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Abstract - This paper develops the linear transformation 
(or precoding) of orthogonal space-time block codes (STBC) 
for minimizing probability of decoding error, when the 
channel covariance matrix is available at the transmitter. We 
build on recent work that stated the optimization problem 
without solving for the transformation. Specifically, we pro- 
vide a closed-form solution for the multi-input single-output 
(MISO) systems, and a numerical solution for the multi- 
input multi-output (MIMO) systems. Our results confirm 
that eigen-beamforming is optimal at low SNR or highly 
correlated channels, and full diversity is optimal at high SNR 
or weakly correlated channels. 
Keywords - MIMO systems, STBC. 

1. INTRODUCTION 

In mobile communications, the adverse effects of channel 
fading can be mitigated by transmission over a diversity of 
independent channels. A large and growing body of results 
have firmly established the potential of orthogonal space- 
time block codes (0-STBC) in multi-input multi-output 
(MIMO) systems that use antenna arrays at the transmitter 
and the receiver [ l ]  to provide spatial diversity at both ends 
of a communications link. 

Without channel state information (CSI) at the transmitter, 
space-time codes should be designed using the rank and 
determinant criteria, even when the spatial channels are 
correlated. It is known that spatial correlation results in a 
smaller coding advantage [I]. But given that nothing can 
improve the performance of current state-of-the-art full- 
diversity space-time codes without CSI at the transmitter, it 
is natural to consider performance improvements when this 
assumption is relaxed. 

In this paper, we study the design of a linear precoder 
for 0-STBC in spatially correlated, quasti-static, flat fading 
channels with channel covariance knowledge available at 
the transmitter. The objective is to minimize the average 
probability of decoding error. Prior work on this topic 
developed the optimality criterion [2] to be satisfied by the 
precoding matrix, hut no closed-form or numerical solution 
was provided. Recent study in [3], [4] solved the optimal 
precoding matrices for MISO systems and particular MIMO 
systems with uncorrelated receive antennas. In this paper, we 

present a numerical solution for arbitrary MIMO channels 
with both transmit and receive correlations. We can see our 
solution contains the ones in [3], [4] as special cases. 

Furthermore, this problem setting ties in with recent work 
on determining the capacity-achieving signal correlation 
matrix when the channel covariance is available at the 
transmitter [5], [6]. In contrast, our research is focused on 
minimizing the error probability, given a linear precoding 
stmcture based on 0-STBC. This transmitter structure is 
chosen mainly to simplify the transmitter and the receiver 
complexity. Due to the orthogonal code structure, the com- 
plexity is only linear in the number of antennas despite 
employing a maximum likelihood receiver. 

The rest of the paper is organized as follows: Section I I  
presents the background material needed in the rest of the 
paper, Section 111 discusses the optimal precoding under var- 
ious scenarios, Section IV introduces two simplified strate- 
gies that are shown to result in minimal performance loss. 
Simulation examples are presented in Section V. Finally, 
conclusions are given in Section VI. 

11. BACKGROUND 

Consider a MIMO system with A4 transmit and N receive 
antennas. 0-STBC is used, and a linear transformation 
W E Cnrxnr is applied prior to transmission to improve 
performance in correlated fading. The transmitter for such 
a system is shown in Fig. 1. A maximum-likelihood (ML) 
receiver is employed. Our goal is to find the optimal W 
to minimize the maximum pairwise error probability (PEP) 
between codewords. 

The MIMO channel is described by the N x A4 matrix H 
where the element [HI,, is the fading coefficient between 
the mth transmit antenna and the nth receive antenna. The 
channel correlation matrix is 

R = E[hht] (1) 

where (.)+ denotes Hermitian transpose, h = uec(H), and 
uec(.) denotes the vectorization operator which stacks the 
columns of H. 

The STBC encoder organizes data into an hf x L matrix C 
and successive columns of this matrix are transmitted over 
L time indices. The corresponding N x L received signal 
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Fig. 1.  Precoded STBC transmitter block diagram, 

matrix X can be written as  

X = HWC + E: (2) 

where E is an A' x L matrix with i.i.d. complex Gaussian 
elements representing additive thermal noise. The receiver 
employs Bn ML decoder, thus the decoded codeword C can 
be expressed as 

- c = argmin /IX - H W C ~ I ~ , ,  (3) 
C 

where 1 1  . 1 1 ~  is the Frobenius norm [7]. Note that,pecause 
HW is equivalent to a modified channel matrix H, max- 
imum likelihood decoding of C requires only the simple 
linear operation described in [I]. 

In [2], it was found that the Wept which minimizes the 
maximum pairwise error probability, i.e. 

