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ABSTRACT

This paper considers the optimal association of remote user
terminals to different cells in a heterogeneous network for
load balancing. Assuming fixed transmit powers at the base-
stations, we adopt a network utility maximization formulation
with a proportional fairness objective and show that the down-
link user association problem can be solved efficiently using
a pricing approach where the prices are updated in the dual
domain via coordinate descent. As compared to the previ-
ously proposed subgradient method, the proposed coordinate
descent algorithm does not require the base-stations to syn-
chronize in their price updates, while still guaranteeing con-
vergence, which makes it particularly suitable for distributed
implementation. Simulations show that the proposed method
has fast convergence while achieving near-optimal solution.

1. INTRODUCTION

Heterogeneous network is an emerging wireless cellular ar-
chitecture in which femto or pico base-stations (BSs) are de-
ployed throughout the geographical area to off-load traffic
from the macro BSs. By splitting the conventional cellular
structure into small cells, the heterogeneous network archi-
tecture allows more aggressive reuse of frequencies as well
as improved coverage and higher overall throughput for the
entire network.

One of the main challenges in the design and implemen-
tation of heterogenous network architecture is the appropri-
ate setting of the transmit power levels at the femto/pico BSs
and the definition of each cell’s coverage area. In most prac-
tical deployments, the power levels at the femto/pico BSs
are fixed a priori (typically at 10-30dB below the macro BS
power). The downlink coverage areas of the small cells are
then defined according to the received signal-to-interference-
and-noise ratio (SINR). From the the user terminals’ perspec-
tive, each user is simply associated with the BS with the high-
est SINR. This downlink cell association rule is often referred
to as the max-SINR rule.

A key problem with the max-SINR cell association is that
it does not account for the varied data traffic pattern in the net-

work, hence it does not address the load balancing problem
effectively. Load balancing is essential for a small-cell envi-
ronment, because femto/pico BSs are often deployed to allevi-
ate traffic “hot-spots” with higher-than-average user density.
In these situations, a heuristic that adds a bias term to the ref-
erence SINR often needs to be used in practice to address the
load imbalance.

This paper addresses the downlink coverage and user-cell
association problem from a proportionally fair utility max-
imization perspective. We assume that the BS powers are
fixed, and use a pricing approach for BS association. Our
main contribution is a distributed dual price update method
based on coordinate descent which is guaranteed to converge
and is shown to achieve near-optimal performance in practice.

The BS association problem has been considered exten-
sively in the literature. For example, the network utility max-
imization approach has been considered in [1], where heuris-
tic pricing strategies are considered for the joint power control
and cell-site selection problem. The joint power control and
cell association problem is also considered in [2], which gives
an optimal solution to the problem but only under certain re-
stricted conditions and only for the case where the number of
users and the number of BSs are the same. In [3], a differ-
ent special case of only a single pair of macro and pico BSs
is investigated. In [4], an approximate solution to the joint
power control, beamforming, and BS association problem is
given. In [5], a game theoretical approach is used, and the
Nash Equilibrium of the problem is found.

A common method for solving the BS association prob-
lem is the greedy method [6, 7, 8]. However, the performance
of the greedy algorithm is not easy to control. The conver-
gence is slow, if only a single user improves its BS associa-
tion at each step. But, the algorithm may exhibit oscillatory
behavior if too many users switch BSs at the same time [7].

In this paper, we use the duality theory in optimization
to tackle the BS association problem. This approach is first
taken in [9], where the BS association problem under the pro-
portionally fair utility is solved in the dual domain using a
subgradient method. The dual variables have a pricing inter-
pretation. The users determine their BS association based on
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their achievable utilities minus the BS price, and the BSs up-
date their prices based on a subgradient.

This paper uses the same problem formulation as in [9],
but instead of using subgradient update, we propose a price
update based on coordinate descent in the dual domain. As
compared to the subgradient method, the advantages of the
proposed method are two fold. First, the performance of the
subgradient method is often sensitive to parameter setting,
while the proposed method is not. Second and more impor-
tantly, the implementation of subgradient update requires syn-
chronization among the BSs in the sense that all BSs must
update their prices using the same step size at the same time
in order to ensure convergence. In contrast, the proposed
method requires only minimal coordination among the BSs
and is therefore more suited for distributed implementation.

