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Abstract—This paper investigates the compress-and-forward
scheme for an uplink cloud radio access network (C-RAN) model,
where multi-antenna base-stations (BSs) are connected to a cloud-
computing based central processor (CP) via capacity-limited
fronthaul links. The BSs perform Wyner-Ziv coding to compress
and send the received signals to the CP; the CP performs either
joint decoding of both the quantization codewords and the user
messages at the same time, or the more practical successive
decoding of the quantization codewords first, then the user
messages. Under this setup, this paper makes progress toward
the optimization of the fronthaul compression scheme by proving
two results. First, it is shown that if the input distributions are
assumed to be Gaussian, then under joint decoding, the optimal
Wyner-Ziv quantization scheme for maximizing the achievable
rate region is Gaussian. Second, for fixed Gaussian input, under
a sum fronthaul capacity constraint and assuming Gaussian
quantization, this paper shows that successive decoding and
joint decoding achieve the same maximum sum rate. In this
case, the optimization of Gaussian quantization noise covariance
matrices for maximizing sum rate can be formulated as a convex
optimization problem, therefore can be solved efficiently.

I. INTRODUCTION

This paper considers the uplink of a cloud radio access
network (C-RAN) under finite-capacity fronthaul constraints.
The uplink C-RAN model, as shown in Fig. 1, consists of
multiple remote users sending independent messages to a
cloud-computing based central processor (CP) through multi-
ple multi-antenna base-stations (BSs). The BSs and the CP are
connected with digital fronthaul links with per-link capacity
Cℓ. All the user messages are eventually decoded at the CP.
This channel model can be thought of as a two-hop relay net-
work, with an interference channel between the users and the
BSs, followed by a noiseless multiple-access channel between
the BSs and the CP. The C-RAN architecture enables multi-
cell processing, which significantly improves the performance
of wireless cellular networks by effectively mitigating inter-
cell interference.

A key question in the design of the C-RAN architecture
is the optimal choice of input distribution at the remote
users, the optimal coding strategy at the BSs, and the optimal
decoding strategy at the CP. Toward this end, this paper
restricts attention to fixed Gaussian input distribution, Wyner-
Ziv compress-and-forward relaying strategy at the BSs, and
either successive decoding of the quantization codewords first,
then the user messages, or joint decoding of the quantization
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YL : ŶL
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Fig. 1. Uplink of a cloud radio-access network with capacity-limited fronthaul

codewords and user messages together at the CP. Our main
results are that, under this assumption, the optimal Wyner-
Ziv quantization scheme is Gaussian under joint decoding.
Further, if we assume a sum fronthaul constraint, then under
Gaussian quantization successive decoding achieves the same
sum rate as joint decoding. Moreover, the optimization of
Gaussian quantization covariance matrices for maximizing sum
rate under the sum fronthaul constraint can be formulated
as a convex optimization problem, therefore can be solved
efficiently.

The achievable rate of compress-and-forward with joint
decoding in the uplink C-RAN is first studied in [1] for a
single-transmitter model and in [2] for the multi-transmitter
case. The uplink C-RAN model is in fact a particular instance
of a general relay network with a single destination for which
a generalization of compress-and-forward with joint decoding
(known as noisy network coding [3], [4]) can be shown
to achieve the information theoretical capacity to within a
constant gap. The achievable rate region of compress-and-
forward with successive decoding (which has lower decoding
complexity) has also been studied for the C-RAN model [5].
The recent work [6] further shows that successive decoding can
achieve the sum capacity of C-RAN to within constant gap, if
the fronthaul links are subjected to a sum capacity constraint.
The constant-gap results in the relay literature are typically
established assuming Gaussian quantization noise covariance
at the relays. This paper goes one step further in proving that



Gaussian quantizer is in fact optimal under joint decoding, if
the input distributions are assumed to be Gaussian. The key
insight here is a connection between the C-RAN model and the
CEO problem in source coding [7], where a source is described
to a central unit by remote agents with noisy observations.
The solution to the CEO problem is known for the scalar
Gaussian case [8] [9], while significant recent progress has
been made in the vector case, e.g., [10], [11]. Finding the
optimal quantization for the C-RAN model is also related to
the mutual information constraint problem [12] [13], which can
be solved by the entropy power inequality or the perturbation
approach. In this paper, we use techniques for establishing
outer bound for the Gaussian vector CEO problem [11] to
prove the optimality of Gaussian quantization.

