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Abstract—This paper considers a novel use of device-to-device
link for cooperative communication wherein a nearby user terminal
acts as a relay in enabling both signal enhancement and common in-
terference rejection at the intended destination. Assuming Gaussian
transmission and Gaussian compress-and-forward relaying strategy
for the multiple-input multiple-output (MIMO) relay channel with
a finite-capacity out-of-band relay-destination link and with arbi-
trarily correlated noises, this paper proposes a coordinate ascent
approach for iteratively optimizing the transmit covariance matrix
at the source and the quantization noise covariance matrix at the
relay. We show that the optimization of quantization noise covari-
ance matrix under fixed input can be solved in closed form using a
simultaneous diagonalization approach, while the optimization of
transmit covariance matrix under fixed quantization can be cast
as a convex optimization problem. This paper further introduces
the concept of antenna pooling and illustrates the importance of
accounting for the noise correlation across the user terminals due
to common interference. We show that the optimized transmission
and device-to-device relaying strategies that take advantage of the
noise correlation can significantly improve the user throughput in
a cellular environment by enabling interference rejection across
the user terminals.

I. INTRODUCTION

Provisioning of high-rate downlink transmission for cell-edge

users is a central challenge in the design of wireless cellular

networks. A user at the edge of a cell has to combat not

only the relatively weak direct signal from its own base-station,

but also strong interference from the neighboring base-stations.

This paper proposes a novel signal-enhancing and interference-

mitigation strategy for the downlink based on the following

key observation. Modern user terminals are often capable of

establishing high-capacity out-of-band device-to-device links

(e.g., by using WiFi or Bluetooth), especially when the terminals

are located close to each other. The physical proximity of the

user terminals also suggests that the interference at the multiple

terminals can be highly correlated. This opens up the possibility

of utilizing device-to-device communication for not only signal

enhancement but also interference mitigation.

Intuitively, if the device-to-device cooperation link has infinite

capacity, the cooperating user terminals can essentially pool

their antennas together for joint reception. Multi-antenna joint

reception can significantly improve the downlink throughput for

cell-edge users because it not only enhances the detection of the

intended signal, but also allows the mitigation of common out-

of-cell interference across the user terminals. The main aim of

this paper is to show that antenna pooling is an effective strategy

even when the cooperation link capacity is finite. Toward this

end, this paper models the device-to-device cooperation scenario

as a relay channel with a finite-capacity link from the relay to

the destination. To model the common interference, the noises

at the relay and the destination are assumed to be arbitrarily

correlated. The base-station and the cooperating user terminals

are all assumed to be equipped with multiple antennas. The

objective of this paper is to jointly optimize the transmission and

relaying strategy and to characterize the resulting achievable rate

for the multiple-input multiple-output (MIMO) relay channel.

The joint optimization of the MIMO transmission and relaying

strategies is a difficult task, because the information theoretical

capacity of the relay channel is still an open problem [1],

[2]. This paper adopts a compress-and-forward relaying strategy

(which is appropriate given the physical proximity of the relay

and the destination), further restricts both the source signal and

the relay quantization noise to be Gaussian, and focuses on

the joint optimization of the transmit covariance and the relay

quantization noise covariance matrices. Such an optimization

is still quite challenging, because the overall achievable rate is

not a concave function of the optimization variables; also the

constraint is not convex—in fact both are concave in transmit

covariance and convex in quantization noise covariance.

This paper shows that under fixed transmit covariance, the

optimization of the quantization noise covariance can be solved

in closed form using a simultaneous diagonalization by *congru-

ence approach [3], while the optimization of the input covariance

under fixed quantization noise covariance can be cast as a convex

logdet problem. Together, the iterative optimization between the

two steps gives a stationary point of the Lagrangian, and leads to

transmit and quantization noise covariance matrices that can take

advantage of the device-to-device cooperation link appropriately.

Optimized relaying leads to significant throughput improvement

by enabling joint reception and interference rejection across the

multi-antenna relay and destination terminals.