Wept = argmin max P ( C s  4 Ci) (4) w G , C i  

satisfies 

ZaPt = WoptW:,, = arg max det [(IN @ Z)TI + R-'1, z 
Z t O , t r ( Z ) = M  

( 5 )  
where Z has to be positive semi-definite because Z = 
WWt, and the trace constraint is necessary to avoid power 
amplification. @ denotes the Kronecker product, and r j  = 
pmin/4u2 with 

pmin = argmin(pkl1 = (C, - Cl)(Ci.  ~ Ci)i} (6) 
LLk, 

Il l .  OPTIMAL T R A N S F O R M A T I O N  

A. General Solution 

It is reasonable to assume that the correlation between 
two suhchannels is equal t o  the product of the correlation at 
the transmitter and that at the receiver [8]. In matrix form, 
letting RT denote the correlation between different transmit 
antennas; and RR that between receive antennas, the channel 
correlation is 

R = R R @ R T .  (7) 

With this assumption, the optimal transformation matrix is 
the square root of 

ZOpt = arg max det[(I, 8 Z)77 +RS1 BRR,']. (8) 

= ~ U $ Z U T ,  where UT is the 
eigenmatrix of R T ,  i.e. RT = UTATU;. Solving (8) is 
equivalent to finding 

BOpt = arg max det[IN @ B + AH' 8 A,']. (9) 

Z 
Z t O . t r ' ( Z ) = A I  

Theorem I :  Let B 

BkO 
tr(B)=qAI 

Proof: See Appendix. 
Since AT and AR are diagonal, the solution to (9) must 

be diagonal as well. Let the mth diagonal elements of AT 
and B ,  and the nth diagonal element of AE be At,, b,  and 
A,,, respectively. The problem (9) is seen to be equivalent 
to finding a set of non-negative b,,'s to maximize 

Af N n (bm + ALA ~ 2 )  (10) 
rn=l " = I  

under the trace constraint t r (B)  = E,,, b,  = rjM. This 
problem is an extension of the waterfilling problem to 
two dimensions (m and n), so we can call it a second- 
order watertilling problem. The closed-form solution to this 
problem is too complicated to find. However, we can find the 
solution by numerical methods such as Sequential Quadratic 
Programming (SQP) [9]. Results of the 'numerical scheme 
are provided in Section V-A. 

Since Zrj = U T B U $ ,  the diagonal matrix B is actually 
the eigenvalue matrix o f  Zq. Thus optimization results for 
Z and W are 

Z = (l/?r)U,BU&, (1 1) 

w = (1/&)UT&Q. (12) 

where 0 can he any M x Ad unitary matrix, and the optimal 
W is not uni ue For simplicity we can either choose Q = 
In, or Q = U,. 9 .  In this paper we choose the identity matrix. 

B. Closed-Form Solution for MIS0 systems 

We now consider the special case of MISO systems, 
i.e. systems with only a single receive antenna (N=l). This is 
quite reasonable for the downlink of wireless communication 
systems since it may be too complicated and costly to 
employ more than one antenna at the mobile unit. Under 
this assumption the Kronecker product in (9) disappears and 
we end up solving 

(13) Bo,, = arg rnax det [B +A,'] 
B t O  

tr(B)=lJ 

where B is a non-negative diagonal matrix. This is identical 
to the water-filling problem in information theory [IO], 
which has the solution 

b, = (v - A;,)'; for m = 1 , .  . . , M ,  (14) 
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where U is a constant chosen to satisfy the trace constraint 
and B = diag(b1;. . . , bnr). The notation (a)+ is used to 
denote the positive part o f  x, i.e. (z)+ = z, if z > 0, and 
(z)+ = 0, otherwise. The optimal W is 

We can see that this solution agrees with those in [3], [4]. 
The transmitted signal WOptC occupies the subspace 

spanned by the non-zero eigenvectors of RT. In the case of 
very high correlation, only one b, is non-zero, so we have 
eigen-heamforming. On the contrary, all the eigenvectors 
are used when the correlation is low, and full diversity is 
achieved. 

C. Relation to Capacig Analwses 
There has been much interest in the information theory 

community in MlMO channels with covariance feedback [SI, 
[6].  In those works, the goal is to find the input covariance 
matrix SS,OPt  necessary to achieve ergodic channel capacity, 
while our goal is to find the optimal linear transformation 
to achieve minimum error probability. Interestingly, the con- 
clusions reached are strikingly similar for both approaches, 
and warrants some comment. 

1) Transmitting over the eigenvectors ofthe channel cor- 
relation matrix is optimal assuming only the channel 
correlation is available at the transmitter. However, 
the exact amount allocated to each eigen-channel may 
differ for the two schemes. 