This paper makes further progress in observing that the op-
timization of Gaussian quantization noise covariance matrices
can be reformulated as a convex optimization problem under
joint decoding, and that successive decoding and joint decod-
ing are equivalent for maximizing the sum rate under a special
case of uplink C-RAN model with a sum-capacity fronthaul
constraint. The quantization noise covariance optimization
problem has been considered in the literature, but only locally
convergent algorithms are known previously [14], [15]. The
convex formulation proposed in this paper allows globally
optimal Gaussian quantization noise covariance to be found
efficiently. The assumption of fixed Gaussian input distribution
is crucial for the current setup. It is not difficult to come
up with examples where non-Gaussian input can outperform
Gaussian input [5]. This paper optimizes the quantization noise
covariance matrix under the fixed Gaussian input. We remark
that the joint optimization of input and quantization covariance
matrices remains a difficult problem [16].

Notation: Superscripts (·)† and (·)−1 denote Hermitian
transpose, and matrix inverse operators; cov(·) denotes the
covariance operation. For a vector X, XS denotes a vec-
tor/matrix with elements whose indices are elements of S.
Given matrices {X1, . . . ,XL}, diag

(
{Xℓ}Lℓ=1

)
denotes the

block diagonal matrix formed with Xℓ on the diagonal. Denote
by J(X) the Fisher information matrix of random vector X.
Let K = {1, · · · ,K} and L = {1, · · · , L}.

II. ACHIEVABLE RATE REGIONS FOR UPLINK C-RAN

This paper considers the uplink C-RAN, where K mobile
users communicate with a CP through L BSs, as shown
in Fig. 1. The noiseless fronthaul links connecting the BSs
with the CP have per-link capacity Cℓ. Each user terminal
is equipped with M antennas; each BS is equipped with N
antennas. Let Xk ∼ CN (0,Kk) be the signal transmitted by
the kth user. The signal received at the ℓth BS can be expressed
as

Yℓ =
K∑

k=1

Hℓ,kXk + Zℓ, ℓ = 1, 2, . . . , L,

where Zℓ ∼ CN (0,Σℓ) are independent noises, and Hℓ,k

denotes the complex channel matrix from Xk to Yℓ.

Fix Gaussian input distribution as above. We use R∗
JD to

denote the achievable rate region of the compress-and-forward
relay scheme with joint decoding [1, Proposition IV.1] [4,
Theorem 1], i.e., the set of (R1, · · · , RK) for which∑
k∈T

Rk ≤
∑
ℓ∈S

[
Cℓ − I(Yℓ; Ŷℓ|XK)

]
+ I

(
XT ; ŶSc |XT c

)
(1)

for all T ⊆ K and S ⊆ L, for some
∏L

ℓ=1 pŶℓ|Yℓ
.

Likewise, we use R∗
SD to denote the achievable rate region

under fixed Gaussian input distribution of the compress-and-
forward scheme with successive decoding [5, Theorem 1], i.e.,
the set of (R1, · · · , RK) for which∑

k∈T

Rk ≤ I
(
XT ; ŶL|XT c

)
, ∀ T ⊆ K, (2)

for some product distribution
∏L

ℓ=1 pŶℓ|Yℓ
that satisfies

I
(
YS ; ŶS |ŶSc

)
≤
∑
ℓ∈S

Cℓ, ∀ S ⊆ L. (3)

Note that (2) is the multiple-access rate region, (3) represents
the Wyner-Ziv decoding constraint, while (1) incorporates the
joint decoding of the transmit and quantization codewords.

