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Abstract—This paper characterizes the spatially-normalized de-
grees of freedom of a 2-cell, 2-user/cell MIMO cellular networks
withM antennas at each user and N antennas at each base-station.
We show that the optimal DoF is a piecewise linear function, with
either M or N being the bottleneck. Denoting the ratio M/N
as γ, we show that the network has redundant dimensions in
both M and N when γ ∈ {1/2, 1} and that the network has
no redundancy when γ ∈ {1/4, 2/3, 3/2}. We also show that not
all proper systems are feasible and that the only set of feasible
proper systems that lie on the proper-improper boundary are those
with γ ∈ {1/4, 2/3, 3/2}. We make comparisons between the DoF
achievable using strategies such as time sharing between users or
cells and discuss their implications on user scheduling in such
networks.

I. INTRODUCTION

The notion of degrees of freedom (DoF) has emerged as

a useful yet tractable metric for understanding the role of

interference in wireless networks. For example, the celebrated

result in [1] shows that the K-user MIMO interference channel

with M antennas at each node is not interference limited and

that M/2 DoF/user is achievable. This result has been extended

to other MIMO networks, including the wireless X channel [2],

[3], and the cellular networks [4], [5]. All the above works

assume that all the nodes in the network have the same number

of antennas. This significantly simplifies the analysis and enables

the use of asymptotic alignment schemes.

Establishing the optimal DoF for networks with different

numbers of antennas at different nodes has proven to be more

challenging. In this realm, [6] establishes the DoF for the 3-user

interference channel with M antennas at each of the transmitters

and N antennas at each of the receivers. In [7], [8], the DoF

of the K-user interference channel with M antennas at the

transmitters and N antennas at the receivers is studied. A more

detailed characterization of this same problem is provided in

[9]. The achievable schemes used to establish these results

include decomposing these MIMO networks to equivalent SISO

networks [7] followed by the application of the schemes in

[1], [10], or by careful design of linear transmit beamformers

through techniques such as subspace alignment chains [6].

This paper goes beyond the interference channel and considers

the DoF of a MIMO cellular network with multiple cells and

more than one user per cell, where each user is equipped with

M antennas and each base-station (BS) is equipped with N
antennas. While several outer bounds [11]–[13] and achievable

schemes [13]–[17] are known, an exact characterization of

DoF for the case of arbitrary number of cells and arbitrary

number of users per cell is expected to be quite challenging

(as already evident from [6], [9]). It is in this context that

we study the simplest such network having two cells and two

users per cell, for which we are able to establish the optimal

DoF/user in this paper. Similar in spirit to [6], we allow for

spatial extensions of a given network and study the spatially-

normalized DoF (sDoF). Spatial extensions are analogous to

time/frequency extensions where spatial dimensions are added

to the system through addition of antennas at the transmitters

and receivers. Unlike time or frequency extensions where the

resulting channels are block diagonal, spatial extensions assume

generic channels with no additional structure—making them

significantly easier to study without the peculiarities associated

with additional structure.

The 2-cell, 2-user/cell network has been studied previously

in [11], [13], [14]. In [11], [14] optimal interference alignment

schemes are proposed for some specific M and N . In [13],

a more general case of the network with different number of

antennas at each node is studied and the DoF region is charac-

terized in the uplink. In this work, we extend the work of [13]

by presenting results for both uplink and downlink, but more

importantly we focus attention to the case where all users (and

respectively BSs) have the same number of antennas in order

to provide analytic insights to the multicell network. Toward

this end, we first establish an outer bound on the DoF/user for

both the uplink and the downlink for any given M and N . This

bound scales with the number of antennas and holds regardless

of spatial normalization. We then show that this bound is tight

for spatially-normalized DoF by establishing achievability of

the bound through linear beamforming techniques. We then

identify scenarios with redundant dimensions and comment on

the feasibility of proper systems. Finally, we make comparisons

to other scheduling choices such as time sharing between users

or cells and make observations on when such strategies are

optimal from a DoF standpoint.

A better understanding of the DoF/user achievable in MIMO

cellular networks can have important consequences in user

scheduling in cooperative cellular networks. In cooperative cel-

lular networks where channel state information is shared across

multiple base stations, the BSs can jointly beamform to par-

tially or completely cancel inter-cell interference. The ability to

completely cancel interference is particularly important at high

SNRs. Since DoF is in essence the number of interference free



directions available in a network, the achievable DoF informs

us of the right number of users to simultaneously schedule and

the number of data streams to deliver per user.

