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Abstract

Cooperative diversity improves the performance of wireless networks by having several nodes transmit the
same information. We present an outage probability analysis for a decode-and-forward system, valid at all signal to
noise ratios (SNR). A closed form solution is obtained for independent and identically distributed (i.i.d.) channels,
and two tight lower bounds are presented for correlated channels.

I. INTRODUCTION

Cooperation helps create spatial diversity in wireless networks, even if individual nodes do not use
antenna arrays for transmission or reception [1], [2]. While asymptotic (in SNR) performance analysis
highlights the diversity order achievable by various techniques, it is also important to study performance
in the non-asymptotic or finite SNR regime so as to compare various schemes in practical settings. In this
letter, we derive the exact outage probability of the decode-and-forward stliemarbitrary signal-to-
noise ratio (SNR) by using two powerful mathematical tools: Moment Generating Function (MGF) and
Order Statistics. We derive an exact closed-form expression for i.i.d. channels, and introduce simple lower
bounds for non-i.i.d. channels. Simulation results show that those bounds are very tight.

As an example of the utility of our results, consider that Laneman and Wornell proved in [1] that both
the decode-and-forward and the space-time-coded cooperation can provide “full diversity” in the sense that
the diversity order (using outage probability as a performance measure) is the total number of cooperating
nodes in the network. However, our results will show that at finite SNR levels, a higher diversity order
does not necessarily translate into better performance. This implies that the optimal number of cooperating

nodes is in fact a complex function of the operating SNR and the cooperative diversity scheme in use.

Il. SYSTEM MODEL

We consider a system with a source noglecommunicating with a destinatiod, with the help ofm
other cooperating (or relay) nodes, which are called cooperative nodes or relay nodes. Denote the set of al
cooperating nodes &s:}. To guarantee orthogonal transmissions, we consider a Time Division Multiple

Where the cooperative nodes attempt to decode the source’s bits, and retransmit those bits if the decoding succeeds [3],



Access (TDMA) arrangement withe + 1 time slots. The first slot is used for the source to transmit its
signal to the destination as well as share it with the cooperative nodes.

If the channel between the source and a node is good enough, this node becauntgeamoperating
node, and decodes and forwards the source information. Denote the set of active cooperative nodes a
C € c. In the followingm slots, the active cooperative nodes repeat the source message in a predetermined
order [1].

Assuming that the destinatiahhas exact channel state information (CSI), maximum-likelihood com-
bining of the signals received from dl'| + 1 nodes can be employed. Furthermore, we assume that both

the source and the cooperative nodes do not have access to any transmit channel information.

[Il. OUTAGE PROBABILITY: FORMULAS AND BOUNDS
A. Outage Probability for i.i.d. Channels

The mutual information between the source and cooperative nogek ... m is [4]:

1
I, = log (1 NRz 1
o = ——log 1+ SNRE). ®

where i. = |hs.|* and ks, is the complex channel gain between souscand nodec, modelled as a
zero-mean circularly symmetric Gaussian random variahlés exponentially distributed with parameter
A.. SNR is the transmit signal-to-noise ratio, and the faren@f captures the TDMA nature of the scheme,
in which nodes is allowed to transmit its information only a fractidn/(m + 1) of the time.

If the instantaneous mutual informatidp is higher than the transmission ral& we can assume that
the cooperative node successfully decodes the source bits, and thus belongs to the active cooperative s
C,orC={c:1I.>R,c=1,...,m}.

As presented in [1], the mutual information of the decode-and-forward transmission is

-log (1 +SNR(1'0 +ch)>, (2)

ceC

1
I =
m +

wherezq = |hsq|* andx, = |h.4* are exponentially distributed with parameter and )., respectively.

The outage probability is defined &s,; = P[I < R} where R is the required transmission rate for



sources. Using the total probability law, we can write the outage probability as:
P[I <R] =) P[I<R|C]P[C]. 3)
C

Generally, this probability is very difficult to compute since the summation is over all the possible active
cooperative sets, which ha% items. However, if we assume independent and identically distributed (i.i.d.)
fading, the closed-form outage probability can be derived.