2. PROBLEM FORMULATION

Consider the downlink of a heterogeneous cellular network
with L BSs with fixed (but possibly different) transmission
power spectrum density (PSD) levels, and a total of K user
terminals across a geographic area (possibly nonuniformly).
A maximum frequency reuse factor of 1 is assumed; the total
available bandwidth is W . Let SINRij be the SINR of user i
if it is associated with BS j. To simplify the problem, we as-
sume frequency-flat channels and a flat transmit PSD level so
that the SINR is constant across the frequencies. Further, we
assume that if a total of Kj users are associated with the BS
j, then each user simply gets 1/Kj of the total bandwidth1.
In this case, the data rate of the user i associated with BS j
can be calculated as

Rij =
W

Kj
log(1 + SINRij). (1)

This paper adopts a proportionally fair (or log-utility) objec-
tive function, and seeks user-cell associations that maximize
the sum of each user’s utility, log (Rij).

We follow the problem formulation of [9]. Let xij be bi-
nary variables (1 or 0) denoting whether or not user i is asso-
ciated with BS j, and let Kj be the number of users assigned
to BS j. The user association problem can be written as:

maximize
xij ,Kj

∑
ij

xij log

(
W

Kj
log(1 + SINRij)

)
(2)

subject to
∑
j

xij = 1, i = 1, . . . ,K (3)

∑
i

xij = Kj , j = 1, . . . , L (4)∑
j

Kj = K (5)

xij ∈ {0, 1} (6)
1This is justisfied in [9] as Round-robin scheduling can be shown to max-

imize the log-utility.

where (3) states that each user can only associate with one BS,
and (5) states that all users in the network must be served. To
simplify the notation, we introduce aij as

aij = log (W log(1 + SINRij)) . (7)

The objective function (2) can now be written as

f(xij ,Kj) =
∑
ij

aijxij −
∑
j

Kj log(Kj) (8)

3. ALGORITHM

A. Lagrangian Dual Analysis

The BS association problem (2) is a discrete optimization
problem, which is typically difficult to solve. However, it
turns out that its dual problem can be explicitly derived. This
forms the basis of the pricing update algorithm of this paper.

Introduce dual variables µ = (µ1, . . . , µL) for the con-
straint (4) and ν for (5). The Lagrangian function of the opti-
mization problem with respect to these two constraints is

L(xij ,Kj , µj , ν) =
∑
ij

aijxij −
∑
j

Kj log(Kj)

−
∑
j

µj

(∑
i

xij −Kj

)
− ν

∑
j

Kj −K

 . (9)

The dual function g(·) can now be stated as

g(µj , ν) =

{
max L(xij ,Kj , µj , ν)
s.t.

∑
j xij = 1; xij ∈ {0, 1}

(10)

The above optimization problem has the following explicit
analytic solution:

xij =

{
1, if j = j(i)

0, if j 6= j(i)
where j(i) = argmax

j
(aij − µj)

(11)
and

Kj = eµj−ν−1. (12)

Substituting (11) and (12) back into (10), we obtain the dual
objective

g(µj , ν) =
∑
i

max
j

(aij − µj)+
∑
j

(
eµj−ν−1

)
+νK. (13)

The dual problem is now just the minimization of the above
g(µj , ν) over µj and ν. Note that if j(i) in (11) is not unique,
xij can be assigned value 1 for any of the BSs with maximum
(aij − µj) without affecting the value of g(µj , ν) in (13).

The main point of this paper is that the optimization of
g(µj , ν) can be done via coordinate descent. This approach
is inspired by the development of auction algorithm by Bert-
sekas [10]. The BS association problem considered in this
paper can be thought of as a generalization of the 1-to-1 as-
signment problem solved by the auction algorithm [10] to the
K-to-1 case.
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B. Subgradient Method

We first review the subgradient method for optimizing g(µj , ν)
as proposed in [9]. Observe first that if µj’s are fixed, g(·) is
a differentiable convex function of ν, and the optimal ν can
be found as

ν(t+1) = log

∑
j e
µ
(t)
j −1

K
. (14)

However, g(·) is not a differentiable function of µj , so in-
stead of taking the gradient with respect to µj , the subgradient
method updates µj in each step according to

µ
(t+1)
j = µ

(t)
j − αt

(
eµ

(t)
j −ν(t)−1 −K(t)

j

)
, j = 1, . . . , L

(15)
where αt is the step size and K(t)

j =
∑
i xij , where xij is

as defined in (11). Note that again xij may not be unique
because j(i) in (11) may not be unique, but any valid set of
xij’s gives a valid subgradient.

One problem with the subgradient method is that its con-
vergence speed depends heavily on the choice of step sizes αt.
Possible choices of αt include constant step size (but the con-
stant is difficult to choose) or diminishing step sizes (which
guarantee convergence but can be quite slow in practice). As
a baseline for comparison, this paper adopts the self-adaptive
scheme of [11] as suggested in [9]. We refer the detailed al-
gorithm description to [11], and only mention that the scheme
involves quite a few parameters, namely γt, ρ ≥ 1, β < 1, as
well as δ1 and δ.