As an example of insight that can be gained from a DoF analy-

sis, consider a 2-cell, 2-user/cell network with (M,N) = (2, 3).
This paper shows that by simultaneously scheduling both the

users, we can achieve one interference-free data stream per

user. This is a better strategy, from a DoF standpoint, than

time sharing where only 1 user is scheduled per cell (with

time sharing, only 3/4 DoF/user are possible). It can also be

shown that cooperation between the two users does not increase

the DoF in this case. If however, the BSs had 4 antennas, i.e.

N = 4, then time-sharing and simultaneous scheduling have the

same number of DoF/user. Further, even in this case, cooperation

among users does not alter the DoF/user. Interestingly, for this

case, even time sharing between the two cells (thereby reducing

the network to two non-interfering cells) is optimal from a DoF

perspective.

II. SYSTEM MODEL

We consider 2 interfering cells with 2 users in each cell. Each

user is assumed to have M antennas and each BS is assumed to

have N antennas. We denote the channel between the jth user

in the ith cell and the kth BS as the M ×N matrix H(ij,k) and

assume all channels to be generic. In the uplink, the jth user

in the ith cell is assumed to transmit the M × 1 signal vector

xij(t). Thus, the received signal at the kth BS is given by

yk =
∑

i,j∈{1,2}

H(ij,k)xij + nk (1)

where nk is the N × 1 vector representing circular symmetric

additive white Gaussian noise ∼ CN (0, I). The received signal

is defined similarly for the downlink.

III. MAIN RESULTS

We first restate the definition of spatially-normalized DoF as

given in [6].

Definition 3.1 ( [6] ) Denoting the DoF/user of a 2-cell, 2-

user/cell network with M antennas at each user and N antennas

at each BS as DoF(M,N), the spatially-normalized DoF/user

is defined as

sDoF(M,N) = max
q∈Z+

DoF(qM, qN)

q
. (2)

We define γ to be the ratio M/N . For any given pair (M,N),
we define the function D(M,N) as follows:

D(M,N) =


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M γ ≤ 1/4

N/4 1/4 < γ ≤ 1/2

M/2 1/2 < γ ≤ 2/3

N/3 2/3 < γ ≤ 1

M/3 1 < γ ≤ 3/2

N/2 3/2 < γ

(3)

We now state the following theorem characterizing an outer

bound on the DoF/user of the network.

Theorem 3.1 The DoF/user of a 2-cell, 2-user/cell MIMO

cellular network with M antennas per user and N antennas

per base-station is bounded above by

DoF/user ≤ D(M,N). (4)

Note that since this outer bound is linear in either M or N ,

this bound is invariant to spatial normalization and hence is also

a bound on sDoF and not just DoF. This bound is derived from

existing outer bounds for networks such as the 2-user MIMO

interference channel [18] and the SISO X channel [2]. For the

uplink, this bound can also be derived using results in [13].

Details of the proof are presented in Section V-A.

The next theorem characterizes the sDoF/user of the network

under consideration.

Theorem 3.2 The spatially-normalized DoF of a 2-cell, 2-

user/cell MIMO cellular network with M antennas per user and

N antennas per base-station is given by

sDoF/user = D(M,N). (5)

This result states that when spatial-extensions are allowed, the

outer bound presented in Theorem 3.1 is tight. Since Theorem

3.1 establishes the outer bound, we only need an achievable

scheme to complete the proof of this theorem. The details of

the proof along with the achievable scheme are presented in

V-B.

Finally, the following theorem characterizes the achievable

DoF/user when symbol extensions in space/time/frequency di-

mensions are not allowed.

Theorem 3.3 For the 2-cell, 2-user/cell MIMO cellular net-

work, with M antennas at each user and N antennas

at each base-station, ⌊D(M,N)⌋ DoF/user are achievable

through linear interference alignment without the need for

space/time/frequency extensions.

The proof of this theorem is straightforward and is briefly

outlined in Section V-C.

Fig. 1 captures the main results presented in the above

theorems and plots sDoF/user normalized by N as a function

of γ. Just as in the 3-user interference channel [6], there is an

alternating behavior in the sDoF with either M or N being a

bottleneck for a given γ. The figure also plots the sDoF/user

for other strategies such as time sharing between users/cells,

and when users are allowed to cooperate. Several interesting

observations from Fig. 1 are discussed next.

IV. KEY OBSERVATIONS

Redundant Dimensions: Analogous to the observation on

redundant dimensions made in [6], we can see from Fig. 1 that

• ForM/N ∈ (1/4, 1/2)∪(2/3, 1)∪(3/2,∞), the value ofN
is the bottleneck, while M has some redundant dimensions

that can be sacrificed while preserving the sDoF.

