
Distributed Cross-Layer Optimization of Wireless
Sensor Networks: A Game Theoretic Approach

Jun Yuan and Wei Yu
Electrical and Computer Engineering Department, University of Toronto

{steveyuan, weiyu}@comm.utoronto.ca

Abstract— This paper proposes a distributed optimization
framework for wireless multihop sensor networks base on a game
theoretic approach. We show that the cross-layer optimization
problem can be decomposed into two subproblems corresponding
to two separate layers (the physical and the application layers) of
the overall system. By modelling each subproblem as a noncoop-
erative game, we aim to solve the noncovex application-layer rate-
allocation and physical-layer power-allocation subproblems in a
distributed manner. Further, we prove the existence, uniqueness,
and stability of the Nash equilibria for both games under certain
sufficient conditions. Finally, we show that by using a set of dual
variables as the market prices to coordinate the physical layer
supply and the application layer demand, the overall optimization
process strikes a right balance between the two layers in an
overall cross-layer design.

I. INTRODUCTION

Wireless sensor networks have a wide range of applications,
such as military security, traffic control, and environmental
monitoring. A sensor network consists of a large number
of sensors deployed in a field. Each sensor makes a local
observation of some underlying physical phenomenon, quan-
tizes its observation, and transfers the data back to a central
estimation office (i.e., CEO). Due to the limited transmission
power, sensors that are far away from the CEO deliver their
quantization data through a multihop network as shown in
Fig. 1.

The goal of the sensor network design is to estimate the
underlying physical phenomenon as accurately as possible
under the network resource limitation. Thus, the sensor net-
work problem can be formulated as a network optimization
problem, in which the objective is to the minimize the overall
distortion, i.e., the difference between the true underlying field
and its estimation at the CEO. However, due to the partial
observation at each sensor, the overall estimation error at CEO
is a coupled and nonseparable function of all sensors’ data
rates. In addition, due to the shared nature of the wireless
medium, geographically close transmissions often interfere
with each other. Because of the interference, the traditional
‘bit-pipe’ assumption on the logical link capacity no longer
holds.

We address the above issues in this paper by considering the
fundamental performance limits of sensor networks. We adopt
a separate source-channel coding model and use information
theoretical concepts such as rate-distortion region and capacity
region to gain insights into the fundamental tradeoffs in
wireless sensor network design. In our previous paper [1],
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Fig. 1. Sensor Networks

we showed that the overall network optimization problem
may be decomposed in the dual domain into two disjoint
subproblems: a power control subproblem at the physical layer
and a source coding subproblem at the application layer. A set
of dual variables can then be used to coordinate the interaction
between the layers.

This paper focuses on efficient and distributed solutions
to each of these subproblems. At a first glance, neither
subproblem appears to be easy to solve due to the inherent
nonlinearity and nonconvexity of the problems. Further, even if
an algorithm for finding the global solution is available, it may
not be amendable to distributed implementation. As realistic
sensor network deployment often encounters variations in both
source statistics and physical layer channel characteristics,
real-time and distributed algorithms are desired.

In this paper, we adopt a game-theoretic approach to solve
each subproblem. Game theory has been widely applied to
communications problems in the literature [2], [3], [4], [5].
However, existing formulations tend to focus on the physical
layer exclusively. In this paper, we generalize the application
of game theory to multiple layers in a cross-layer design
of wireless sensor networks. Our main contributions are the
following:

• We formulate a power control game at the physical layer
and a source coding game at the application layer. Both
games can be implemented in a distributed fashion.

• We prove sufficient conditions under which both games
have unique and stable Nash equilibria.

• We generalize the pricing mechanism for the games by
showing that:
i) the interaction between two games can be coordinated
by shadow prices (i.e., dual variables), where the law of
demand and supply applies.
ii) the social optimum of each subproblem can be
achieved by proper design of tax/price in the games.