We now evaluate the joint decoding and successive decoding
regions under Gaussian quantization, denoted as RG

JD and
RG

SD, respectively. Set pŶℓ|Yℓ
∼ CN (Yℓ,Qℓ), where Qℓ is

the Gaussian quantization noise covariance matrix at the ℓth
BS. Instead of parameterizing over Qℓ, we parameterize over
Bℓ defined as

Bℓ = (Σℓ +Qℓ)
−1. (4)

Proposition 1: Fix Gaussian input XK ∼ CN (0,KK).
The joint decoding region RG

JD for the C-RAN model under
Gaussian quantization is the set of (R1, · · · , RK) such that

∑
k∈T

Rk ≤
∑
ℓ∈S

[
Cℓ − log

|Σ−1
ℓ |

|Σ−1
ℓ −Bℓ|

]

+ log

∣∣∣∑ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

T

∣∣∣∣∣K−1
T
∣∣ (5)

for all T ⊆ K and S ⊆ L, for some 0 ≼ Bℓ ≼ Σ−1
ℓ , where

KT = E[XT X
†
T ] is the covariance matrix of XT , and Hℓ,T

denotes the channel matrix from XT to Yℓ.
Proposition 2: Fix Gaussian input XK ∼ CN (0,KK). The

successive decoding region RG
SD for the C-RAN model under

Gaussian quantization is given by the set of (R1, · · · , RK)
such that

∑
k∈T

Rk ≤ log

∣∣∣∑L
ℓ=1 H

†
ℓ,T BℓHℓ,T +K−1

T

∣∣∣∣∣K−1
T
∣∣ , ∀ T ⊆ K,

(6)



for some 0 ≼ Bℓ ≼ Σ−1
ℓ satisfying

log

∣∣∣∣ L∑
ℓ=1

H†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣∣∣∣∣ ∑
ℓ∈Sc

H†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣ +
∑
ℓ∈S

log
|Σ−1

ℓ |
|Σ−1

ℓ −Bℓ|

≤
∑
ℓ∈S

Cℓ, ∀ S ⊆ L. (7)

To derive the above expressions, first we use Bℓ = (Σℓ +
Qℓ)

−1 to evaluate

I(Yℓ; Ŷℓ|XK) = log
|Σℓ +Qℓ|

|Qℓ|
= log

|Σ−1
ℓ |

|Σ−1
ℓ −Bℓ|

. (8)

Further, in deriving (5), I
(
XT ; ŶSc |XT c

)
is evaluated as

log

∣∣∣HSc,T KT H
†
Sc,T + diag

(
{Σℓ +Qℓ}Lℓ=1

)∣∣∣∣∣diag ({Σℓ +Qℓ}Lℓ=1

)∣∣ . (9)

Substituting (8) and (9) into (1) gives (5). Likewise a similar
expression holds for I

(
XT ; ŶT |XT c

)
, together giving (6)

and (7).
In deriving (7), we start with the chain rule on mutual

information

I
(
XK; ŶS |ŶSc

)
+ I

(
YS ; ŶS |XKŶSc

)
= I

(
YS ; ŶS |ŶSc

)
+ I

(
XK; ŶS |YSŶSc

)
, (10)

and make use of the Markov chain

Ŷi ↔ Yi ↔ XK ↔ Yj ↔ Ŷj , ∀ i ̸= j

to note that I(YS ; ŶS |XKŶSc) = I(YS ; ŶS |XK), and
I
(
XK; ŶS |YSŶSc

)
= 0. Hence,

I
(
YS ; ŶS |ŶSc

)
= I

(
XK; ŶS |ŶSc

)
+
∑
ℓ∈S

I(Yℓ; Ŷℓ|XK)

= I
(
XK; ŶL

)
− I

(
XK; ŶSc

)
+
∑
ℓ∈S

I(Yℓ; Ŷℓ|XK).