The Gaussian single-antenna relay channel with correlated

noises has been studied previously [4] [5]. Compress-and-

forward, which uses Wyner-Ziv coding to take advantage of the

side information at the receiver, is shown to be able to exploit

the noise correlation. It in fact achieves the capacity of such a

channel to within a constant gap in the single-antenna case [5].

For the MIMO relay channel, the joint optimization of trans-

mit and quantization noise covariance matrices is more challeng-

ing. Toward this end, [6] suggests an alternating optimization



approach between the transmit and quantization noise covariance

matrices, where each step of the iteration is required to satisfy

the relay link capacity constraint with equality. However, the

convergence of the algorithm in [6] cannot be guaranteed [7].

This paper resolves this difficulty by proposing an alternating

optimization of the Lagrangian.

A key step in the proposed alternating optimization approach

involves the optimization of the quantization noise covariance

under fixed input. This problem has been considered in [8] for

a MIMO relay channel with independent noises, for which the

optimal solution is shown to be related to the eigenvalues of

certain conditional covariance matrix. This paper focuses on

the MIMO relay channel with correlated noises for which the

solution is more complex. In this context, [9] draws a connection

between the quantization noise covariance matrix optimization

problem with certain source coding problem and provides a

solution using the canonical correlation analysis technique in

statistics. In this paper, we use a different technique of simul-

taneous diagonalization by *congruence [3] of two conditional

covariance matrices, and obtain a closed-form solution to the

stationary point of the Lagrangian based on the generalized

eigenvalues of the two matrices. Although the solution to the

optimization problem can eventually be shown to be the same as

that of [9], the diagonalization approach in this paper is simpler

and provides insight about the structure of the optimal MIMO

relaying strategy.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless MIMO cellular network setting with a

base-station and two cell-edge users as depicted in Fig. 1,

where one user terminal cooperates with the other terminal by

relaying information through an independent digital link of finite

capacity using a different frequency band. We assume common

sources of interference from neighboring base-stations, resulting

in correlated noises at the relay and the destination.

Mathematically, the communication scenario is modeled as

a Gaussian MIMO relay channel with an out-of-band relay-

destination link of fixed capacity C0 bits per channel use. The

source, relay, and destination are equipped with s, r, and d
antennas, respectively. Let t be the total number of antennas

from all the interfering base-stations combined together. The

received signals at the relay and destination are modeled as

Yr = HsrX+Nr, (1)

Yd = HsdX+Nd, (2)

where the Gaussian noises at the relay and the destination are

correlated due to a common source of interference, i.e.,

Nr = HtrXt +N1, (3)

Nd = HtdXt +N2. (4)

Here, Hsr ∈ C
r×s and Hsd ∈ C

d×s are the source-

relay and source-destination channel matrices respectively;

Htr ∈ C
r×t and Htd ∈ C

d×t are the interferers-to-relay and

interferers-to-destination channel matrices respectively; N1 ∼
CN (0r×1, σ

2Ir) and N2 ∼ CN (0d×1, σ
2Id) are additive and

independent background noises at the relay and the desti-

nation respectively; X ∈ C
s×1 is the transmit vector from

the source under power constraint P ; finally Xt ∈ C
t×1 is

the interference signal that is assumed to be Gaussian with

Xt ∼ CN (0t×1, SXt
), independent of everything else, and is

treated as a part of noise.

This paper assumes that the relay employs a compress-and-

forward strategy in which the relay quantizes its observation

and sends the quantization index through the digital link to

the destination. The quantization process involves Wyner-Ziv

coding, which accounts for the fact that the received signal at

the destination is correlated with the relay observation (due to

both the common source signal and the correlated noises). The

achievable rate for compress-and-forward is [1, Theorem 6]:

max
p(x)p(ŷr|yr)

I(X; Ŷr,Yd)

s.t. I(Yr; Ŷr|Yd) ≤ C0

E{X†X} ≤ P. (5)

where (·)† denotes conjugate transpose.

It can be shown that Gaussian quantization at the relay is

optimal for Gaussian signaling at the source [9] and vice versa.

