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Abstract—This paper considers a heterogeneous downlink
cloud radio access network (C-RAN) where all the base stations
(BSs) in the network are connected to a central processor (CP) via
capacity-limited backhaul links. Under this model, we investigate
the message-sharing transmission strategy where the CP shares
each user’s message with a fixed subset of BSs, which then serve
the user through joint beamforming. In this setting, although the
overall long-term average backhaul consumption is limited by
the fixed cluster size, the instantaneous backhaul consumption at
each BS may vary significantly depending on the data rates of the
scheduled users at each time slot. To avoid such large fluctuations
in backhaul consumption, this paper proposes a backhaul-aware
multicell scheduling and beamforming strategy that explicitly
accounts for backhaul consumption. Specifically, a beamforming
design algorithm is proposed to maximize the network utility for a
downlink C-RAN under both per-BS power constraints and per-
BS backhaul constraints in each time slot. Although this problem
has already been considered in our previous work, this present
paper proposes a new beamforming design algorithm that not
only has guaranteed convergence but also achieves better system
performance. This paper also shows that the performance of the
proposed algorithm can be further improved by iterating with
an additional power minimization step.

I. INTRODUCTION

Cloud radio access network (C-RAN) is an emerging net-

work architecture that shows significant promise in supporting

the ever increasing data traffic. In C-RAN, all the base stations

(BSs) are connected to a centralized baseband unit (BBU)

through digital backhaul links. The centralized BBU jointly

processes the user messages and forwards them to the BSs,

which in turn form the radio frequency signals to be transmit-

ted to the users. The benefits of the C-RAN architecture are

that it can better manage inter-user interference, better balance

traffic load, enhance energy efficiency, and improve the overall

network throughput.

The backhaul links in practical C-RAN implementations

are of finite capacity. This limits the amount of information

transfer from the central processor (CP) to the BSs. In this

domain, many works in the literature have considered the

implementation of C-RAN with limited backhaul [1]–[4].

This paper focuses on one specific transmission strategy in

the downlink C-RAN known as message-sharing. In message-

sharing strategy, the CP simply shares each user’s original

message with a selected subset of BSs, known as BS cluster,

which then jointly beamform the signals to the intended

users. The overall long-term average backhaul requirement for

message-sharing strategy is determined by the cluster size:

larger cluster size leads to higher backhaul consumption.

Previous works on downlink C-RAN have considered lim-

iting the backhaul consumption either by limiting the cluster

size [5]–[7] or adding a backhaul-related penalized term to the

objective function [8], [9]. However, these previous approaches

control only the long-term average backhaul; the instantaneous

backhaul consumption may still have large variations since

different users may be scheduled and served with different

data rates at each time slot.

This paper differs from previous works in that we consider a

backhaul-aware beamforming design problem which explicitly

incorporates the instantaneous per-BS backhaul constraint in

the network optimization framework. With explicit instanta-

neous backhaul constraints, the backhaul consumption at each

time slot is accounted for at the scheduling and beamforming

stage. As shown in [10], explicit consideration of per-BS back-

haul constraints can also provide more freedom in choosing the

cluster sizes and lead to full utilization of backhaul resources,

resulting in significant improvement in network utility.

Explicit backhaul constraints have been considered in our

previous work [10] under both dynamic clustering and fixed

clustering. This paper focuses on fixed BS clustering only

but provides an alternative and potentially better approach for

instantaneous backhaul control through beamforming. Specif-

ically, we propose a beamforming design algorithm which is

guaranteed to converge to a stationary point solution to the

utility maximization problem for downlink C-RAN under both

per-BS power constraints and per-BS backhaul constraints.

This is in contrast to the previous algorithm developed in [10],

which has no theoretical convergence guarantee.

This paper also differs from [10] in user scheduling strategy.

In [10], user scheduling is implicitly done within its beam-

forming design algorithm. However, implicit user scheduling

cannot be directly applied to the new algorithm in this paper

because the computational complexity would be too high.

Instead, we propose to first select a subset of candidate users

using the weighted minimum-mean-squared-error (WMMSE)

approach [7], then select which subset of users to be scheduled

among those candidate users using the proposed beamforming

design algorithm. Our simulation results reveal that under such

a two-stage user scheduling policy, the proposed algorithm

provides considerable performance improvement as compared

to the previous algorithm in [10] at comparable complexity.