Then, (7) can be derived by evaluating the above mutual in-
formation expressions assuming Gaussian input and Gaussian
quantization test channel.

Clearly, in general we have RG
SD ⊆ R∗

SD, RG
JD ⊆ R∗

JD,
and RG

SD ⊆ RG
JD. However, Gaussian quantization is desir-

able, because it leads to achievable rate regions that can be
easily evaluated. Further, successive decoding is more desir-
able than joint decoding, since it has much lower complexity.
Therefore, this paper focuses on RG

JD and RG
SD. We go toward

establishing the optimality of Gaussian quantization and the
efficient optimization of the rate region by showing that under
fixed Gaussian input: (1) Gaussian quantization is optimal for
joint decoding, i.e., RG

JD = R∗
JD; (2) If we assume a sum

fronthaul capacity constraint, the maximum sum rate achieved
by successive decoding and joint decoding under Gaussian
quantization are identical, and the optimization of Gaussian

quantization noise covariance matrix for maximizing sum rate
can be formulated as a convex optimization problem, which
can be solved efficiently.

III. OPTIMALITY OF GAUSSIAN QUANTIZATION UNDER
JOINT DECODING

Theorem 1: For the uplink C-RAN under fixed Gaussian
input distribution and assuming joint decoding, Gaussian quan-
tization is optimal, i.e. RG

JD = R∗
JD.

Proof: Recall that the achievable rate region of the
compress-and-forward scheme under joint decoding is given by
the set of (R1, · · · , RK) given by (1) under joint distribution

pXK,YL,ŶL
=

K∏
k=1

pXk

L∏
ℓ=1

pYℓ|XK

L∏
ℓ=1

pŶℓ|Yℓ
. (11)

Fix pŶℓ|Yℓ
, choose Bℓ with 0 ≼ Bℓ ≼ Σ−1

ℓ such that

cov(Yℓ|XK, Ŷℓ) = Σℓ −ΣℓBℓΣℓ, ℓ = 1, · · · , L.

We proceed to show that the achievable rate region as given
by (5) with a Gaussian pŶℓ|Yℓ

∼ CN (Yℓ,Qℓ), where Qℓ =

B−1
ℓ −Σℓ, is as large as that of (1).
First, note that

I(Yℓ; Ŷℓ|XK) = log | (πe)Σℓ| − h(Yℓ|XK, Ŷℓ)

≥ log | (πe)Σℓ| − log | (πe) cov(Yℓ|XK, Ŷℓ)|

= log
|Σ−1

ℓ |
|Σ−1

ℓ −Bℓ|
, ℓ = 1, · · · , L, (12)

where we use the fact that Gaussian distribution maximizes
differential entropy.

Moreover, we have

I(XT ; ŶSc |XT c) = h(XT )− h(XT |XT c , ŶSc)

≤ log |KT | − log |J−1(XT |XT c , ŶSc)|,

where the inequality is due to [11, Lemma 2] [17]. Since

YSc = HSc,T XT +HSc,T cXT c +NSc ,

it follows that

XT = E[XT |XT c ,YSc ] +NT ,Sc

=
∑
ℓ∈Sc

GT ,ℓ(Yℓ −Hℓ,T cXT c) +NT ,Sc ,

where

GT ,ℓ = (K−1
T +

∑
j∈Sc

H†
j,T Σ

−1
j Hj,T )

−1H†
ℓ,T Σ

−1
ℓ , (13)

and
NT ,Sc ∼ CN (0,ΛN) (14)

with ΛN =
(
K−1

T +
∑

ℓ∈Sc H
†
ℓ,T Σ

−1
ℓ Hℓ,T

)−1

. By the ma-
trix complementary identity between Fisher information matrix



and MMSE [11, Lemma 3] [18], we have

J(XT |XT c , USc)