Thus, this paper restricts attention to Gaussian transmission X ∼
CN (0s×1, SX) and Gaussian quantization modeled as

Ŷr = Yr +Q, (6)

where Q ∼ CN (0r×1, SQ). In this case, the optimization

problem becomes

max fo(SX, SQ)

s.t. fc(SX, SQ) ≤ C0

SX � 0, SQ � 0, tr(SX) ≤ P, (7)

where the objective function is

fo(SX, SQ) = I(X; Ŷr,Yd) = h(Ŷr,Yd)− h(Ŷr,Yd | X)

= log

∣∣∣∣HSXH† + Sint + σ2I(r+d) +

[
SQ 0r×d

0d×r 0d×d

]∣∣∣∣
− log

∣∣∣∣Sint + σ2I(r+d) +

[
SQ 0r×d

0d×r 0d×d

]∣∣∣∣ ; (8)

the constraint is

fc(SX, SQ) = I(Yr; Ŷr | Yd) = h(Ŷr,Yd)− h(Yd)− h(Q)

= log

∣∣∣∣HSXH† + Sint + σ2I(r+d) +

[
SQ 0r×d

0d×r 0d×d

]∣∣∣∣
− log

∣∣∣HsdSXH†
sd + S(2,2)

int + σ2Id

∣∣∣− log |SQ| ; (9)

and H =
[
H†

sr H†
sd

]†
is the overall channel matrix; finally,

Sint =

[
S(1,1)

int S(1,2)

int

S(2,1)

int S(2,2)

int

]
=

[
HtrSXt

H†
tr HtrSXt

H†
td

HtdSXt
H†

tr HtdSXt
H†

td

]
(10)

is the interference covariance matrix. This paper assumes the

availability of channel state information and the statistics of

noise and interference at a centralized location for solving the

optimization problem (7).
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Fig. 1. A wireless cellular network with a base-station and two cell-edge users
connected with a finite-capacity device-to-device cooperative relay link. The two
users experience correlated noises due to common sources of interference.

III. OPTIMIZATION ALGORITHM

The problem (7) is not a convex optimization problem, as

both the objective function and the constraint are concave in

SX and convex in SQ. To tackle this problem, this section first

formulates the Lagrangian, then proposes an iterative optimiza-

tion approach for maximizing the Lagrangian.

A. Iterative Optimization of Lagrangian

The Lagrangian of the optimization problem (7) is:

L(SX, SQ, μ) = fo(SX, SQ)− μ(fc(SX, SQ)− C0). (11)

The overall optimization approach for solving (7) is to find

a stationary point of the Lagrangian for a fixed Lagrange

multiplier μ, i.e, to solve

max
SX�0, SQ�0, tr(SX)≤P

L(SX, SQ, μ), (12)

then to search for the optimal μ∗ that results in

fc(S
∗
X, S∗

Q) = C0 (13)

in an outer loop.

It can be argued that the optimal μ∗ must be in (0, 1]. This is

because when μ = 0, i.e., when the objective is to maximize the

overall rate without relay link capacity constraint, the optimal

S∗
Q should be a zero matrix, resulting in fc(S

∗
X, S∗

Q) = +∞.

When μ ≥ 1, i.e., the relay link rate constraint penalizes the

objective at more than a 1:1 ratio, the optimal S∗
Q should be

infinite, resulting in fc(S
∗
X, S∗

Q) = 0.

The rest of this paper focuses on solving the optimization

problem (12) with a fixed μ ∈ (0, 1]. The outer loop for

searching for the optimal μ∗ is relatively straightforward, as

it is a one-dimensional root-finding problem that can be solved

using a standard bisection approach.

This paper proposes an iterative coordinate ascent approach

for solving (12). The idea is to find the optimal SQ that

maximizes L(SX, SQ, μ) for a fixed SX, then to find the

optimal SX that maximizes L(SX, SQ, μ) for a fixed SQ, and

to iterate between the two steps. It can be shown that for a fixed

μ ∈ (0, 1], each of the individual optimizations of SX and SQ

Algorithm 1 Joint Input and Quantization Optimization (7)

1: Initialize SX � 0 such that tr(SX) = P ;

2: repeat
3: For each fixed μ:

4: repeat
5: Find optimal SQ for fixed SX as in Section III-C;

6: Find optimal SX for fixed SQ as in Section III-B;

7: until (SQ, SX) converges;

8: Update μ using bisection;

9: until fc(SX, SQ) = C0.

can be solved to global optimality (and the global optimum is

essentially unique). The iterative optimization process provides

a nondecreasing sequence of the Lagrangian objective, so the

iterative process must converge. The convergent point is a

stationary point.

