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Abstract

Cooperative diversity improves the performance of wireless networks by having several nodes transmit the
same information. We present an outage probability analysis for a decode-and-forward system, valid at all signal to
noise ratios (SNR). A closed form solution is obtained for independent and identically distributed (i.i.d.) channels,
and two tight lower bounds are presented for correlated channels.

I. I NTRODUCTION

Cooperation helps create spatial diversity in wireless networks, even if individual nodes do not use

antenna arrays for transmission or reception [1], [2]. While asymptotic (in SNR) performance analysis

highlights the diversity order achievable by various techniques, it is also important to study performance

in the non-asymptotic or finite SNR regime so as to compare various schemes in practical settings. In this

letter, we derive the exact outage probability of the decode-and-forward scheme1 for arbitrary signal-to-

noise ratio (SNR) by using two powerful mathematical tools: Moment Generating Function (MGF) and

Order Statistics. We derive an exact closed-form expression for i.i.d. channels, and introduce simple lower

bounds for non-i.i.d. channels. Simulation results show that those bounds are very tight.

As an example of the utility of our results, consider that Laneman and Wornell proved in [1] that both

the decode-and-forward and the space-time-coded cooperation can provide “full diversity” in the sense that

the diversity order (using outage probability as a performance measure) is the total number of cooperating

nodes in the network. However, our results will show that at finite SNR levels, a higher diversity order

does not necessarily translate into better performance. This implies that the optimal number of cooperating

nodes is in fact a complex function of the operating SNR and the cooperative diversity scheme in use.

II. SYSTEM MODEL

We consider a system with a source node,s, communicating with a destination,d, with the help ofm

other cooperating (or relay) nodes, which are called cooperative nodes or relay nodes. Denote the set of all

cooperating nodes as{c}. To guarantee orthogonal transmissions, we consider a Time Division Multiple

1Where the cooperative nodes attempt to decode the source’s bits, and retransmit those bits if the decoding succeeds [3],



Access (TDMA) arrangement withm + 1 time slots. The first slot is used for the source to transmit its

signal to the destination as well as share it with the cooperative nodes.

If the channel between the source and a node is good enough, this node becomes anactivecooperating

node, and decodes and forwards the source information. Denote the set of active cooperative nodes as

C ∈ c. In the followingm slots, the active cooperative nodes repeat the source message in a predetermined

order [1].

Assuming that the destinationd has exact channel state information (CSI), maximum-likelihood com-

bining of the signals received from all|C|+1 nodes can be employed. Furthermore, we assume that both

the source and the cooperative nodes do not have access to any transmit channel information.

III. O UTAGE PROBABILITY : FORMULAS AND BOUNDS

A. Outage Probability for i.i.d. Channels

The mutual information between the source and cooperative nodesc = 1, . . . , m is [4]:

Ic =
1

m + 1
log (1 + SNRx̂c) , (1)

where x̂c = |hs,c|2 and hs,c is the complex channel gain between sources and nodec, modelled as a

zero-mean circularly symmetric Gaussian random variable.x̂c is exponentially distributed with parameter

λ̂c. SNR is the transmit signal-to-noise ratio, and the factor1
m+1

captures the TDMA nature of the scheme,

in which nodes is allowed to transmit its information only a fraction1/(m + 1) of the time.

If the instantaneous mutual informationIc is higher than the transmission rateR, we can assume that

the cooperative node successfully decodes the source bits, and thus belongs to the active cooperative set

C, or C = {c : Ic > R, c = 1, . . . , m}.
As presented in [1], the mutual information of the decode-and-forward transmission is

I =
1

m + 1
log

(
1 + SNR

(
x0 +

∑
c∈C

xc

))
, (2)

wherex0 = |hs,d|2 andxc = |hc,d|2 are exponentially distributed with parameterλ0 andλc, respectively.

The outage probability is defined asPout = P
[
I < R

]
whereR is the required transmission rate for



sources. Using the total probability law, we can write the outage probability as:

P
[
I < R

]
=

∑
C

P
[
I < R | C]

P
[
C

]
. (3)

Generally, this probability is very difficult to compute since the summation is over all the possible active

cooperative sets, which has2m items. However, if we assume independent and identically distributed (i.i.d.)

fading, the closed-form outage probability can be derived.

Theorem 1:Under the assumption that the Rayleigh fading from the source to the cooperative nodes

are i.i.d. (̂λc = λ̂, c = 1, . . . , m), and those from all nodes to the destination are also i.i.d. (λ0 = λc =

λ, c = 1, . . . , m), the outage probability of the system is

Pout =
m∑

k=0

(
m

k

) (
e−λ̂γ

)k (
1− e−λ̂γ

)m−k
[
1− e−λth

k∑
i=0

(λγ)i

i!

]
, (4)

whereγ = 2(m+1)R−1
SNR

.