= Λ−1
N − Λ−1

N

cov

(∑
ℓ∈Sc

GT ,ℓ(Yℓ −Hℓ,T cXT c)|XK, ŶSc

)
Λ−1
N

= Λ−1
N − Λ−1

N cov

(∑
ℓ∈Sc

GT ,ℓYℓ|XK, ŶSc

)
Λ−1
N

= Λ−1
N − Λ−1

N

[∑
ℓ∈Sc

GT ,ℓ cov(Yℓ|XK, Ŷℓ)G
†
T ,ℓ

]
Λ−1
N

= Λ−1
N −

∑
ℓ∈Sc

H†
ℓ,T
(
Σ−1

ℓ −Bℓ

)
Hℓ,T

= K−1
T +

∑
ℓ∈Sc

H†
ℓ,T BℓHℓ,T .

Therefore,

I(XT ; ŶSc |XT c) ≤ log
|K−1

T +
∑

ℓ∈Sc H
†
ℓ,T BℓHℓ,T |

|K−1
T |

(15)
for all T ⊆ K and S ⊆ L. Combining (12) and (15), we
conclude that RG

JD as given by (5) is as large as R∗
JD as

given by (1). Therefore, RG
JD = R∗

JD.
We observe further that the optimization of Gaussian quan-

tization noise covariance matrices under joint decoding is the
following convex optimization problem over (Rk,Bℓ):

max
Rk,0≼Bℓ≼Σ−1

ℓ

K∑
k=1

µkRk (16)

s.t.
∑
k∈T

Rk ≤
∑
ℓ∈S

[
Cℓ − log

|Σ−1
ℓ |

|Σ−1
ℓ −Bℓ|

]

+ log

∣∣∣∑ℓ∈Sc H
†
ℓ,T BℓHℓ,T +K−1

T

∣∣∣∣∣K−1
T
∣∣

where the set of constraints is over all T ⊆ K and S ⊆ L.
Note that the number of constraints grows exponentially in the
size of the network. Because of this, the above optimization
problem can only be solved for small networks in practice.

IV. OPTIMIZATION OF SUCCESSIVE DECODING REGION
UNDER SUM FRONTHAUL CONSTRAINT

Successive decoding is more practical than joint decoding
because of its lower complexity, but can also give lower
rate [5]. In this section, we show that in the special case where
the fronthaul links are subject to a sum capacity constraint,
successive decoding actually achieves the same maximum sum
rate as joint decoding, assuming Gaussian input and Gaussian
quantization. Combining with the result on the optimality of
Gaussian quantization for joint decoding, this implies that
for maximizing the sum rate under sum fronthaul constraint,
Gaussian quantization with successive decoding is optimal.

More specifically, the sum fronthaul constraint is modeled
as
∑L

ℓ=1 Cℓ ≤ C, justifiable in certain situations where the

fronthaul are implemented in shared medium, as has been
considered in [6], [14]. Assuming Gaussian quantization, the
joint decoding rate RJD,s under sum fronthaul constraint is

RJD,s ≤ min

{
C −

L∑
ℓ=1

log
|Σ−1

ℓ |
|Σ−1

ℓ −Bℓ|
,

log

∣∣∣∑L
ℓ=1 H

†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣∣K−1
K
∣∣

 (17)

for some 0 ≼ Bℓ ≼ Σ−1
ℓ , which can be derived from (5) by

noting that only T = K and only the constraints corresponding
to S = ∅ and S = L are relevant under the sum fronthaul
constraint. Likewise, based on (6) and (7), the sum rate for
successive decoding RSD,s is given by

RSD,s ≤ log

∣∣∣∑L
ℓ=1 H

†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣∣K−1
K
∣∣ (18)

for some 0 ≼ Bℓ ≼ Σ−1
ℓ that satisfies

log

∣∣∣∑L
ℓ=1 H

†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣∣K−1
K
∣∣ +

L∑
ℓ=1

log
|Σ−1

ℓ |
|Σ−1

ℓ −Bℓ|
≤ C.