The detailed algorithms for optimizing SQ for a fixed SX and

for optimizing SX for a fixed SQ are provided in subsequent

sections. The overall iterative approach is summarized as Al-

gorithm 1. The following theorem states the convergence result

formally.

Theorem 1 Assuming that the optimal SX for a fixed SQ is
unique and the optimal SQ for a fixed SX is unique, the inner
iterative optimization procedure in Algorithm 1 converges to a
stationary point of the Lagrangian maximization problem (12).
Further, the optimal μ is one that satisfies (13). Such a μ leads
to a Karush-Kuhn-Tucker (KKT) point of the joint transmit and
quantization noise covariance optimization problem (7).

Proof: For a fixed μ, coordinate ascent on the Lagrangian

is monotonically increasing, so it converges. The uniqueness in

the optimization of SX for a fixed SQ and in the optimization

of SQ for a fixed SX ensures that coordinate ascent converges

to a stationary point. This together with a μ that satisfies (13)

gives a KKT point of the optimization problem (7).

B. Optimization over SX for a Fixed SQ

Although the optimization problem (7) is not concave in SX,

we observe that the Lagrangian (11) is a concave function of

SX for fixed S̄Q, if μ ∈ (0, 1]. Therefore, the maximization

max
SX�0,tr(SX)≤P

L(SX, S̄Q, μ) (14)

can be solved using standard tools from convex optimization. To

verify concavity, note that the Lagrangian (11) can be written

as a function of SX (for a fixed S̄Q) as

L(SX, S̄Q, μ)

= fo(SX, S̄Q)− μfc(SX, S̄Q) + const.

= (1− μ) log

∣∣∣∣HSXH† + Sint + σ2I(r+d) +

[
S̄Q 0r×d

0d×r 0d×d

]∣∣∣∣
+μ log

∣∣∣HsdSXH†
sd + S(2,2)

int + σ2Id

∣∣∣+ const.

For μ ∈ (0, 1], this is a logdet optimization which is concave

and can be solved using a numerical package such as CVX [10].



The above functional form of the Lagrangian provides intu-

ition about the optimal choice of SX. The Lagrangian is a convex

combination of two terms. The first term corresponds to the

channel from X to the combined relay and destination receiver

(Ŷr,Yd), while the second term corresponds to the channel

from X to the destination Yd alone. For larger values of C0 (or

equivalently small value of μ), the optimal SX should be close to

the water-filling covariance matrix against the combined vector

channel H . For small values of C0, the optimal SX should be

close to the water-filling covariance matrix against the source-

destination channel Hsd alone. The optimal SX can be thought

of as providing a tradeoff between the two.

C. Optimization of SQ for a Fixed SX

We now provide a closed-form solution for the SQ that

maximizes the Lagrangian (12) for a given S̄X, i.e.,

max
SQ�0

L(S̄X, SQ, μ). (15)

The key technique that makes a closed-form solution possible

is simultaneous diagonalization by *congruence [3].

For the optimization over SQ when S̄X is kept fixed, the

objective and constraint functions (8)-(9) can be rewritten as

fo = log
∣∣SYr|Yd

+ SQ

∣∣− log
∣∣SYr|Yd,X + SQ

∣∣+ const.;
(16)

fc = log
∣∣SYr|Yd

+ SQ

∣∣− log |SQ|+ const.; (17)

and Lagrangian (15) can be written as:

L(S̄X, SQ, μ) = (1− μ) log
∣∣SYr|Yd

+ SQ

∣∣+ μ log |SQ|
− log

∣∣SYr|Yd,X + SQ

∣∣+ const., (18)

where the conditional covariances SYr|Yd
and SYr|Yd,X are

obtained using Schur’s complement formula

SYr|Yd
= HsrSXH†

sr + S(1,1)

int + σ2Ir − (HsrSXH†
sd + S(1,2)

int )