Fig. 1. Downlink C-RAN with limited per-BS backhaul capacity, in which
each user is cooperatively served by a fixed subset of BSs.

We also show in this paper that the performances of both

the previously proposed algorithm in [10] and the newly

proposed algorithm in this paper can be further improved by

iterating with an additional power minimization step. Further,

the performance gain achieved by the power minimization step

in the newly proposed algorithm is larger than that in the

previously proposed algorithm .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A downlink C-RAN architecture with a total number of L
BSs and K users is considered. Each BS is equipped with

M transmit antennas while each user has N receive antennas.

As depicted in Fig. 1, each BS is connected to the CP via a

backhaul link of capacity Cl, l ∈ L = {1, 2, · · · , L}.

This paper considers the message-sharing strategy between

the CP and the BSs. Due to limited capacities of the backhaul

links, the CP routes user k’s message only to an individ-

ually selected and fixed subset of BSs, denoted as Lk ={
l1, l2, · · · , l|Lk|

} ⊆ L, k ∈ K = {1, 2, · · · ,K}, which then

cooperatively serve user k through joint beamforming.

Let the beamforming vector formed by the serving cluster

Lk for user k be denoted as

wk =
[
wH

l1k,w
H
l2k, · · · ,wH

l|Lk|k

]H
(1)

where wlmk ∈ C
M×1 is the beamformer from BS lm, m ∈

{1, 2, · · · , |Lk|}, to user k. The received signal at user k, yk ∈
C

N×1, can be written as

yk = Hkkwksk +
∑

j �=k,j∈K
Hjkwjsj + nk, (2)

where Hjk ∈ C
N×|Lj |M is the matrix of channel gains from

user j’s serving cluster Lj to user k, nk ∈ C
N×1 is the

received noise at user k and is assumed to be distributed as

CN (0, σ2I), sk is user k’s message and is drawn indepen-

dently from the signal constellation with zero mean and unit

variance. With linear receive beamformer applied at the user

side, the signal-to-interference-and-noise ratio (SINR) for user

k can be written as

SINRk =

∥∥uH
k Hkkwk

∥∥2∑
j �=k,j∈K

∥∥uH
k Hjkwj

∥∥2 + σ2 ‖uk‖22
(3)

where uk ∈ C
N×1 is user k’s receive beamformer.

It is assumed that the CP has access to global channel state

information (CSI) for designing the beamforming vector wk.

Once wk is determined, the CP transmits user k’s message,

along with the beamforming coefficients, to user k’s serving

cluster Lk, which then forms the beamformed signals to user

k. We also assume that the channels are slow varying and

only consider the backhaul consumption due to user message

sharing and ignore the backhaul required for sharing CSI and

delivering beamforming coefficients. Under this assumption,

the backhaul consumption of the lth BS at current time slot is

simply
∑

k∈Kl
Rk, where Kl ⊆ K is the fixed subset of users

associated with BS l and Rk is user k’s data rate given by

Rk ≤

log2

⎛
⎜⎜⎝1 +wH

k HH
kk

⎛
⎜⎜⎝∑

j �=k
j∈K

Hjkwjw
H
j HH

jk + σ2I

⎞
⎟⎟⎠

−1

Hkkwk

⎞
⎟⎟⎠

� log2 (1 + SINRk,mmse) . (4)

In (4), the SINRk,mmse is obtained by substituting the

minimum-mean-squared-error (MMSE) receiver

uk,mmse =

⎛
⎝∑

j∈K
Hjkwjw

H
j HH

jk + σ2I

⎞
⎠

−1

Hkkwk (5)

into the SINR experession (3).

Considering weighted sum rate (WSR) as the utility func-

tion, we formulate the utility maximization problem for down-

link C-RAN under per-BS power constraints Pl and instanta-

neous per-BS backhaul constraints Cl as

maximize
{Rk,wk}

∑
k∈K

αkRk (6a)

subject to
∑
k∈Kl

‖wlk‖22 ≤ Pl, ∀l (6b)

∑
k∈Kl

Rk ≤ Cl, ∀l (6c)

Rk ≤ log2 (1 + SINRk,mmse) , ∀k (6d)

where αk is the priority weight associated with user k. In (6b),

‖ · ‖2 denotes the �2-norm of a vector. It is worth noting that

the proposed algorithm in this paper can also be generalized

to deal with the per-BS backhaul constraint averaged over

multiple time slots. The objective function (6a) can also be

replaced by other types of utility functions as discussed later

in Remark 4.2.