• For M/N ∈ (0, 1/4)∪(1/2, 2/3)∪(1, 3/2), the value ofM
is the bottleneck, while N has some redundant dimensions

that can be sacrificed while preserving the sDoF.
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Fig. 1. Figure showing the sDoF/user of a 2-cell, 2-user/cell MIMO cellular network. Also plotted are the sDoF/user when user cooperation is allowed, and when
time sharing among users or cells is used.

• For M/N ∈ {1/2, 1}, both M and N have redundant

dimensions, and some dimensions from one of the two can

be sacrificed without losing the sDoF.

• For M/N ∈ {1/4, 2/3, 3/2}, neither M nor N has any

redundant dimensions, and decreasing either of them affects

the sDoF.

For example, note that the networks with (M,N) = (12, 12),
(M,N) = (8, 12) and (M,N) = (12, 8) all have 4 DoF/user.

This shows that there are 4 redundant antennas at the user as

well as the BS for the network with (M,N) = (12, 12). Note
however that we cannot simultaneously decrease dimensions at

both the user and the BS.

Feasibility of Proper Systems: Designing transmit and receive

beamformers for linear interference alignment is equivalent to

solving a system of bilinear equations. A widely used necessary

condition to check for the feasibility of linear interference

alignment is to check if the total number of variables exceeds

the total number of constraints in the system of equations. If a

system has more number of variables than constraints then it is

called a proper system, otherwise it is called an improper system

[19]. For a fully connected wireless network with G cells, K
users per cell, M antennas at each user, and N antennas at each

BS, if d DoF are desired per user, the network is a proper system

if it satisfies [17]

M +N ≥ d(GK + 1). (6)

Substituting G = 2 and K = 2, a 2-cell, 2-user/cell

network is proper iff M+N
5 ≥ d. Equivalently, proper systems

satisfy 1+γ
5 ≥ d

N , and it is seen from Fig. 1 that not all

proper systems are feasible. For example, consider designing

an achievable scheme to deliver 6 DoF/user for the system with

(M,N) = (10, 20). Although such a system is proper, it is easy

to see from Fig. 1 that only 5 DoF/user are feasible for such a

system, so this is a proper system that happens to be infeasible.

In fact, systems with γ ∈ {1/4, 2/3, 3/2} are the only sets of

systems that lie on the boundary between proper and improper

systems and are feasible. Thus, just as in the case of the 3-

user MIMO interference channel, most proper systems on the

boundary are infeasible.

User Cooperation: If we allow users to cooperate, then

the network reduces to a 2-user MIMO interference channel,

for which the DoF has been characterized in [18]. For a

2-user interference channel with 2M antennas at the trans-

mitter (and respectively receiver) and N antennas at the re-

ceiver (and respectively transmitter), the DoF is given by

min(4M, 2N,max(2M,N)). Thus, the sDoF/user normalized

by N is given by min(γ, 1/2,max(γ/2, 1/4)). As seen in Fig.

1, allowing users to cooperate does not increase the sDoF/user

whenever γ ≤ 2/3 or γ ≥ 3/2.

Time Sharing Among Users: If we were to schedule only

one user per cell per time slot, then the network reduces

to a 2-user interference channel. The sDoF/user of such

a network while accounting for time sharing is given as

min(M/2, N/2,max(M/4, N/4)). As seen in Fig. 1, this is

a sub-optimal strategy from a sDoF standpoint for almost all

γ ≤ 2 except when γ = 1/2. Note that at γ = 1/2, although
the sDoF/user are the same for scheduling either one or two

users, there are advantages for scheduling only one user as fewer

cross-channels need to be estimated. Finally, as expected, when

γ ≥ 2, the number of BS antennas becomes the bottleneck and

user side strategies such as simultaneous scheduling with and

without user cooperation and time sharing among users all have

the same sDoF/user.

Time Sharing Among Cells: Suppose we were to time share

across the cells so that only one cell is active in any given

time slot, then the network reduces to a MIMO multiple-

access/broadcast channel, whose DoF are well known. It is seen

that such a strategy is strictly sub-optimal for all γ, except again
when γ = 1/2. When γ = 1/2, this strategy is as good as all

preceding strategies while offering significant advantages such

as not requiring the estimation of any cross-channels and not

requiring any coordination between the BSs. With 2 antennas at

the user side and 4 antennas at the BS being suggested in recent

standards for future cellular networks, this insight is particularly

useful when comparing strategies for mitigating interference

from a dominant interferer.