II. MULTIPLE GAMES IN CROSS-LAYER OPTIMIZATION

A. Optimization Framework and Decomposition

In a multihop wireless sensor network, the design goal is
to minimize the total distortion by jointly optimizing source
coding and power allocation. Adopting the setup in [1], the
joint optimization problem can be written as:

minimize αT d (1)
subject to s ∈ R(d), c ∈ C(p), Ac ≥ s

where α is a vector representing the relative emphasis on
different elements of the distortion vector d; s is a set of
source rates at each node; c is a set of link capacities; and p is
the power consumption vector. R(d) is a fundamental concept
in source coding, called rate-distortion region. The constraint
s ∈ R(d) models the inter-dependence of the distortion on the
source rates. C(p) is a fundamental concept in channel coding,
called capacity region. The constraint c ∈ C(p) models the
inter-dependence of the link capacity vector on the power
consumption. The last inequality Ac ≥ s reflects the fact that
the source rate at each node must be less than the link capacity
support. Here, A is an N × L node-incident matrix with N
nodes and L links1. Using multi-commodity flow (routing)
model [6], the matrix elements can be written as:

anl =

{

1 if n is the start node for link l

−1 if n is the end node for link l

0 else

Applying dual decomposition technique [1], the joint opti-
mization problem can be further decoupled into two distinct
subproblems. A power control subproblem at the physical
layer

maximize
{

µT c

∣

∣

∣ c ∈ C(p)
}

(2)

and a source coding subproblem at the application layer:

minimize
{

αT d + λT s

∣

∣

∣
s ∈ R(d)

}

(3)

where µ is related to the dual variable λ by the link price
consistency equations : µT = λT A. The Lagrange multipliers
λ and µ have the interpretation of being the shadow prices
coordinating the application layer demand and physical layer
supply. Mathematically, the shadow price λ can be updated by
subgradient method with stepsize νλ. This update reflects the
law of demand and supply.

λ(k+1) =
[

λ(k) + ν
(k)
λ (s − Ac)

]+

(4)

The main point of this paper is that both subproblems can
be solved from a game theory perspective, where efficient
solution and distributed implementation are possible, as is
shown in the next subsections.

1For simplicity, we consider a network with only one CEO and set its
corresponding node-link row as the last row in A. In the formulation of the
optimization problem, this last row may be deleted without loss of generality
because it is linearly dependent of previous rows.

B. Physical Layer: Power Control Game

The physical layer subproblem addresses the transmission
interference among nearby sensors. Using an interference
model, we explicitly write down the capacity region (more
precisely the achievable region) constraints of (2) as follows:

max
p

∑

l

µlcl (5)

s.t. cl = log (1 + SINRl) ∀l

SINRl =
Gllpl

∑

j 6=l Gljpj + σ2
l

∀l

0 ≤ pl ≤ pl,max ∀l

where cl is the capacity of link l; SINRl is the signal to
interference and noise ratio of link l; Gll and σ2

l are the link
gain and noise respectively, Glj is the interference gain from
link j to link l, and pl is link l’s power action that has a power
constraint pl,max.

Because of the interference structure, the power control
subproblem (5) is a nonconvex optimization problem, which
is inherently difficult to solve. In this paper, we explore ways
of approximating the optimal solution using game theory. In-
spired by the work of Saraydar, Mandayam, and Goodman [3],
we introduce a tax mechanism into the game so that the players
will have an incentive to intelligently avoid interference. More
precisely, we formulate a power control game (PCG) at the
physical layer, under which each link player maximizes its
own payoff function

max
pl

QPHY
l = µllog

(

1 +
Gllpl

∑

j 6=l Gjlpj + σ2
l

)

− tlpl

s.t. 0 ≤ pl ≤ pl,max ∀l (6)

where tl is the tax rate for link l, and pl is the action for link
l. More power link l uses, more interference it will produce to
others; therefore more tax (i.e., tlpl) it has to pay. One sensible
choice of the tax rate is the following:

tl =

∣

∣

∣

∣

∂
∑

s6=l µscs

∂pl

∣

∣

∣

∣

(7)

=
∑

s6=l

µsGslGssps

(Gssps +
∑

j 6=s Gsjpj + σ2
s)(
∑

j 6=s Gsjpj + σ2
s)

where tl is the rate at which other users’ achievable data rates
decrease with an additional amount of power.

In general, not every game has a Nash equilibrium, neither
is the equilibrium necessarily stable. One of our contributions
is the following sufficient condition, under which the game is
ensured to converge to a unique and stable Nash equilibrium.

Definition 1: The strictly diagonal dominance (SDD) con-
dition holds, if the channel gain G satisfies:

Gll >
∑

j:j 6=l

Glj , ∀l (8)

Theorem 1: If channel gain satisfies the strictly diagonally
dominant condition, given the tax rates, the power control
game (6) always converges to a unique and stable Nash
equilibrium.

Proof: We prove it in Appendix.