In [10], a similar optimization problem as (6) is considered

but with the inequality constraint (6d) replaced by equality. It

can be shown that both problems are equivalent in achieving



the same optimal objective value. This is because for any

optimal solution
{
w̃∗

k, R̃
∗
k

}
found in problem (6), there always

exist another set of beamformers that can achieve
{
R̃∗

k

}
with

equality. This point is further elaborated in Section VI.

Problem (6) with either inequality or equality in constraint

(6d) is a non-convex optimization problem, for which finding

global optimum is quite challenging. In our previous work

[10], (6d) is regarded as equality constraint and is substituted

into the objective function. Then, the per-BS backhaul con-

straint (6c) is reformulated as a weighted sum power constraint

so that the WMMSE approach [11] can be generalized to solve

this problem. This algorithm is reviewed in Section III. In

Section IV, we develop a new algorithm which solves problem

(6) with rate inequality constraint in (6d). The newly proposed

algorithm adopts an approach first used in [12] that applies the

WMMSE technique in the constraint for solving a max-min

rate optimization problem for multiple-input multiple-output

(MIMO) interfering broadcast channel. The major difference

between the existing algorithm in [10] and the newly proposed

algorithm is that the latter has guaranteed convergence and also

has better performance.

III. REVIEW OF EXISTING ALGORITHM IN [10]

This section reviews an existing algorithm for solving (6) as

proposed in [10]. The essential idea in [10] is to approximate

the per-BS backhaul constraint (6c) as a weighted sum power

constraint so that the WMMSE approach in [11] can be

generalized to solve this problem.

Specifically, it is noted in [10] that only the subset of users

with nonzero beamforming vector need to be considered in

the summations of the per-BS backhaul constraint (6c). Thus,

constraint (6c) can be reformulated as∑
k∈Kl

Rk =
∑
k∈Kl

∥∥∥‖wk‖22
∥∥∥
0
Rk ≤ Cl, ∀l. (7)

Further, [10] proposes to approximate the �0-norm in (7) by

its weighted �1-norm:∑
k∈Kl

βk ‖wk‖22 Rk ≤ Cl, ∀l, (8)

where βk is the weight iteratively updated according to

βk =
1

‖wk‖22 + τ
, ∀k, (9)

with a small positive regularization factor τ > 0.

Furthermore, [10] proposes to approximate the rate variable

Rk in (8) using the achievable rate from previous iteration and

reformulates problem (6) as

maximize
{wk}

∑
k∈K

αk log2 (1 + SINRk,mmse) (10a)

subject to
∑
k∈Kl

‖wlk‖22 ≤ Pl, ∀l (10b)

∑
k∈Kl

βkR̂k ‖wk‖22 ≤ Cl, ∀l (10c)

Algorithm 1 WMMSE with Reweighted �1-norm [10]

Initialization:
{
βk, R̂k

}
;

Repeat:
1) Fix

{
βk, R̂k

}
, use the generalized WMMSE approach

to solve problem (10);

2) At the end of each WMMSE routine, compute the

achievable rate Rk according to (4), and update R̂k =
Rk and βk according to (9), ∀k.

Until convergence

where R̂k in constraint (10c) is the achievable rate from pre-

vious iteration. The approximated per-BS backhaul constraint

(10c) now can be regarded as a weighted sum power constraint

with weights βkR̂k.

Although the reformulated problem (10) is still non-convex,

the conventional WMMSE approach [11] can be generalized

to solve problem. The complete algorithm is summarized in

Algorithm 1. One issue with Algorithm 1 is that it has no

theoretical convergence guarantee due to the heuristic update

of R̂k and βk. In the subsequent section, we propose an alter-

native algorithm which has provable convergence guarantee.

IV. PROPOSED BEAMFORMING ALGORITHM

The existing algorithm in [10] focuses on transforming the

per-BS backhaul constraint (6c) into a format so that the

WMMSE approach can be applied. In contrast, this paper

focuses on dealing with the non-convex constraint (6d) and

tries to transform (6d) into a convex format so that the standard

convex optimization method can be used to solve the problem.