(HsdSXH†
sd + S(2,2)

int + σ2Id)
−1(HsdSXH†

sr + S(2,1)

int ),

and

SYr|Yd,X =

HsrSXH†
sr + S(1,1)

int + σ2Ir −
[
HsrSXH†

sd + S(1,2)

int HsrSX

]
[
HsdSXH†

sd + S(2,2)

int + σ2Id HsdSX

SXH†
sd SX

]−1 [
HsdSXH†

sr + S(2,1)

int

SXH†
sr

]
where (.)−1 denotes the Moore-Penrose pseudoinverse. Our goal

is to maximize (18) over SQ. Note that the constraint SQ � 0
is superfluous, since it is already implicit in the domain; (if

|SQ| = 0, then C0 = +∞). The main step in maximizing (18)

is the following simultaneous diagonalization of SYr|Yd,X and

SYr|Yd
based on [3, Corollary 7.6.5]:

Lemma 2 There exists a non-singular matrix C ∈ C
r×r such

that C†SYr|Yd,XC = Ir and C†SYr|Yd
C = Λ, where Λ is

a diagonal matrix. The diagonal elements λi are called the
generalized eigenvalues. Moreover, λi ≥ 1 for i = 1, · · · , r.

Proof: Both SYr|Yd
and SYr|Yd,X are positive definite

matrices. Let S−1
Yr|Yd,X

= R†R be a Cholesky decomposi-

tion. Now, consider the eigendecomposition RSYr|Yd
R† =

V ΛV †. Then C = R†V satisfies C†SYr|Yd,XC = Ir and

C†SYr|Yd
C = Λ simultaneously. Moreover, since C is non-

singular, SYr|Yd
� SYr|Yd,X implies Λ � Ir.

We note that a special case of this optimization problem has

already been considered in [8], where the noises at Yr and

Yd are independent and SYr|Yd,X is an identity matrix. For

the more general correlated noise case, the above simultaneous

diagonalization is needed to reduce the matrix optimization

problem to scalar optimization.

We also noted that in [9] an equivalent diagonalization

approach is taken to solve the same problem, but from a

source coding perspective. Instead of diagonalizing SYr|Yd,X

and SYr|Yd
, the approach of [9] diagonalizes SX|Yd

and

SYr|Yd
using a singular value decomposition of the matrix

S
−1/2
X|Yd

KXYr
S
1/2
Yr|Yd

, where KXYr
is a certain matrix of re-

gression coefficints. It can be shown that the resulting diago-

nalization makes S
(1,2)
XYr|Yd

diagonal as well. Subsequently, the

diagonal elements from the diagonalization of S
(1,2)
XYr|Yd

are used

to find the optimal solution to the overall problem. We observe

that the derivations in [9] can be interpreted as an indirect

simultaneous diagonalization of SYr|Yd,X and SYr|Yd
, and

therefore is equivalent to the approach presented here. However,

the direct simultaneous diagonalization of SYr|Yd,X and SYr|Yd

is simpler and gives more structual insight about the optimal

MIMO compress-and-forward strategy.

Returning to the maximization of (18), we now use the

approach of [6], [8] to reduce the MIMO optimization problem

to the scalar case and to solve the subsequent scalar quantization

noise optimization problem. For μ ∈ (0, 1], the Lagrangian (18)

can be written as:

L (a)
=(1− μ) log

∣∣∣ΛŜ−1
Q + Ir

∣∣∣− log
∣∣∣Ŝ−1

Q + Ir

∣∣∣+ const.

(b)

≤(1− μ) log
∣∣∣ΛΣ−1

Q + Ir

∣∣∣− log
∣∣∣Σ−1

Q + Ir

∣∣∣+ const. (19)

where (a) follows from the change of variable ŜQ = C†SQC,

with C as in Lemma 2, and (b) follows from [8, Lemma 5]

where ΣQ comes from the eigen-decomposition ŜQ = UΣQU †.