(19)
Let R∗

JD,s and R∗
SD,s be the maximum sum rates under (17)

and (18)-(19), respectively. Clearly, R∗
JD,s ≥ R∗

SD,s, since any
Bℓ that satisfies the constraint (19) also gives RJD,s = RSD,s.
To show that R∗

JD,s ≤ R∗
SD,s, observe that if this is not the

case, then the optimal Bℓ that attains R∗
JD,s must satisfy

C−
L∑

ℓ=1

log
|Σ−1

ℓ |
|Σ−1

ℓ −Bℓ|
< log

∣∣∣∑L
ℓ=1 H

†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣∣K−1
K
∣∣ .

(20)
But then, we can scale B′

ℓ = γBℓ with 0 < γ ≤ 1 to
increase the left-hand side and to decrease the right-hand side
in the above, leading to a higher RJD,s. This contradicts the
optimality of Bℓ. Thus, we have proved:

Theorem 2: Under sum fronthaul constraint and with fixed
Gaussian input, the maximum sum rates achieved by succes-
sive decoding and joint decoding over Gaussian quantization
are the same, i.e., R∗

SD,s = R∗
JD,s.

A consequence of this result is that under the sum fronthaul
constraint, the optimization of the Gaussian quantization noise
covariance for maximizing the sum rate under successive
decoding can be formulated as a convex optimization problem.
More precisely, the sum rate maximization problem can be
formulated as:

max
R,0≼Bℓ≼Σ−1

ℓ

R (21)

s.t. R ≤ log

∣∣∣∑L
ℓ=1 H

†
ℓ,KBℓHℓ,K +K−1

K

∣∣∣∣∣K−1
K
∣∣ ,

R+

L∑
ℓ=1

log
|Σ−1

ℓ |
|Σ−1

ℓ −Bℓ|
≤ C.



It can be verified that the above problem is convex in (R,Bℓ),
so it can solved efficiently. Convexity is a key advantage of
this reformulation of the problem as compared to previous
approaches in the literature (e.g. [6], [14], [15]) that param-
eterize the optimization problem over the quantization noise
covariance Qℓ, which leads to a nonconvex formulation.

V. NUMERICAL EXAMPLE

This section presents a numerical example of a wireless
cellular network with three cells forming a cooperating cluster.
A total of K = 6 users are randomly located within the cluster.
Both the users and the BSs are equipped with M = N = 2
antennas each. The noise power spectral density is set to be
−124.6 dBm/Hz; the user’s transmit power is set to be 23 dBm
over 10 MHz; a distance-dependent path-loss model is used
with L = 128.1+ 37.6 · log10(d) (where d is in km) and with
8dB log normal shadowing and a Rayleigh component. The
distance between neighboring BSs is set to be 0.5 km.

The achievable sum rates of the compress-and-forward
schemes are plotted in Fig. 2. In the simulation, the sum rates
of joint decoding and successive decoding with optimal Gaus-
sian quantization are obtained under the individual fronthaul
capacity constraint and the sum fronthaul capacity constraint
using the convex formulations (16) and (21), respectively.
As performance comparison, the sum rate achieved by joint
decoding with the quantizers suggested by noisy network
coding [4], i.e., Qℓ = Σℓ, which achieves capacity to within
constant gap, is also provided. This is referred to as constant-
gap quantizer. The cut-set like sum-capacity upper bound [1]

C̄ = min

log

∣∣∣∑K
k=1 HL,kKkH

†
L,k +Ω

∣∣∣
|Ω|

,

L∑
ℓ=1

Cℓ

 (22)

where Ω = diag
(
{Σℓ}Lℓ=1

)
is also plotted. It is observed that

the optimal quantizer significantly outperforms the constant-
gap qunatizer in achievable sum rate for the C-RAN model.

VI. CONCLUSION

This paper studies the compress-and-forward scheme for
an uplink C-RAN model where the BSs are connected to
a CP through noiseless fronthaul links of limited capacities.
We show the optimality of Gaussian quantization under cer-
tain condition, and show the equivalence of joint decoding
and successive decoding for maximum sum rate under sum
fronthaul constraint. Further, we show that the optimization
of Gaussian quantizer for maximizing the sum rate under
successive decoding can be cast as a convex optimization
problem, which facilitates its efficient numerical solution.