The key transformation is to rewrite log2 (1 + SINRk,mmse)
in (6d) in the following equivalent form:

log2 (1 + SINRk,mmse) = max
{uk,ρk}

(
ln ρk − ρkek + 1

ln 2

)
(11)

where ek ∈ R is the mean-squared-error (MSE) for user k
defined as

ek = E
[∥∥uH

k yk − sk
∥∥2
2

]

= uH
k

⎛
⎝∑

j∈K
Hjkwjw

H
j HH

jk + σ2I

⎞
⎠uk

− 2Re
{
uH
k Hkkwk

}
+ 1 (12)

and ρk ∈ R is a scalar variable associated with user k.

The proof of the relationship in (11) is based on the first

order optimality condition. By taking partial derivatives of the

function in the right-hand side of (11) with respect to uk and

ρk respectively and setting them to zeros, it is easy to see that

the unconstrained optimization problem in (11) achieves its

optimum when uk = uk,mmse, as defined in (5), and ρk =
1/e∗k, where e∗k is the MMSE under uk,mmse. Substituting

uk = uk,mmse and ρk = 1/e∗k into the right-hand side of (11)

produces the left-hand side.



With the above equivalent rate expression, we can now

reformulate the rate inequality constraint (6d) as

Rk ≤ max
{uk,ρk}

(ln ρk − ρkek + 1) / ln 2, (13)

where ek is a function of uk as defined in (12).

Note that problem (6) is non-convex due to the rate inequal-

ity constraint (6d). However, for fixed {uk, ρk}, the above

equivalent rate inequality constraint (13) is a convex quadratic

constraint in {wk, Rk} jointly. This observation motivates us

to utilize the block coordinate descent (BCD) method to solve

problem (6) by iterating between the optimization of {uk, ρk}
and {wk, Rk}. We summarize the proposed algorithm in

Algorithm 2. The most computationally intensive step in

Algorithm 2 is Step 3, which finds the optimal {wk, Rk}
jointly by solving the following convex optimization problem

under fixed {uk, ρk}:

maximize
{Rk,wk}

∑
k∈K

αkRk (14a)

subject to
∑
k∈Kl

‖wlk‖22 ≤ Pl, ∀l (14b)

∑
k∈Kl

Rk ≤ Cl, ∀l (14c)

∑
j∈K

wH
j HH

jkuku
H
k Hjkwj +

ln 2

ρk
Rk

− 2Re
{
uH
k Hkkwk

} ≤ tk, ∀k (14d)

where tk is a constant for given {uk, ρk} and is defined as

tk = ln ρk+1
ρk

− σ2 ‖uk‖22 − 1.

The usual convergence proof for BCD requires that the

constraints are separable in the block variables, which is not

the case for problem (6) as the rate inequality constraint (13)

is coupled among the optimization variables. However, we can

show that the proposed Algorithm 2 converges to a Karush-

Kuhn-Tucker (KKT) point of (6).

Proposition 4.1: Starting with any initial point, the se-

quence {xn}∞n=1 � {wn
k , R

n
k ,uk, ρk}∞n=1 generated by Al-

gorithm 2 converges to the KKT solution of (6) in the sense

that limn→∞ d (xn,S) = 0, where S is the set of KKT points

of (6) and d (xn,S) � infs∈S ‖xn − s‖2.

Proof Sketch: Since the objective function in problem

(6) monotonically decreases under Algorithm 2 and that the

constrained set of (6) is compact, we can use the technique

of [12] to show that any cluster point of {x}∞n=1 satisfies the

KKT conditions of (6). Although the KKT points may not be

unique, the distance between {x}∞n=1 and the KKT solution

set of (6) nevertheless goes to zero in the limit.

Remark 4.2: Algorithm 2 only relies on the fact that for

given {uk, ρk}, the optimization problem (14) for jointly find-

ing {wk} and {Rk} is a convex optimization problem. Since

all the constraints in problem (14) are convex, this implies that

Algorithm 2 can be readily generalized to any utility function

that is a concave function of {Rk}. This includes the WSR

utility
∑

k αkRk, proportional fairness utility
∑

k logRk,

weighted harmonic mean rate utility −∑
k αkR

−1
k , etc. In

Algorithm 2 Block Coordinate Descent (BCD) Method

Initialization: {wk};

Repeat:
1) Fix {wk}, compute the MMSE receiver {uk} and the

corresponding MSE {ek} according to (5) and (12);

2) Update the MSE weight {ρk} as ρk = 1/ek;

3) Fix {uk, ρk}, find the optimal transmit beamformer

{wk} and rate {Rk} jointly through solving the convex

optimization problem (14) using the standard convex

optimization tool [13].