Note that because all the µj’s need to be updated at the
same time using the same step size (in order to ensure con-
vergence), the distributed implementation of the subgradient
method requires synchronized price updates across the BSs.
The dual coordinate descent algorithm proposed in the next
section removes such a requirement.

C. Dual Coordinate Descent

The basic idea of the proposed approach is to recognize that
the dual function (13) is in a closed form, and it can be opti-
mized in a coordinate descent fashion in closed form. Fixing
all the µj’s, we see that ν can be updated according to (14).
Fixing ν and all µj’s except one of them, we see that g(µj , ν)
is in fact the sum of a continuous piece-wise linear function
and an exponential function. So we can take its left and right
derivatives and choose µj to be such that the left-derivative
at µj is less than or equal to zero, and the right derivative is
greater than or equal to zero. Mathematically, define func-
tions

f1(µj) = |Cj |,where Cj =
{
i
∣∣∣aij − µj = max

s
{ais − µs}

}
(16)

and
f2(µj) = eµj−ν−1. (17)
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Fig. 1. Two cases of updating µ∗
j in dual coordinate descent

It is easy to see that the left partial derivative of g(µj , ν) with
respect to µj is just f2(µj)− f1(µj). So, fixing all other dual
variables, the µj that minimizes g(·) is just

µ
(t+1)
j = sup {µj |f2(µj)− f1(µj) ≤ 0} (18)

The dual coordinate descent algorithm is described below:

Algorithm 1 Dual Coordinate Descent

Initialization: Set µj = 0, ∀j. Set ν = log
∑
j e
µj−1

K ;
repeat

1) For j = 1, . . . , L, update µj according to (18);
2) Update ν according to (14);

until Convergence;
Set user-BS association according to (11). Resolve ties if
necessary.

The dual coordinate descent algorithm is quite intuitive.
The dual variable µj is the price of the BS j, while aij is the
utility of the user i if it is associated with BS j. Each user
maximizes its utility minus the price among all possible BSs,
while the BSs choose their prices in an iterative fashion to bal-
ance their loads. Fig. 1 illustrates the price update condition,
which seeks µ∗

j to match f1(µ∗
j ) and f2(µ∗

j ). Here, f1(·) is a
step function. The functions f1(·) and f2(·) may not intersect,
but the optimal µ∗

j can always be determined uniquely.
As mentioned earlier, the main advantage of the dual co-

ordinate descent algorithm as compared to the subgradient
method is that the BSs do not need to synchronize in their
price updates. In fact, the order of price updates in Algo-
rithm 1 can be arbitrary. Since each dual update step always
decreases the dual objective, the iterative algorithm is always
guaranteed to converge.

To completely specify the algorithm, we also need to de-
scribe how to recover the primal variables xij from a set of
dual solutions. This is done using (11), but a user may have
several BSs with equal (aij − µj). To resolve such ties, one
may use greedy search or relaxation methods. In our simula-
tions, only a very small number of users are typically involved
in ties, so tie-breaking by exhaustive search is also feasible.
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Fig. 2. Convergence: Dual coordinate descent vs Subgradient

D. Duality Gap

Because of the fact that g(µj , ν) is not differentiable every-
where, the coordinate descent algorithm is not guaranteed to
converge to the optimal dual variables. Further, because of
the integer constraints, there may be a non-zero optimal dual-
ity gap between the primal and the dual problems. For the BS
association problem considered in this paper, the duality gap
can actually be characterized in closed form.

Let (µj , ν) be a dual feasible solution, and (xij ,Kj) be
the primal solution recovered by (11) and tie-breaking. It is
possible to show that

f(xij ,Kj) = g(µj , ν)−
∑
j

Kj log

(
Kj

eµj−ν−1

)
(19)

By weak duality, g(·) is greater than or equal to the primal
optimum f∗(·). Thus, the difference between the current pri-
mal objective f(xij ,Kj) and the true optimum is bounded by∑
j Kj log

(
Kj

eµj−ν−1

)
. Note that whenever Kj = eµj−ν−1

for a BS j, as in Fig. 1(a), it does not contribute to the du-
ality gap. When a BS is involved in ties, the duality gap is
minimized when Kj is made as close to eµj−ν−1 as possible.