Proof: First consider the conditional probability

P
[
I < R | C = {1, . . . , k}] = P

[ k∑
c=0

xc <
2(m+1)R − 1

SNR

]
(5)

We now use Moment Generating Function (MGF) to find the distribution ofxsum =
∑k

c=0 xc. Since

eachxc is exponentially distributed with parameterλ, its MGF isMc(s) = λ
s+λ

. Furthermore, thexc’s are

independent, so the MGF ofxsum is [5]

Msum(s) =

(
λ

s + λ

)k+1

. (6)

Applying the inverse Laplace Transform, we can get the pdf, and then the CDF ofxsum as

Fsum(x) = 1− e−λx

k∑
i=0

(λx)i

i!
, (7)

therefore (5) becomes

Fsum(γ) = 1− e−λγ

k∑
i=0

(λγ)i

i!
. (8)

Notice that this conditional distribution is only determined byk, the size of the active set, and not by



the identity of thek nodes in the set. As a result, we can re-write (3) as

P
[
I < R

]
=

m∑

k=0

P
[
I < R | |C| = k

]
P

[|C| = k
]

(9)

From the mutual information formula (1), we have

P
[
c ∈ C

]
= P

[
x̂c > γ

]
= e−λ̂γ,

sincex̂c is exponentially distributed with parameterλ̂. It is straightforward then to arrive at

P
[|C| = k

]
=

(
m

k

) (
e−λ̂γ

)k (
1− e−λ̂γ

)m−k

(10)

Finally, substituting (8) and (10) into (9), we get (4), which completes the proof. ¥

B. Convenient Lower Bounds

In Theorem 1 we derive the exact outage probability formula for i.i.d. fading. Unfortunately,Pout does

not have a nice and simple form for general non-i.i.d. cases. However, we can still obtain convenient

bounds to avoid the complex numerical summation in (3). We present two convenient lower bounds as

the following theorems.

Theorem 2:One lower bound for the outage probability of a decode-and-forward system is

Pout ≥
(

m∏
c=1

1− e−λ̂cγ

)
(
1− e−λ0γ

)
+

(
1−

m∏
c=1

1− e−λ̂cγ

)(
m∏

c=0

1− e−λcγ/(m+1)

)
. (11)

Proof: Based on the fact that

x0 +
∑
c∈C

xc ≤ (m + 1)xmax, xmax = max
c=0,...,m

xc,

first we have

Pout = P

[
x0 +

∑
c∈C

xc < γ

]
≥ P

[
x0 < γ

]
P

[
k = 0

]
+ P

[
(m + 1)xmax < γ

]
P

[
k 6= 0

]
, (12)

wherek again represents the size of the active cooperative set, ork = |C|.



Using a result in order statistics, we can obtain the CDF ofxmax as [6]

Fmax(x) =
m∏

c=0

Fc(x) =
m∏

c=0

(
1− e−λcx

)
,

and therefore

P
[
(m + 1)xmax < γ

]
=

m∏
c=0

(
1− e−λcγ/(m+1)

)
. (13)

For the other items in (12), it is simple to obtain

P
[
k = 0

]
=

m∏
c=1

(
1− e−λ̂cγ

)
(14)

P
[
k 6= 0

]
= 1−

m∏
c=1

(
1− e−λ̂cγ

)
(15)

P
[
x0 < th

]
= 1− e−λ0γ. (16)

Substituting (13), (14), (15) and (16) into (12) completes the proof. ¥

Theorem 3:Another lower bound for the outage probability of a decode-and-forward system is

Pout ≥
(

m∏
c=1

1− e−λ̂cγ

)
(
1− e−λ0γ

)
+

(
1−

m∏
c=1

1− e−λ̂cγ

)(
m∑

c=0

ac

(
1− e−λcγ

)
)

, where ac =
∏

i6=c

λi

λi − λc

Proof: Similar to (12), we have

Pout ≥ P
[
x0 < γ

]
P

[
k = 0

]
+ P

[ m∑
c=0

xc < γ
]
P

[
k 6= 0

]
, (17)

The MGF of
∑m

c=0 xc can be written as

Msum(s) =
m∏

c=0

λc

s + λc

=
m∑

c=0

aiλc

s + λc

, (18)

where ac =
∏

i6=c

λi

λi − λc

Therefore the CDF of
∑m

c=0 xc is

Fsum(x) =
m∑

c=0

ac

(
1− e−λcx

)
(19)

Finally, substituting (19), (14), (15) and (16) into (17) completes the proof. ¥

Sincex0 +
∑

c∈C xc ≤
∑m

c=0 xc ≤ (m+1)xmax, the second lower bound is tighter, but requires slightly



heavier computation load.

IV. SIMULATION RESULTS

Figure 1 shows the outage probability of a decode-and-forward system with the number of cooperative

nodes ranging from0 to 8. In the simulation we setR = 1bit/sec/Hz, and̂λc = λ0 = λc = 1, c = 1, . . . , m.

[Figure 1 about here.]

Plots like Figure 1 helps in system design not only because outage probability is an important QoS

parameter in itself, but also because they allow us to determine the optimal number of cooperative nodes.

For example, from Figure 1 we can see that when SNR= 20 dB, the optimal number of cooperative nodes

is m = 2. When SNR increases to30 dB, the optimal size changes tom = 4. An asymptotic analysis on

the other hand will always point tom = 8 as the best setting because it yields the largest diversity order.

Figure 2 compares the two lower bounds with the actualPout obtained from numerical computations.

In this simulation we setR = 1 bit/sec/Hz,λ̂c, λ0 andλc are i.i.d. uniformly distributed in[0, 2]. From

the figure we can see that the two bounds are almost identical and both are very tight, providing very

good approximations to the outage probability.

[Figure 2 about here.]
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Fig. 1. Outage probability for the i.i.d. cases.
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Fig. 2. Outage probability and lower bounds for the non-i.i.d. cases.