Until convergence

addition, Algorithm 2 can also be used to solve the minimum

rate fairness utility (mink Rk) maximization problem, which

is not differentiable and cannot be handled by Algorithm 1 as

the WMMSE equivalence does not hold in this case.

The computational complexities for both Algorithm 1 and 2

are dominated by the transmit beamformer design step. In our

simulations, the optimization problems for designing the trans-

mit beamformer in both Algorithm 1 and 2 are reformulated

as second order cone programming (SOCP) and are solved by

the interior-point method. The complexities for Algorithm 1

and 2 are thus given as O(K3L4M3) and O(K4L3M3),
respectively. The difference in these two complexity orders is

due to the different total number of constraints in (10) and (14).

Typically, the number of users K is larger than the number of

BSs L. Hence, Algorithm 2 is at most O(K) more complex

than Algorithm 1. In the next section, we propose an efficient

user scheduling strategy that can significantly reduce the total

number of users needed to be considered in Algorithm 2.

V. USER SCHEDULING

In Algorithm 1, the scheduled users at each time slot can

be implicitly determined by considering all the K users in

the optimization problem but only choosing those users with

nonzero rates. It has been reported in [10] that such implicit

user scheduling brings considerable utility improvement com-

pared to round-robin user scheduling. Due to the per-user

rate constraint (6d), implicit user scheduling adds significant

complexity to Algorithm 2.

To reduce the computational complexity, we propose a two-

stage user scheduling procedure for Algorithm 2. In the first

stage, the WMMSE approach [7] is used to solve the WSR

maximization problem (6) with only power constraints (6b) for

a fixed number of iterations, which is set to 10 iterations in

our simulations. By the end of the first stage, a large number

of users will have zero rate and can be removed from the user

scheduling pool. In the second stage, only those surviving

users from the first stage with nonzero rates are considered

in Algorithm 2, which makes the final scheduling decision.

Since the computational complexity of Algorithm 2 is dom-

inated by the number of considered users, such two-stage

user scheduling policy significantly improves the efficiency of

Algorithm 2. Our simulation results show that under such two-

stage user scheduling, Algorithm 2 outperforms Algorithm 1



Fig. 2. Block diagram of the optimization framework which further improves
the performances of Algorithm 1 and 2.

under implicit user scheduling at comparable complexity for

a realistic network.

VI. POWER MINIMIZATION

In this section, we show that a power minimization step can

further improve the performance of the proposed algorithm.

Let
{
w̃∗

k, R̃
∗
k

}
denote the solution to problem (6) obtained

from Algorithm 2. Due to the rate inequality constraint

(6d), the user rates log2 (1 + SINRk,mmse) achieved by {w̃∗
k}

may be strictly larger than R̃∗
k. We can further improve the

beamforming strategy {w̃∗
k} by solving the following power

minimization problem to reduce total power consumption

minimize
{wk,uk}

∑
k∈K

‖wk‖22 (15a)

subject to
∑
k∈Kl

‖wlk‖22 ≤ Pl, ∀l (15b)

SINRk ≥ 2R̃
∗
k − 1, ∀k (15c)

where SINRk is defined in (3).

For the above total power minimization problem, it is well

known that at the optimal point the SINR constraints (15c)

are achieved with equality. The key advantage here is that by

reducing transmission power, less interference is generated;

the performance of the overall system improves. In fact, this

motivates us to propose a new optimization framework that

iteratively solves problem (6) and (15) to further improve

the performance of Algorithm 1 and 2. Such framework is

shown in Fig. 2 and is guaranteed to converge as each iteration

generates a non-decreasing network utility. As shown in the

simulation results, the optimization framework in Fig. 2 can

produce a considerably better solution to problem (6) than the

solution produced by Algorithm 1 or Algorithm 2 alone.

However, note that the power minimization problem (15) is

non-convex when there are multiple receive antennas at the

user side. Global optimum can only be achieved if the receive

beamformer {uk} is fixed. With fixed receive beamformer,

TABLE I
SIMULATION PARAMETERS.