Observe that the equality in (b) is obtained with U = Ir. Thus,

it is without loss of optimality to restrict ŜQ to be diagonal.

Let Σii
Q be the diagonal entries of ΣQ. Consider the following

change of variable, introduced in [6]:

ci = log

(
1 +

λi

Σii
Q

)
, i = 1, ..., r. (20)

An interpretation of ci is that it is the portion of the available

C0 assigned for compression of the ith element of CYr. Note

that we have Σii
Q ≥ 0 and ci ≥ 0. Using (20), the Lagrangian

can be written as:

L =

r∑
i=1

((1− μ)ci − log(2ci + λi − 1)) + const., (21)



It can be readily checked that (21) is concave in ci when λi ≥ 1.

The optimal ci is given by

c∗i =

[
log

(1− μ)(λi − 1)

μ

]+
. (22)

The optimal Σii,∗
Q is given by

Σii,∗
Q =

{
μ

1− 1
λi

−μ
μ < 1− 1

λi

+∞ μ ≥ 1− 1
λi

(23)

and the optimal SQ is given by S∗
Q = C−†Σ∗

QC−1.

IV. SIMULATION RESULTS

This section demonstrates the effectiveness of using device-

to-device link for enhancing cell-edge throughput in a downlink

wireless cellular environment. Consider a picocell deployment

with a pico-base-station transmitting at a maximum power of

1Watt over 10MHz to a user distance 100m away. A second

user located nearby acts as a relay as shown in Fig. 1. The

background noise power spectral density is assumed to be

−170dBm/Hz. A channel model with pathloss exponent of

3.76 and 8dB shadowing is used. We consider various antenna

deployment configurations to demonstrate the effect of antenna

pooling for both enhancing the direct signal and for interfer-

ence mitigation, and to demonstrate the need for using jointly

optimized transmit and quantization noise covariance matrices.

As reference, the cut-set upper bound to the capacity of the

MIMO relay channel [1, Theorem 4] is stated below:

C ≤ max
p(x),E{X†X}≤P

min{I(X;Yr,Yd), I(X;Yd) + C0}.
(24)

The evaluation of the cut-set bound involves solving an op-

timization problem. For the Gaussian MIMO relay channel,

the optimal input distribution in the maximization problem

(24) is multivariate Gaussian. The optimization over the input

covariance matrix is a convex optimization problem, which can

be solved using standard packages such as CVX [10].

We begin by demonstrating the effect of antenna pooling for

enhancing the direct communication between the base-station

and the user. Fig. 2 shows the improvement in overall transmis-

sion rate using a relay link for a scenario where the transmitting

base-station has three antennas (s = 3), the relay and destination

are each equipped with two antennas (r = 2 and d = 2),

and with no intercell interference (t = 0). In this scenario, the

benefit of adding extra antennas to the destination is in enlarging

the signal dimension, as the overall transmission degree-of-

freedom is limited by the number of antennas at the destination.

Thus, it is expected that pooling antennas from the relay is

able to improve the overall throughput considerably. As seen

in Fig. 2, at C0 = 100Mbps, the improvement in throughput by

the optimized compress-and-forward relaying scheme is around

92Mbps, achieving an almost 1:1 improvement in the overall

rate for each relaying bit. The maximum possible improvement

is around 145Mbps, which is achieved with C0 = 250Mbps.
For smaller values of C0, the achievable rate of the optimized

compress-and-forward scheme almost meets the cut-set bound.
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Fig. 2. Throughput improvement due to a device-to-device link of capacity
C0 for the case where the base-station is equipped with three antennas (s = 3),
and the relay and destination are equipped with two antennas each (r = 2 and
d = 2) with no inter-cell interference (t = 0).

Fig. 2 also demonstrates the need to optimize the input

covariance matrix. As suboptimal choices for input covariance,

we also plot the achievable rates for the cases where the transmit

covariance is, respectively, set to be the water-filling covariance

of the source-to-destination and source-to-relay-and-destination

point-to-point channels, without considering the effect of finite

relay link capacity. For these fixed input covariance matrices,

we optimize the quantization noise covariance. Depending on

the value of C0, each of these covariances can be strictly

suboptimal. For small values of C0, setting the input covariance

to optimize for the source-to-destination channel is close to

optimal. However, as C0 increases, this SX fails to achieve the

optimal performance. For large values of C0, setting the input to

optimize for the source-to-relay-and-destination channel is close

to optimal, but a gap exits when C0 is low.