2 )  Beamforming is uptimal at high correlation/low SNR. 
Diversity is not helpful in this case as it is noise and 
not fading that limits performance. 

3) Optimal diversity order increases with SNR. At low 
SNR, only the strongest eigen-channel is used. As the 
SNR increases, more eigen-channels come into use, 
so the diversity order increases until full diversity is 
achieved. 

4) Full diversity is optimal in uncorrelated channels. 
Similarly, in the high SNR region, the optimal scheme 
should use all the eigen-channels, because in this case 
diversity can be taken advantage of. 

IV. SIMPLIFIED SCHEMES 
A .  Ignoring the Receive Correlation 

The extended "one ring:' model introduced in [ I  I ]  is a 
well known scattering model for channel correlation. From 
this model, for the downlink, the correlation of the fading 
coefficients between transmit antennas p and q and receive 
antenna m is 

RT(K 4 )  = E[hmpG,I JU A,d ( E  4 )  > (16) 
( 2 r T  ) 

where A is the angle spread, X is the wavelength, d T ( p ,  q )  
is the distance between the two transmit antennas, and &(.) 

is the first kind Bessel function of the zeroth order. The 
correlation between two receive antennas 1 and ,171 is 

RR(~,T,z) = E[hi,h;,] = Jo --dR(l:nr) ~ (17) ('x" ) . 

where dR( l ,m)  is the distance between the two receive 
antennas. 

In practice, the angle spread A is usually very small. As 
a result, the receive correlation is small compared to the 
transmit correlation. For instance, if the distance between 
two transmit antennas equals X/2 and the angle spread is 
A = 0.1, the correlation between these two transmit anten- 
nas is Ju (0 .1~)  = 0.97. But the correlation between two 
receive antennas with the same separation is just J u ( r )  = 
-0.30. 

In dealing with receive diversity, a correlation below 0.5 
is considered negligible [12]. Therefore we can simplify 
our algorithm for the downlink transmission by ignoring the 
receive correlation. Under this approximation, the rows of H 
are assumed independent and the channel correlation matrix 
can be written as R = I N  @ RT. In this case, (9) becomes 

BOPt = arg max det[IN @ B  + IN 8 A,'] 
BkU 

tr[B)=qhl 

~ - arg max BtU d e t [ B + A ? ' ] " .  (18) 
tr[B)=nAf 

Therefore, the solution is exactly the same as in (14), and 
the complicated second-order water-filling is avoided. 

B. Switching Between Beamforming and STBC 

We can avoid waterfilling altogether by switching between 
heamforming and 0-STBC at a pre-computed threshold SNR 
level. This threshold is found by equating the error proh- 
ability performance criteria o f  beamforming and 0-STBC. 
Specifically, we want to find q that solves the equation 

det[zh,,,ll+ RTI] = det[qInr + (19) 

where Zbeam is the Z  matrix for beamforming, i.e. = 
aut~ull  where cy is a constant determined from (14) and utl 
is the eigenvector corresponding to the largest eigenvalue of 

It is self-evident that the simplified strategy incurs a 
greater loss in performance relative to the full-complexity 
scheme when the transition region between beamforming 
and 0-STBC grows. There are however cases when the tran- 
sition region is so small that no difference in performance 
is discernible. 

One example is when the correlation between antennas is 
low. In this case all the eigenvalues are close to 1, so the 
transition region is small. Another example is when all the 
channel correlations are equal, in which case the eigenvalues 

UT. 

505 



. . .  . . . . .  . . . . . . . . .  . .  
. . . . . . . . . .  j o ~ ]  ’ ,, ,: ,: 

. . .  
.A .I ,A I . . , , .  I . 1 I . . .  , U. 

-1 - 2  0 2 1 B I 10 12 11 18 
sNR,nd6 

Fig. 2 .  Optimal scheme for MIMO system. A$ = 4> iV = 2. 

of Rr take on only two values so that the transition region 
has zero width. To show this, consider 

This matrix has only two eigenvalues: (1 + p) and (1 - p)  
(repeated (N - 1) times). Therefore, the waterfilling scheme 
has no transition region. In the low SNR region, only the 
eigen-channel corresponding to (1 + p) is used, so we have 
beamforming. All the other N - 1 channels will come into 
use simultaneously when the SNR exceeds the threshold 
level, so the performance is quite close to STBC. Therefore, 
the switching scheme can achieve very good performance 
under this correlation model. 