Next, we propose the power control game algorithm.
Algorithm 1: Power Control Game (PCG) Algorithm
1) Initialize p(0), t(0). Set k = 0.
2) Set p(τ0) = p(k). Set i = 0, iteratively update p(τi) as

follows:

p
(τi+1)
l =

µl

t
(k)
l

−
1

Gll





∑

j 6=l

Gljp
(τi)
j + σ2

l





project p
(τi+1)
l into power constraint interval [0, pl,max].

Repeat until p(τi) converges. Set p(k+1) = p(τi).
3) Update tax rate tl

t
(k+1)
l =

∑

f 6=l

Glfbcmf

bcmf = µf

SINR
(k+1)
f

Gffp
(k+1)
f

SINR
(k+1)
f

1 + SINR
(k+1)
f

4) Return 2 until convergence.
The power update in step (2) is the best response of link

player l given the tax rate and his assessment of others’ action.
Next, in step (3), the tax rates are updated according to (7).
As the tax rates converge, the power control game Algorithm
1 converges to a unique and stable Nash equilibrium. Such
power allocation equilibrium strikes a balance between maxi-
mizing rate and minimizing interference.

Furthermore, the PCG algorithm can be implemented in
a distributed fashion. Specifically, inspired by the work of
[7], we propose a two-phase message passing mechanism2

in step (3). At the first phase, each link calculates its
broadcast message (i.e., bcmf ) by local information (i.e.,
µf ,SINRf , Gff , pf ); and broadcasts to the network. At the
second phase, each link collects broadcast messages from
others, and computes the tax rate tl, where the interference
term (i.e., Glf ) can be estimated, for example, by pilots.

For simplicity, we present the power control game for a
scenario in which each link consists of a single channel. The
same idea can be extended to the cases in which each link
consists of multiple physical channels.

The proposed algorithm is similar to an algorithm proposed
by Huang, Berry, and Honig in [5]. However, the authors
of [5] focus on a utility log(SINR(p)), while our analysis
focus on log(1 + SINR(p)), which is more realistic in low
SINR scenarios. In addition, the proof of convergence is also
different. The authors of [5] use the supermodular game theory,
while we prove the convergence (Theorem 1) from the learning
theory of games.

C. Application Layer: Source Coding Game

The source coding subproblem characterizes the interaction
among sensor rates and estimation distortion. Consider an
environment sensing application depicted in Fig. 2. The under-
lying physical phenomenon is denoted as θ, which is a vector
of independent random variables. N sensors are deployed in

2The control overhead due to message passing should not be neglected.
Such overhead may have impact on the scalability issue of sensor network.
However, rigorous overhead analysis is out of the scope of this paper.
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Fig. 2. Distributed Source Coding

the field, each making a local (and possibly partial) observation
of θ, while being corrupted by independent observation noise
ni. The observation channel is characterized by a matrix H .
At each sensor i, the noisy observation yi is quantized into
a codeword ui. The quantized information from all sensors
is transmitted back through the network to a remote central
office (i.e., CEO) with source rates (s1, ...sN ). At the remote
CEO, the decoder first jointly decodes the codewords u, then
estimates the source. The source estimation is denoted as θ̂.
The performance criterion is to minimize the mean squared
error, i.e., D(θ̂, θ) = ||θ̂ − θ||2.

Following the setup in [8], we tackle the source coding
subproblem using rate-distortion theory. The rate-distortion
region in (3) can be explicitly written as follows:

min
w

αT d +

N
∑

i=1

λ(i)si (9)

s.t. αT d = tr (Rθ) − tr
(

RθH
T (HRθH

T + R−1
w )−1HRT

θ

)

si = log

(

1 + σ2
siwi

1 − σ2
niwi

)

0 ≤ wi ≤
1

σ2
ni

, σ2
si = hT

i Rθhi

In this paper, we assume equal weights on distortion elements
(i.e., α = 1 ), therefore, the first equality is the MMSE
estimation distortion. Here, Rθ is the covariance matrix of
underlying phenomenon; Rw is a diagonal matrix with the wi

as ith diagonal element. We further define a variable w, which
has the interpretation of quantization effort, i.e., the larger the
w, the smaller the distortion. The second equality characterizes
the dependence of the source rate si on the quantization effort
wi. The larger the w, the higher the source rates. Each sensor’s
observation noise has a variance σ2

ni; hT
i is the ith row of the

channel observation matrix H .
Source coding subproblem aims to find an optimal balance

between distortion and source rate. Here, we introduce a price
mechanism into source coding game (SCG) such that it is easy
for nodes to make a good tradeoff in a distributed manner.
More precisely, we approximate the source rate as a linear
function of quantization effort with a price indicator mi, thus,
each player maximizes its payoff:

max
wi

QAPP
i = tr

(

RθH
T (HRθH

T + R−1
w )−1HRT

θ

)

