vectors yields an improvement of 11.2dB. 

3.2 MTS Tones 

On flight 5, acquisition 152 includes clutter and tones from a moving target simulator (MTS) at pre-selected 
Doppler frequencies. Five tones are received at approximately -800 Hz (0 dB), -600 Hz (-14 dB), -400 Hz (-20 
dB), -200 Hz (-26 dB) and 0 Hz (-31 dB). The data in this acquisition are returns from 128 pulses measured across 
22 channels. The pulse repetition frequency for this flight was 1984 Hz, hence the separation of 200 Hz corresponds 
to nearly 13 Doppler bins. Using an acquisition with the MTS allows us to compare the performance of the JDL 
algorithm in the above scenarios using measured data. The MTS tones are processed like returns from moving 
targets. The presence of five MTS tones of differing amplitudes makes it difficult to define a unique figure of merit 
to compare the two scenarios. In this example, a visual inspection is used for comparison. 

Figure 4 plots the MSMI statistic versus Doppler bin for the two cases considered. In the first plot, the five 
tones are clearly visible with the strongest tone at bin -53 spread over Doppler space. A few spurious tones are also 
visible. The second plot shows the results of the JDL algorithm modified by equation (6). The five tones are clearly 
visible and the spurious tones are completely suppressed. 

4.0 CONCLUSIONS 

This paper has shown that for a real antenna array, ignoring the non-orthogonal nature of the spatial steering 
vectors leads to significant degradation of the ability of the JDL algorithm to suppress interference. A simple 
modification to the adaptive steering vector can account for the non-orthogonality. This modification significantly 
improves on the performance of the traditional JDL algorithm. Examples using real data from the Multi-Channel 
Airborne Radar Measurement (MCARM) database illustrate the improvement in performance. This data set consists 
of real clutter, target measurements and MTS tones. In the case of the injected target and in the case of the MTS 
tones, the proposed modification results in significantly better performance over traditional joint domain localized 
processing. 
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Figure 2. MSMI statistic v/s Doppler bin. Injected target 
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Figure 3. MSMI statistic v/s Range bin. Injected target 
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Figure 4. MSMI statistic v/s Doppler bin. MTS tones 
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