V. SIMULATION RESULTS 
A. Numerical Solutions for  MIMO Systems 

As discussed in Section 111-A, the optimal transformation 
for MIMO system is found through a second-order watefill- 
ing problem. No closed form solution has been found, but 
numerical methods, such as  SQP can be used to solve (10) 
with a trace constraint. Here we use the MATLAB function 
fmincon to solve the problem. 

Figure 2 shows the performance curve obtained with the 
optimal transformation. The correlation matrix is 

/ 1 0.9755 0.9037 0.79 \ 

(20) 
1 0.9755 1 0.9755 0.9037 1 

RT41 = 0.9037 0.9755 1 0.9755 
[ 0.79 0.9037 0.9755 1 J 

It is obtained by using (16) from the extended “one ring” 
model. .The distance between two adjacent antennas is X/Z, 
and the angel spread is A = 0.1 radians. Similarly, the 
correlation between the two receive antennas is set to be 

10.1 . .;. , 
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10-( i ,  , 

. .  . . .  

. . . .  
. . .  
. . . . . .  

j q  , : , ,  . . .  ’ 
. . . . .  . . . . . . . .  

. .  
. .  

. .  . . .  . . . . .  . . . . .  

. . . . . . . .  . . . .  . . . .  . . .  . . .  . .  

. . . . .  
. .  . .  

. . .  

. . . . . . . . . . .  

. . . . . . . . . .  

10- 

2 0 * 1 I B 10 12 I 4  I b  18 
SNR,nds 

Fig. 3 BER curves when receive correlations are ignored. 
A$ = 4, N = 2 

-0.3042 based on (17). From the plots we can see that 
for very low SNR, the optimal transformation is equivalent 
to beamforming, as expected. For the other SNR regions, 
the performance of the optimal scheme is better than both 
beamforming and STBC. Furthermore, the optimal scheme 
approaches STBC as SNR increases, again as expected. 

B. Simplifrerl Schemes 
Figure 3 shows the performance when we ignore receiver 

correlation. A system with four transmit and two receive 
antennas is considered. The transmit correlation is given in 
Eqn. (20). At the receiver side, the correlation between the 
two receive antennas is set to a very high value of 0.7. From 
the figure we can find that there is nearly no performance 
loss for ignoring the receive correlation, even when the 
correlation is quite large. 

Figure 4 shows the performance of the simplified switch- 
ing scheme compared to the the waterfilling scheme for 
MISO systems with two or four transmit antennas. The 
transmit correlation uses the “all equal” model and the 
correlation is set as p = 0.8. For il.I = 4, the SNR threshold 
was found to be 10.36 dB; for M = 2, it was 9.44 dB. 

VI. CONCLUSIONS 
Orthogonal Space-Time Block Codes (0-STBC) are 

widely used in MIMO systems to achieve diversity, but the 
performance of 0-STBC over correlated fading channels 
deteriorates rapidly with increasing channel correlation. With 
feedback of the channel correlation matrix, the transmitter 
can employ a linear transformation unit following the STBC 
encoder to improve the performance. One such scheme 
chooses the transformation matrix which minimizes the 
maximum painvise error probability. 

Based on the performance criterion derived in previous 
work, we use a waterfilling argument to derive a closed 
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Fig. 4. Switching Scheme vs. Waterfilling 

form solution for the optimal transformation matrix for a 
MISO system. The same scheme is proven to be optimal 
for a receive-uncorrelated MlMO system. More generally, 
for arbitrary MIMO systems, we derive a “second order 
waterfilling” solution which can be found using numerical 
algorithms such as Sequential Quadratic Programming. 

Finally, two simplified schemes are introduced to reduce 
the complexity of implementing the optimal technique. One 
scheme ignores receiver correlation. The other uses STBC or 
beamforming directly based on the SNR level and channel 
correlation. They reduce the transmitter complexity dramat- 
ically. 

APPENDIX 
PROOF OF THEOREM 1 

The problem is to choose a non-negative definite matrix 
2 to maximize det[(IN @ Z)q + RR’ @ ql] subject to 
the trace constraint t r (2 )  = M .  Notice that the correlation 
matrix RR and RT are both positive definite and we can 
decompose them into the diagonal form, 

RT = UTATU;, where UTU; = In1 
RR = URARUL, where U R U ~  = IN. 

(21) 

(22) 

Then 

det[(I t3 2)71+ RR1 @ R;’] 

The trace constraint is 

tr(B) = tr(U&ZVUT) 
= tT(UTU$ZV) = VhI. 

Therefore, the problem reduces to finding a non-negative 
definite matrix B maximizing det [IN @ B + A,’ t3 AF’] 
with the constraint t r ( B )  = ?A<. 
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