REFERENCES

[1] A. Sanderovich, O. Somekh, H. V. Poor, and S. Shamai, “Uplink macro
diversity of limited backhaul cellular network,” IEEE Trans. Inf. Theory,
vol. 55, no. 8, pp. 3457–3478, Aug. 2009.

[2] A. Sanderovich, S. Shamai, and Y. Steinberg, “Distributed MIMO
receiver–Achievable rates and upper bounds,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, pp. 4419–4438, Oct. 2009.

20 40 60 80 100 120 140 160 180 200 220
15

20

25

30

35

40

45

50

55

60

 Cut-set upper bound
 Optimal quantizer, 

         sum fronthaul constraint
 Optimal quantizer, 

         individual fronthaul constraint
 Constant-gap quantizer

Pe
r-

ce
ll 

su
m

 ra
te

 (M
bp

s)

Per-cell backhaul capacity (Mbps)

Fig. 2. Achievable sum rate of a C-RAN with different quantizers.

[3] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information
flow: A deterministic approach,” IEEE Trans. Inf. Theory, vol. 57, no. 4,
pp. 1872–1905, Apr. 2011.

[4] S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network
coding,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3132–3152, May
2011.

[5] A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communi-
cation via decentralized processing,” IEEE Trans. Inf. Theory, vol. 54,
no. 7, pp. 3008–3023, Jul. 2008.

[6] Y. Zhou and W. Yu, “Optimized backhaul compression for uplink cloud
radio access network,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.
1295–1307, Jun. 2014.

[7] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem [multi-
terminal source coding],” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp.
887–902, May 1996.

[8] Y. Oohama, “Rate-distortion theory for Gaussian multiterminal source
coding systems with several side informations at the decoder,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2577–2593, Jul. 2005.

[9] V. Prabhakaran, D. Tse, and K. Ramachandran, “Rate region of the
quadratic Gaussian CEO problem,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2004, p. 119.

[10] J. Wang and J. Chen, “Vector Gaussian multiterminal source coding,”
IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5533–5552, Sep. 2014.

[11] E. Ekrem and S. Ulukus, “An outer bound for the vector Gaussian CEO
problem,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6870–6887, Nov.
2014.

[12] C. Tian and J. Chen, “Remote vector Gaussian source coding with
decoder side information under mutual information and distortion con-
straints,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp. 4676–4680, Oct.
2009.

[13] T. Liu and P. Viswanath, “An extremal inequality motivated by multiter-
minal information-theoretic problems,” IEEE Trans. Inf. Theory, vol. 53,
no. 5, pp. 1839–1851, May 2007.

[14] A. del Coso and S. Simoens, “Distributed compression for MIMO
coordinated networks with a backhaul constraint,” IEEE Trans. Wireless
Commun., vol. 8, no. 9, pp. 4698–4709, Sep. 2009.

[15] S.-H. Park, O. Simeone, O. Sahin, and S. Shamai, “Robust and efficient
distributed compression for cloud radio access networks,” IEEE Trans.
Veh. Technol., vol. 62, no. 2, pp. 692–703, Feb. 2013.

[16] Y. Zhou and W. Yu, “Optimized beamforming and backhaul compression
for uplink MIMO cloud radio access networks,” in Proc. IEEE GLOBE-
COM Workshops, Dec. 2014, pp. 1487–1492.

[17] A. Dembo, T. Cover, and J. Thomas, “Information theoretic inequalities,”
IEEE Trans. Inf. Theory, vol. 37, no. 6, pp. 1501–1518, Nov. 1991.

[18] D. Palomar and S. Verdu, “Gradient of mutual information in linear
vector Gaussian channels,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp.
141–154, Jan. 2006.