Fig. 3 presents the results for a similar setup, except that the

transmitting base-station now has two antennas, and the relay

and destination are equipped with three antennas each, again

with no interference (i.e., s = 2, r = 3, d = 3, and t = 0).

In this scenario the overall degree-of-freedom of the direct link

is constrained by the number of baes-station antennas instead

of number of antennas at the destination, and relaying does not

increase the overall throughput notably. In this case, with C0 =
100Mbps, the throughput improvement is only around 17Mbps.

Fig. 4 considers the same setup as Fig. 3, except that now

four additional interfering single-antenna pico-base-stations are

added as shown in Fig. 1 (i.e., s = 2, r = 3, d = 3, and t = 4).

The interfering base-stations are placed on a hexagonal grid

200m away from the center base-station. Due to interference,

the throughput without the relay (i.e., with C0 = 0) is now

considerably lower, but the optimized use of the relay link is

able to improve the throughput significantly. This is because,

due to the common intercell interference, the noises at the relay

and destination are highly correlated. By exploiting such noise
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Fig. 3. Throughput improvement due to a device-to-device link of capacity
C0 for the case where the base-station is equipped with two antennas (s = 2),
and the relay and destination are each equipped with three antennas (r = 3 and
d = 3) with no inter-cell interference (t = 0).

correlation using the relay link, the destination can effectively

pool the three relay antennas together with the three existing

antennas of its own to create a 2 × 6 overall MIMO channel

(i.e., s = 2, r + d = 6). This enables the rank-four interference

(i.e., t = 4) to be rejected completely, creating an effective

2 × 2 interference-free overall channel. As seen in Fig. 4, at

around C0 = 100Mbps, the improvement in throughput brought

by the optimized use of the compress-and-forward relay link is

around 97Mbps. At small C0, relaying again achieves almost 1:1

improvement in the direct transmission rate for each relaying bit.

It is worth noting that the overall throughput at large C0 in Fig. 4

is close to the achievable rate of the C0 = 0 scenario in Figs. 2

and 3, illustrating the almost complete interference rejection

capability of optimized compress-and-forward relaying.

Figs. 3 and 4 also demonstrate the importance of optimiz-

ing the quantization noise covariance matrix. For comparison

purpose, the achievable rate for a simple suboptimal SQ is

also plotted, where SQ = qIr and q is set to satisfy the relay

rate constraint with equality, for the optimal SX obtained from

Algorithm 1. This simple choice of SQ results in a strictly

suboptimal performance as shown in Figs. 3 and 4.

V. CONCLUSION

This paper demonstrates that the optimized use of compress-

and-forward in cooperative device-to-device communication can

significantly improve the throughput of cell-edge users in a

wireless cellular network. The relay link allows two users to

effectively pool their antennas together. It can benefit the overall

transmission rate in two ways. First, antenna pooling enlarges

the receiver dimensions thus allowing additional transmission

degree-of-freedom from the base-station. Second and more

importantly, antenna pooling enables joint interference rejection

across the user terminals, thus allowing more interference-free

dimensions for direct transmission.
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Fig. 4. Throughput improvement due to a device-to-device link of capacity
C0 for the case where the base-station is equipped with two antennas (s = 2),
and the relay and destination are each equipped with three antennas (r = 3 and
d = 3) with four inter-cell interference sources (t = 4).

This paper proposes an alternating optimization approach for

the optimization of the transmit and quantization covariance

matrices in compress-and-forward relaying. The optimization of

quantization covariance involves a simultaneous diagonalization

by *congruence of two conditional covariance matrices and

optimal allocation of quantization rates. The optimization of

transmit covariance involves solving a convex logdet problem.

The iterative optimization algorithm converges to the stationary

point of the Lagrangian, which leads to a KKT solution of the

overall throughput maximization problem.
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