4. NUMERICAL RESULTS

We validate the proposed algorithm in a 7-cell wrap-around
topology with 7 macro BSs and 3 femto/pico BSs per cell,
for a total of 28 BSs. The macro-BSs are 1.4km apart. The
femto BSs are located 0.5km from the macro BSs. A total
of 840 users are distributed uniformly across the network.
The transmit power spectrum densities (PSDs) of macro-BSs
and femto-BSs are set to be -27dBm/Hz and -47dBm/Hz, re-
spectively, over a 10MHz bandwidth. PSD of background
noise is assumed to be -174dBm/Hz. The channels are mod-
eled with a distance-dependent path-loss given by 128.1 +
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Fig. 3. Data rate CDF after 56 iterations

37.6 log10(d)dB (where d is in km) and a log-normal shad-
owing with standard deviation of 8dB. An antenna gain of 15
dBi is assumed.

Fig. 2 compares the convergence behavior of the dual co-
ordinate descent algorithm with that of the adaptive subgradi-
ent method. Each iteration here refers to either a single up-
date of µj or a subgradient update of all µj’s. We see that
the dual coordinate descent converges to within 10−2 of the
optimum with only three rounds of iterations per BS, while
the convergence of the subgradient method is very sensitive
to parameters. Here, we set ρ = 1.2, β = 0.9, and δ = 0.002
in adaptive subgradient [11] and see that different settings of
δ1 and γk can result in quite different convergence behaviors.

We notice in Fig. 2 that the dual coordinate descent algo-
rithm does not converge to the optimum. This is due to the
fact that it is possible for coordinate descent to get stuck in a
suboptimal point. This gap is quite small, however.

Fig. 3 shows the cumulative distribution of data rates after
56 iterations for the various algorithms. We see that both the
dual coordinate descent and the subgradient algorithms, when
converged, offer substantial rate improvement as compared to
the max-SINR BS association rule. The 50th-percentile rate is
increased by about 30%. This is a consequence of off-loading
traffic from the macro-BSs to the femto-BSs.

5. CONCLUSIONS

This paper proposes a new cell association algorithm for the
heterogenous network based on the use of the pricing ap-
proach for BS association and dual coordinate descent for
price updates. Comparing to previous approaches, the pro-
posed algorithm has faster convergence and leads to a solution
structure more suitable for distributed implementation. It also
leads to more balanced traffic loads and proportionally fairer
allocation of resources than the SINR-based cell association.

4782



6. REFERENCES

[1] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Joint
resource allocation and base-station assignment for the
downlink in CDMA networks,” IEEE/ACM Trans.
Netw., vol. 14, no. 1, pp. 1–14, Jan. 2006.

[2] R. Sun, M. Hong, and Z.-Q. Luo, “Optimal joint base
station assignment and power allocation in a cellular
network,” in IEEE Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), June
2012, pp. 234–238.

[3] S. Corroy, L. Falconetti, and R. Mathar, “Cell
association in small heterogeneous networks: Downlink
sum rate and min rate maximization,” in IEEE Wireless
Commun. Networking Conf. (WCNC), 2012, pp. 888–
892.

[4] M. Sanjabi, M. Razaviyayn, and Z.-Q. Luo, “Op-
timal joint base station assignment and downlink
beamforming for heterogeneous networks,” in IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Mar. 2012, pp. 2821–
2824.

[5] L. Jiang, S. Parekh, and J. Walrand, “Base station
association game in multi-cell wireless networks,” in
IEEE Wireless Commun. Networking Conf. (WCNC),
2008, pp. 1616–1621.

[6] R. Madan, J. Borran, A. Sampath, N. Bhushan,
A. Khandekar, and T. Ji, “Cell association and
interference coordination in heterogeneous LTE-A
cellular networks,” IEEE J. Sel. Areas Commun., vol.
28, no. 12, pp. 1479–1489, Dec. 2010.

[7] T. Bu, L. Li, and R. Ramjee, “Generalized
proportional fair scheduling in third generation wireless
data networks,” in INFOCOM, Apr. 2006, pp. 1–12.

[8] K. Son, S. Chong, and G. de Veciana, “Dynamic asso-
ciation for load balancing and interference avoidance in
multi-cell networks,” IEEE Trans. Wireless Commun.,
vol. 8, no. 7, pp. 3566–3576, July 2009.

[9] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Cara-
manis, and J. G. Andrews, “User associa-
tion for load balancing in heterogeneous cellular
networks,” submitted for publication [Online]. Avail-
able: http://arxiv.org/abs/1205.2833, May 2012.

[10] D. P. Bertsekas, “The auction algorithm: A distributed
relaxation method for the assignment problem,” Annals
of Operations Research, vol. 14, pp. 105–123, Dec.
1988.

[11] D. P. Bertsekas, Convex Optimization Theory, Athena
Scientific, 2009.

4783