Cellular Hexagonal
Layout 7-cell wrapped-around

Channel bandwidth 10 MHz
Distance between cells 0.8 km

Num. of (macro-BSs, pico-BSs, users)/cell (1, 3, 30)
Num. of antennas/(macro-BS, pico-BS, user) (4, 2, 2)

Max. Tx power for (macro-BS, pico-BS) (43, 30) dBm
Antenna gain 15 dBi

Background noise −169 dBm/Hz
Path loss from macro-BS to user 128.1 + 37.6 log10(d)
Path loss from pico-BS to user 140.7 + 36.7 log10(d)

Log-normal shadowing 8 dB
Rayleigh small scale fading 0 dB

Reweighting function parameter τ = 10−12

problem (15) can be transformed into a SOCP problem [14].

Also, with fixed transmit beamformer, the optimal receive

beamformer is the MMSE receiver. Based on these facts, we

propose to seek a locally optimal solution to (15) by iterating

between the MMSE receiver design and optimal transmitter

design under fixed receiver, as illustrated in Algorithm 3.

Algorithm 3 Power Minimization

Initialization: Set the solution to problem (6) as the initial

value for {wk}.

Repeat:
1) Fix {wk}, update {uk} as the MMSE receiver defined

in (5);

2) Fix receive beamformer {uk}, find the optimal transmit

beamformer {wk} for problem (15) by solving a SOCP

problem [14].

Until convergence

VII. SIMULATION RESULTS

This section evaluates the effectiveness of the proposed

algorithms through numerical simulations for a heterogeneous

C-RAN environment with the parameters listed in Table I. The

BS clustering strategy adopts the biased-signal-strength-based

clustering scheme proposed in [10]. For simplicity, we set all

the macro-BSs to have equal backhaul constraints and likewise

for the pico-BSs. The backhaul constraints are denoted as

(Cmacro, Cpico) = (690, 107) Mbps respectively, which are

extracted from the baseline scheme considered in [10].

In Fig. 3, the convergence behavior of Algorithm 2 is plotted

under round-robin user scheduling. As we can see, the sum

rate generated by Algorithm 2 monotonically increases as the

iteration goes on and eventually converges. The convergence

behavior of the optimization framework proposed in Fig. 2

is also included in Fig. 3, in which the power minimization

step is added to Algorithm 2 at the 15th iteration. This is

when the objective function only improves by 1% per iteration

with Algorithm 2 by itself. It can be seen that with power

minimization step, the sum rate obtained is strictly higher than

that obtained from Algorithm 2 alone and eventually converges
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Fig. 3. Convergence behavior of the proposed algorithms under round-robin
user scheduling and αk = 1,∀k.

to a higher optimal value. This illustrates the effectiveness

of Algorithm 3 in better refining the solution obtained from

Algorithm 2.

In Fig. 4, we compare the cumulative distribution functions

(CDF) of user data rates between Algorithm 1 and 2 under dif-

ferent scenarios. As we can see, with round-robin scheduling,

Algorithm 1 and 2 exhibit similar performance. However, we

observe that the power minimization step improves the perfor-

mance of Algorithm 2 more than Algorithm 1. This is mainly

because, when Algorithm 1 converges, Rk is typically equal

to log2 (1 + SINRk,mmse), but when Algorithm 2 converges,

log2 (1 + SINRk,mmse) may be strictly larger than Rk. Hence,

the transmit beamformers obtained from Algorithm 2 can

benefit more from the power minimization step in Algorithm 3.

In Fig. 4, we also plot the performance of the optimization

framework in Fig. 2 under the user scheduling strategy dis-

cussed in Section V. With a total number of 210 users in

the network, we note that under the optimization framework

in Fig. 2, Algorithm 2 with the proposed two-stage user

scheduling has comparable complexity as Algorithm 1 with

implicit scheduling. However, the new algorithm significantly

improves the overall system performance particularly for the

low-to-medium rate users.

VIII. CONCLUSION

This paper proposes a new algorithm to solve the network

utility maximization problem for downlink C-RAN with fixed

BS clustering under both per-BS power constraints and per-

BS backhaul constraints in each time slot. Unlike the previous

algorithm, the new algorithm is guaranteed to converge to a

stationary point of the network utility maximization problem.

We also show that by iterating with an additional power

minimization step, the performance of the proposed algorithm

can be further improved. Simulation results reveal that the pro-

posed algorithm with power minimization iteration improves

over the existing algorithm with comparable complexity.
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Fig. 4. CDF of user data rates comparison with αk updated according to
proportional fairness criterion.
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