V. PROOFS

A. Proof of Theorem 3.1

The required outer bound is derived from outer bounds

established for simpler networks such as the 2-user MIMO

interference channel [18] and the SISO cellular network [4],

[5]. We divide the proof into 4 cases:

Case (a): 0 ≤ γ ≤ 2/3: In the uplink, if we let the users

in each cell cooperate, we obtain a 2-user MIMO interference

channel with 2M antennas at the transmitter and N antennas

at the receiver. In [18], the DoF of such a network is shown to

be min(4M, 2N,max(2M,N)). Since user cooperation cannot

reduce the DoF, this is also a bound on the total DoF of the 2-cell

2-user/cell network. The per user DoF bound can equivalently

be written as

DoF/user ≤











M γ ≤ 1/4

N/4 1/4 < γ ≤ 1/2

M/2 1/2 < γ ≤ 2/3

. (7)

By symmetry, the DoF bound on the 2-user interference chan-

nel remains unchanged if the transmitters and the receivers

are switched, and hence the same bound also applies to the

downlink.

Case (b): 2/3 ≤ γ ≤ 1: To establish the bound for 2/3 ≤
γ ≤ 1, we first append antennas to each user to make the total

number of antennas at each user equal to N . We now use a

result from [5] for the SISO 2-cell, 2-user/cell cellular network

which states that the DoF/user of such a network is equal to 1/3.

This result is derived from a previous result established for the

SISO X channel in [2] and is also extended to the MIMO case

with N antennas at each node. Thus, N/3 is an outer bound

on the DoF/user achievable for the modified network and since

appending antennas cannot decrease the DoF, this is also an

outer bound for the original network. Using an analogous result

in [4] for the downlink, the same bound also applies in the

downlink.

Case (c): 1 ≤ γ ≤ 3/2: Using an approach similar to Case

(b), we now append antennas at the BSs so that each BS has a

total of M antennas. Reusing the outer bounds presented in [4],

[5], we see that M/3 is an outer bound on the DoF/user of the

original network for both uplink and downlink.

Case (d): γ ≥ 3/2: To obtain the outer bound when γ ≤ 3/2,
we let the two base stations cooperate to form a 4-user single-

cell network with M antennas at each user and 2N antennas

at the BS. Thus the DoF/user in this case can be bounded as
1
4 min(4M, 2N) = N/2. 2

This establishes the required outer bound on the DoF/user

for the 2-cell, 2-user/cell MIMO cellular network. Note that

since the bound scales linearly in the number of transmit/receive

antennas, this is also a bound on the sDoF/user for this network.

B. Proof of Theorem 3.2

We prove the achievability of the outer bound by considering

the uplink and by designing linear transmit beamformers for the

users using finite spatial extensions so as to ensure interference

at the BSs is contained within a certain number of dimensions.

Since assuming channels to be generic assures that signal and

interference spaces have a zero dimensional overlap almost

surely, existence of receive beamformers that selectively null out

the aligned interference is guaranteed. Further, by reciprocity of

linear interference alignment, this proves achievability for uplink

and downlink. We denote the jth transmit beamformer of the kth
user in the ith cell as vikj .

We divide the proof of achievability into six cases each

corresponding to the six distinct piece-wise linear regions in

Fig. 1.

Case i: 0 < γ ≤ 1/4: Each user here requires M DoF. It

is easy to observe that since N ≥ 4M , random transmit beam-

forming suffices and no interference alignment is necessary. The

BSs have enough antennas to resolve signal from interference.

Note that no spatial extensions are required here.

Case ii: 1/4 < γ ≤ 1/2: The goal here is to achieve N/4
DoF/user. IfN/4 is not an integer, we consider a space-extension
factor of 4, in which case we have 4M antennas at the users and

4N antennas at the transmitter. Since we need N DoF/user and

the BSs now have 4N antennas, we once again see that random

transmit beamforming suffices and no interference alignment is

necessary.

Case iii: 1/2 < γ ≤ 2/3: Since each user requires M/2
DoF/user, we consider a space-extension factor of 2 so that

there are 2M antennas at each user and 2N antennas at each

BS. The two users in the second cell each have access to a

2M dimensional subspace at the first BS. These two subspaces

overlap in 4M − 2N dimensions. Note that since γ > 1/2,
4M > 2N , so such an overlap almost surely exists. The two

users in Cell 2 pick 4M−2N linear transmit beamformers so as

to span this space and align their interference. Specifically, the

transmit beamformers v21j and v22j for j = 1, . . . , (4M −2N)
are chosen such that

H(21,1)v21j = H(22,1)v22j . (8)

Adopting the same strategy for Cell 1 users, we see that at

both BSs interference occupies 4M − 2N dimensions while

signal occupies 8M − 4N dimensions, with 8N − 12M unused

dimensions. Note that since γ ≤ 2/3, 8N − 12M ≥ 0. Letting
each user pick 2N − 3M random beamformers, the remaining

8N−12M dimensions are equally split among interference and

signal at each of the BSs. We have thus designed M transmit

beamformers for each user while ensuring that at each BS,

interference occupies no more than (4M−2N)+2(2N−3M) =
2N − 2M dimensions, resulting in M/2 sDoF/user.