Theorem 1:Under the assumption that the Rayleigh fading from the source to the cooperative nodes
are i.i.d. 0. = \, ¢ =1,...,m), and those from all nodes to the destination are also i.Ag~( \. =

A, ¢=1,...,m), the outage probability of the system is

P — - m My F 1 — Xy m—k 1— —Ath - ()‘7)1 4
out kz: k (6 ) ( € > € z; Z' ) ( )
=0 i=
wherey = 2(33;71

Proof: First consider the conditional probability

(m+1)R
2 1} (5)

PlI<R|C={1,... =P .
We now use Moment Generating Function (MGF) to find the distribution ,Qf, = Zf:o z.. Since
eachz, is exponentially distributed with parametgrits MGF is M.(s) = S%A Furthermore, the,’s are

independent, so the MGF af,,,, is [5]

A k+1
Mgum(s) = (S n )\) ) (6)
Applying the inverse Laplace Transform, we can get the pdf, and then the CDE,pfas
~ ()’
o —\z
Fam(z) =1—e" )" et 7)
=0

therefore (5) becomes
Zk (M)
Fsum(’Y) =1- 6_)\7 .

=0

(8)

Notice that this conditional distribution is only determined hythe size of the active set, and not by



the identity of thek nodes in the set. As a result, we can re-write (3) as
P[I < R] =) P[I<R||C|=k|P[|C| = k] (9)
k=0
From the mutual information formula (1), we have
P[C - C} = P[i'c > ’Y} = 6_5\77

since?, is exponentially distributed with parametgr It is straightforward then to arrive at

elict =4 = () () (=)™ (10)

Finally, substituting (8) and (10) into (9), we get (4), which completes the proof. [ |

B. Convenient Lower Bounds

In Theorem 1 we derive the exact outage probability formula for i.i.d. fading. Unfortun&glydoes
not have a nice and simple form for general non-i.i.d. cases. However, we can still obtain convenient
bounds to avoid the complex numerical summation in (3). We present two convenient lower bounds as
the following theorems.

Theorem 2:0ne lower bound for the outage probability of a decode-and-forward system is
ot 2 (H 1- “’*) —e) 4 (1 -11t- M) (H 1—e7 ’”*”) SNCEY
c=1

Proof: Based on the fact that

Zo + Zxc < (m + 1)$mam7 Tmaxr = Enax Le,

first we have

Pout:P{xothxc <7} ZP[xO <7}P[k:0] +P[(m+1)xmax <ﬂP[k¢%0]7 (12)
ceC

wherek again represents the size of the active cooperative sét-ofC|.



Using a result in order statistics, we can obtain the CDE,Qf, as [6]

Frae(7) = ﬁ ﬁ 1—e ),
c=0 c=0

and therefore

Pl + Dty < ] = [ (1~ e/ 00). (13)
c=0

For the other items in (12), it is simple to obtain

Pli=0] = J[(1- ) (14)

Plk#0] = 1- ﬁ (1—e) (15)

Plzy <th] = 1- ;M (16)

Substituting (13), (14), (15) and (16) into (12) completes the proof. [ |

Theorem 3:Another lower bound for the outage probability of a decode-and-forward system is

Pou 2 <H 1= _M> — e+ (1 - f[l 1- 6_&”) (Cznj; ac A7) ) ,wherea. =[] y )_\iAC

i#c

Proof: Similar to (12), we have
Pout > Plzg < 7]P[k=0] +P[ Zxc<7 [k # 0], (17)

The MGF of """ z. can be written as

c=0 :O
where a, = H
75 C
Therefore the CDF op " . is
Fsum(x) = Z Qe (1 - ei)\cz) (19)
c=0
Finally, substituting (19), (14), (15) and (16) into (17) completes the proof. [

Sincexy+ ) .o T < Yoo e < (m+1)zm4,, the second lower bound is tighter, but requires slightly



heavier computation load.

IV. SIMULATION RESULTS

Figure 1 shows the outage probability of a decode-and-forward system with the number of cooperative

nodes ranging from to 8. In the simulation we sek = 1bit/sec/Hz, and\, = Ao = A\. = 1,c = 1,...,m.
[Figure 1 about here.]

Plots like Figure 1 helps in system design not only because outage probability is an important QoS
parameter in itself, but also because they allow us to determine the optimal number of cooperative nodes.
For example, from Figure 1 we can see that when SNR dB, the optimal number of cooperative nodes
is m = 2. When SNR increases &) dB, the optimal size changes t0 = 4. An asymptotic analysis on
the other hand will always point to. = 8 as the best setting because it yields the largest diversity order.

Figure 2 compares the two lower bounds with the acitjgl obtained from numerical computations.

In this simulation we seR = 1 bit/sec/Hz,)\., Ao and ), are i.i.d. uniformly distributed if0, 2]. From
the figure we can see that the two bounds are almost identical and both are very tight, providing very
good approximations to the outage probability.

[Figure 2 about here.]
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