−λimiwi

s.t. 0 ≤ wi ≤ 1/σ2
ni (10)

where mi is the price indicator showing how expensive it is



to quantize the source according to the following:

mi =
∂si

∂wi

=
σ2

si

1 + σ2
siwi

+
σ2

ni

1 − σ2
niwi

(11)

Next, we present the source coding game algorithm.
Algorithm 2: Source Coding Game (SCG) Algorithm
1) Initialize
2) At round (k + 1), players sequentially update their best

response. Repeat from i = 1 to i = N .
• 2.1 Each sensor i updates wi as follows

w
(k)
i = argmaxwi

QAPP
i

• 2.2 Update rate price mi

m
(k+1)
i =

σ2
si

1 + σ2
siw

(k)
i

+
σ2

ni

1 − σ2
niw

(k)
i

• 2.3 Broadcast wi

3) Repeat (2) until convergence
The update strategy in step (2) is the best response for

each player i given its assessment of other players action.
It is also possible to implement the algorithm in a distributed
manner by a message passing mechanism [7]. This is done in
step (2.3) of the SCG algorithm: each sensor broadcasts its
quantization effort (wi), therefore, the best response can be
calculated locally in step (2.1).

We further proceed to examine the convergence and global
optimality of the source coding game algorithm. According to
the work of [9], the effect of quantizer qi in Fig. 2 can be
modelled as a Gaussian random variable with zero mean and
variance σ2

qi. This variance is related to the quantization effort
and observation noise, i.e., σ2

qi = 1/wi − σ2
ni. We define the

following condition.
Definition 2: The source coding optimality (SCO) condi-

tion holds, if any of the following is true:

• σ2
ni ≥ σ2

si (12)

• σ2
ni < σ2

si, and σ2
qi ∈

[

0,
σ2

si + σ2
ni

σ2
si − σ2

ni

σ2
ni

]

(13)

where σ2
si = hT

i Rθhi.
This is a reasonable set of conditions because of the follow-

ing. The first condition characterizes a scenario in which the
sensor noise variance is larger than the variance of the underly-
ing physical phenomenon. The second condition characterizes
a scenario in which the sensor noise variance is smaller and
the quantization variance is smaller than sensor noise variance
times a constant which is larger than 1. (Note that a high
resolution quantizer has a small quantization variance.) In
most practical quantizer design, the quantization resolution is
almost always set to be below the sensor noise. Thus, the
SCO condition almost always holds in a well designed sensor
network.

Theorem 2: The source coding game Algorithm 2 con-
verges to a unique and stable Nash equilibrium that is the
global optimum for subproblem (9), provided that the SCO
holds.

Proof: Due to the space limitation, we briefly outline
the proof. According to the definition of rate price mi, we

claim that the Nash equilibrium of the source coding game
(10) is precisely the local optimum of (9). It can be shown
that under the SCO condition, the optimization problem of
(9) is convex by checking that the Hessian is positive semi-
definite. Therefore, (9) has a unique local optimum that is
globally optimal. Hence, the Nash equilibrium is unique and
globally optimal.

III. PRIMAL-DUAL ALGORITHM AND ILLUSTRATION

A. Distributed Primal-Dual Algorithm

In this section, we present a distributed primal-dual al-
gorithm, which iteratively executes power control game and
source coding game, and updates shadow prices.

Algorithm 3: Distributed Primal-Dual Algorithm
1) Initialize λ(0)

2) At time (k), given the price λ = λ(k), set µT = λT A

PCG Algorithm 1 → cG,pG

SCG Algorithm 2 → sG,dG

3) In dual domain, update λ using the following rule:

λ(k+1) =
[

λ(k) + ν
(k)
λ (sG − AcG)

]+

(14)

4) Return to step 2 until convergence.
The dual price update (14) reflects the law of demand and

supply. For example, when the application layer demand sG

is greater than the physical layer supply AcG, the price will
increase. Furthermore, the price update can be accomplished
in a distributed way, because the λi update requires only
the local source coding rate si and corresponding income
and outcome link capacities. Therefore, combined with the
distributed implementation of the games, the entire primal-
dual algorithm can be implemented in a distributed manner.