Case iv: 2/3 < γ ≤ 1: We need to achieve N/3 DoF/user. We

consider a space-extension factor of 3, so that each user has 3M
antennas and each BS has 3N antennas; and we need to design

N transmit beamformers per user. The two users in the second

cell each have access to a 3M dimensional subspace at the

first BS. These two subspaces overlap in 6M − 3N dimensions.

Since γ > 2/3, we note that 6M − 3N > N , allowing us to

pick a set of N transmit beamformers spanning this space such

that interference is aligned at BS 1. Using the same strategy

for users in Cell 1, we see that since interference spans only

N dimensions, and since each BS has 3N antennas, we can



separate the N dimensional signals from interference at both

BSs. The transmit beamformers can be computed by solving

the same set of equations as given in (8).

Case v: 1 < γ ≤ 3/2: In order to achieve M/3 DoF/user, we

consider a space-extension factor of 3 and design M beamform-

ers per user. Since we now have more transmit antennas than

receive antennas, transmit zero-forcing becomes possible. Each

user in Cell 2 picks 3M − 3N linearly independent transmit

beamformers so as to zero-force BS 1, i.e., the beamformers are

chosen from the null space of the channel H(2i,1) and satisfy

H(2i,1)v2ij = 0 ∀ i ∈ {1, 2}, j ∈ {1, 2, . . . (3M − 3N)}. (9)

We let users in Cell 1 use the same strategy. Now, in order

to achieve M DoF/user, we still need to design 3N − 2M
transmit beamformers per user. So far, both BSs do not see

any interference and have 6M − 6N dimensions occupied by

the signals from their own users. The remaining 9N − 6M
dimensions at each BS need to be split in a 2 : 1 ratio

among signal and interference to achieve M DoF/user. To

meet this goal, we choose the remaining 3N − 2M transmit

beamformers for users in Cell 2 such that the interference from

these users aligns at BS 1. This is accomplished by solving

for the transmit beamformers using (8) for users in Cell 2,

and using a similar strategy for users in Cell 1, resulting in

(3M−3N)+(3N−2M) = M DoF/user over a space-extension

factor of 3.

Case vi: 3/2 < γ: Assuming a space-extension factor of 2,

each user needs N transmit beamformers. The null space of

the channel from a user in Cell 2 to BS 1 spans 2M − 2N
dimensions and since γ > 3/2, 2M − 2N > N . Choosing

N transmit beamformers from such a null space and using the

same strategy for users in Cell 1, we see that each BS sees

no interference and hence is able to completely recover signals

from both of its users. 2

While we have considered spatial extensions in the above

proof, the results are expected to hold with time/frequency

extensions as well. However, for time/frequency extensions,

subsequent to aligning interference, we need to additionally

check that signal and interference are indeed separable. One

way to do this is through a numerical test as outlined in [6].

Finally, we also observe that whenever γ /∈
(

2
3 ,

3
2

)

, by allowing

for an asymmetric distribution of the achievable DoF among

the users and then averaging the DoF/user over multiple time

slots, the optimal DoF/user can be achieved without requiring

any channel extensions.

C. Proof of Theorem 3.3

Having established the achievability of Theorem 3.2, this

result follows immediately using the same techniques. While

achievability in cases (i), (ii) and (vi) is easy to see, we

outline some differences in the remaining cases. In Case (iii),

we pick 2M − N beamformers so as to align interference

followed by N−2M+⌊M
2 ⌋ random beamformers. In Case (iv),

without symbol extensions, the subspaces overlap in 2M − N
dimensions. Noting that (2M − N) > ⌊N

3 ⌋, we choose ⌊N
3 ⌋

linearly independent beamformers within this space. In Case

(v), we first pick (M −N) zero-forcing beamformers followed

by N −M + ⌊M
3 ⌋ beamformers to align interference. 2

VI. CONCLUSION

This paper studies the DoF of a 2-cell, 2-user/cell network

with M antennas at each user and N antennas at each BS.

We prove that linear beamforming and finite spatial extensions

can achieve the optimal sDoF/user. We identify the scenarios

with redundant dimensions and show that not all proper systems

are feasible. Finally, we compare the achievable DoF using

strategies such as time sharing between users/cells and comment

on the consequences thereof.
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