B. Simulation Example

We simulate an example of a wireless sensor network in
Fig. 3(a) to illustrate the main ideas. The underlying physical
phenomenon to be observed is a two dimension Gaussian
vector with an identity covariance matrix. For the sake of
simplicity, we assume that only the nearest two nodes (e.g.
sensor 1, 2) are active in sensing the field, while the rest
nodes act as relays. The model for the physical layer is an
interference channel, where each link consists of multiple sub-
channels.

We use the proposed primal-dual algorithm to find an
optimal solution for the joint source coding and power control
problem in the multihop network. Both source coding game
algorithm and power control game algorithm are implemented
in a distributed fashion.

Fig. 3(b) shows the convergence process between the ap-
plication layer source coding game and the physical layer
power control game. At the beginning, the application layer
demand of source rates is high, while the physical layer supply
of link capacities is low. During the iterations, the shadow
prices as shown in Fig. 3(c) coordinate both physical layer
and application layer moving toward the market equilibrium.
Under this market equilibrium, all link capacities exactly



CEO

1

3

4

5

2

6

7

8

9

10

11 0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
Convergence Process: Source rate vs. Support rate

Iterations

PHY Support rate
APP Source rate

(a) (b)

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Shadow Price: λ

λ

Iterations
0 20 40 60 80 100

1.125

1.13

1.135

1.14

1.145

1.15

1.155

1.16

1.165

1.17
Distortion Convergence

D
is

to
rti

on

Iterations

(c) (d)

Fig. 3. (a) Sensor network topology; (b) Convergence process between source
rates and capacity support, (c) Convergence process of dual variable λ, (d)
Convergence process of network utility, i.e., estimation distortion.

support the source rates (i.e., Ac = s) as shown in Fig. 3(b).
Finally, Fig. 3(d) illustrates the graceful convergence of the
overall distortion.

IV. CONCLUSIONS

In this paper, we tackle the general nonlinear and nonconvex
optimization problem for wireless sensor networks from a
game theoretic perspective. The incorporation of game theory
in a cross-layer framework allows the overall network opti-
mization problem to be solved approximately in a distributed
manner.

Appendix: Proof of Theorem 1

We first prove the existence of Nash equilibrium (NE). The
action profile set of player l is a nonempty compact convex
set, i.e., pl ∈ [0, pl,max]. QPHY is continuous in p, and QPHY

l

is strictly concave in pl. According to Proposition 20.3 [10],
the power control game (6) has at least one pure NE. The best
response of link player l is:

BRl(p) =
µl

tl
−

1

Gll





∑

j 6=l

Gljpj + σ2
l



 (15)

∑

j

∣

∣

∣

∣

∂BRl(p)

∂pj

∣

∣

∣

∣

=
∑

j:j 6=l

∣

∣

∣

∣

∂BRl(p)

∂pj

∣

∣

∣

∣

=
∑

j:j 6=l

Glj

Gll

(16)

According to the definition of SDD (8),
∑

j:j 6=l

Glj

Gll

< 1 ⇒
∑

j

∣

∣

∣

∣

∂BRl(p)

∂pj

∣

∣

∣

∣

< 1 (17)

Therefore the best response is contractive. Due to Theorem
3.4 in [11], the game has a unique Nash equilibrium.

Definition 3: The dynamic stability (DS) matrix of the
game is a square matrix, whose (l, j)th entry is defined as
follows:

DS(l,j) =
∂BRl(p)

∂pj

, ∀ l, j = 1, 2, ...L (18)

According to Gersgorin theorem [12], all the eigenvalues of
the dynamic stability (DS) matrix are located in the region

L
⋃

l=1







∣

∣z − DS(l,l)

∣

∣ ≤
∑

j:j 6=l

∣

∣DS(l,j)

∣

∣







Because the diagonal element of DS are all zeros, the region
can be further simplified.

L
⋃

l=1







|z| ≤
∑

j:j 6=l

∣

∣DS(l,j)

∣

∣ =
∑

j:j 6=l

Glj

Gll







⊂

L
⋃

l=1

{

|z| < 1

}

Therefore, all the eigenvalues of DS fall into the unit circle.
According to [13], a game is asymptotically stable, if the
absolute value of eigenvalues of the dynamics stability matrix
are all less than one. Hence, the power control game is
asymptotically stable, and always converges to a unique, stable
Nash equilibrium under SDD.
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